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Abstract
In various applications involving hidden Markov
models (HMMs), some of the hidden states are
aliased, having identical output distributions.
The minimality, identifiability and learnability
of such aliased HMMs have been long standing
problems, with only partial solutions provided
thus far. In this paper we focus on parametric-
output HMMs, whose output distributions come
from a parametric family, and that have exactly
two aliased states. For this class, we present
a complete characterization of their minimality
and identifiability. Furthermore, for a large fam-
ily of parametric output distributions, we derive
computationally efficient and statistically consis-
tent algorithms to detect the presence of alias-
ing and learn the aliased HMM transition and
emission parameters. We illustrate our theoret-
ical analysis by several simulations.

1. Introduction
HMMs are a fundamental tool in the analysis of time se-
ries. A discrete time HMM with n hidden states is charac-
terized by a n × n transition matrix and by the emissions
probabilities from these n states. In several applications,
the HMMs, or more general processes such as partially ob-
servable Markov decision processes, are aliased, with some
states having identical output distributions. In modeling of
ion channel gating, for example, a common assumption is
that at any given time an ion channel can be in only one of a
finite number of hidden states, some of which are open and
conducting current while others are closed, see e.g. Fredkin
& Rice (1992). Fitting an aliased HMM to electric current
measurements, allows biologists to gain important insights
regarding the gating process. Other examples appear in the
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fields of reinforcement learning (Chrisman, 1992; McCal-
lum, 1995; Brafman & Shani, 2004; Shani et al., 2005) and
robot navigation (Jefferies & Yeap, 2008; Zatuchna & Bag-
nall, 2009). In the latter case, aliasing occurs whenever dif-
ferent spatial locations appear (statistically) identical to the
robot, given its limited sensing devices. As a last example,
HMMs with several silent states that do not emit any out-
put (Leggetter & Woodland, 1994; Stanke & Waack, 2003;
Brejova et al., 2007), can also be viewed as aliased.

Key notions related to the study of HMMs, be them aliased
or not, are their minimality, identifiability and learnability:

Minimality. Is there an HMM with fewer states that in-
duces the same distribution over all output sequences?

Identifiability. Does the distribution over all output se-
quences uniquely determines the HMM’s parameters, up
to a permutation of its hidden states?

Learning. Given a long output sequence from a minimal
and identifiable HMM, efficiently learn its parameters.

For non-aliased HMMs, these notions have been inten-
sively studied and by now are relatively well understood,
see for example Petrie (1969); Finesso (1990); Leroux
(1992); Allman et al. (2009) and Cappé et al. (2005). The
most common approach to learn the parameters of an HMM
is via the Baum-Welch iterative algorithm (Baum et al.,
1970). Recently, tensor decompositions and other compu-
tationally efficient spectral methods have been developed
to learn non-aliased HMMs (Hsu et al., 2009; Siddiqi et al.,
2010; Anandkumar et al., 2012; Kontorovich et al., 2013).

In contrast, the minimality, identifiability and learnabil-
ity of aliased HMMs have been long standing problems,
with only partial solutions provided thus far. For exam-
ple, Blackwell & Koopmans (1957) characterized the iden-
tifiability of a specific aliased HMM with 4 states. The
identifiability of deterministic output HMMs, where each
hidden state outputs a deterministic symbol, was partially
resolved by Ito et al. (1992). To the best of our knowledge,
precise characterizations of the minimality, identifiability
and learnability of probabilistic output HMMs with aliased
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states are still open problems. In particular, the recently
developed tensor and spectral methods mentioned above,
explicitly require the HMM to be non-aliasing, and are not
directly applicable to learning aliased HMMs.

Main results. In this paper we study the minimality,
identifiability and learnability of parametric-output HMMs
that have exactly two aliased states. This is the simplest
possible class of aliased HMMs, and as shown below, even
its analysis is far from trivial. Our main contributions are
as follows: First, we provide a complete characterization of
their minimality and identifiability, deriving necessary and
sufficient conditions for each of these notions to hold. Our
identifiability conditions are easy to check for any given 2-
aliased HMM, and extend those derived by Ito et al. (1992)
for deterministic outputs. Second, we address the problem
of learning a possibly aliased HMM from a long sequence
of its outputs. To this end, we first derive an algorithm to
detect whether an observed output sequence corresponds
to a non-aliased HMM or to an aliased one. In the former
case, the HMM can be learned by various methods, such as
Anandkumar et al. (2012); Kontorovich et al. (2013). In the
latter case we show how the aliased states can be identified
and present a method to recover the HMM parameters. Our
approach is applicable to any family of output distributions
whose mixtures are efficiently learnable. Examples include
high dimensional Gaussians and products distributions, see
Feldman et al. (2008); Belkin & Sinha (2010); Anandku-
mar et al. (2012) and references therein. After learning the
output mixture parameters, our moment-based algorithm
requires only a single pass over the data. As far as we
know, it is the first statistically consistent and computation-
ally efficient scheme to handle 2-aliased HMMs. While our
approach may be extended to more complicated aliasing,
such cases are beyond the scope of this paper. We conclude
with some simulations illustrating the performance of our
proposed algorithms.

2. Definitions & Problem Setup
Notation. We denote by In the n×n identity matrix and
1n = (1, . . . , 1)T ∈ Rn. For v ∈ Rn, diag(v) is the
n × n diagonal matrix with entries vi on its diagonal. The
i-th row and column of a matrix A ∈ Rn×n are denoted
by A[i,·] and A[·,i], respectively. We also denote [n] =
{1, 2, . . . , n}. For a discrete random variable X we abbre-
viate P (x) for Pr(X = x). For a second random variable
Z, the quantity P (z |x) denotes either Pr(Z = z |X = x),
or the conditional density p(Z = z|X = x), depending on
whether Z is discrete or continuous.

Hidden Markov Models. Consider a discrete-time
HMM with n hidden states {1, . . . , n}, whose output al-
phabet Y is either discrete or continuous. Let Fθ =

{fθ : Y → R | θ ∈ Θ} be a family of parametric prob-
ability density functions where Θ is a suitable parameter
space. A parametric-output HMM is defined by a tuple
H = (A,θ,π0) where A is the n × n transition matrix
between the hidden states

Aij = Pr(Xt+1 = i |Xt = j) = P (i | j),

π0 ∈ Rn is the distribution of the initial state, and the vec-
tor of parameters θ = (θ1, θ2, . . . , θn) ∈ Θn determines
the n probability density functions (fθ1 , fθ2 , . . . , fθn).

To produce the HMM’s output sequence, first a Markov se-
quence of hidden states x = (xt)

T−1
t=0 is generated accord-

ing to the distribution

P (x) = π0
x0

T−1∏
t=1

P (xt |xt−1).

Next, the output sequence y = (yt)
T−1
t=0 , where the output

yt at time t depends only on xt, is generated according to

P (y |x) =

T−1∏
t=0

P (yt |xt) =

T−1∏
t=0

fθxt (yt).

We denote by PH,k : Yk → R the joint distribution of
the first k consecutive outputs of the HMM H . For y =
(y0, . . . , yk−1) ∈ Yk this distribution is given by

PH,k(y) =
∑
x∈[n]k

P (y |x)P (x).

Further we denote by PH = {PH,k | k ≥ 1} the set of all
these distributions.

2-Aliased HMMs. For an HMM H with output parame-
ters θ = (θ1, θ2, . . . , θn) ∈ Θn we say that states i and j
are aliased if θi = θj . In this paper we consider the special
case whereH has exactly two aliased states, denoted as 2A-
HMM. Without loss of generality, we assume the aliased
states are the two last ones, n−1 and n. Thus, θi 6= θj for
all 1 ≤ i < j ≤ n− 1, whereas θn−1 = θn.

We denote the vector of the n−1 unique output parameters
of H by θ̄ = (θ1, θ2, . . . , θn−2, θn−1) ∈ Θn−1. For future
use, we define the aliased kernel K̄ ∈ R(n−1)×(n−1) as the
matrix of inner products between the n−1 different fθi ’s,

K̄ij ≡ 〈fθi , fθj 〉 =

∫
Y
fθi(y)fθj (y)dy, i, j ∈ [n−1]. (1)

Assumptions. As in previous works (Leroux, 1992; Kon-
torovich et al., 2013), we make the following standard as-
sumptions:

(A1) The parametric family Fθ of the output distributions
is linearly independent of order n: for any distinct {θi}ni=1,∑n
i=1 aifθi ≡ 0 iff ai = 0 for all i ∈ [n].
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(A2) The transition matrix A is ergodic and its unique sta-
tionary distribution π = (π1, π2, . . . , πn) is positive.

Note that assumption (A1) implies that the parametric fam-
ily Fθ is identifiable, namely fθ = fθ′ iff θ = θ′. It also
implies that the kernel matrix K̄ of (1) is full rank n−1.

3. Decomposing the transition matrix A

The main tool in our analysis is a novel decomposition of
the 2A-HMM’s transition matrix into its non-aliased and
aliased parts. As shown in Lemma 1 below, the aliased part
consists of three rank-one matrices, that correspond to the
exit from, entrance to, and dynamics within the two aliased
states. This decomposition is used to derive the conditions
for minimality and identifiability (Section 4), and plays a
key role in learning the HMM (Section 5).

To this end, we introduce a pseudo-state n̄, combining the
two aliased states n−1 and n. We define

πn̄ = πn−1 + πn and β = πn−1/πn̄. (2)

We shall make extensive use of the following two matrices:

B =


0 0

In−2

...
...

0 0
0 . . . 0 1 1

 ∈ R(n−1)×n,

Cβ =


0

In−2

...
0

0 . . . 0 β
0 . . . 0 1−β

 ∈ Rn×(n−1).

As explained below, these matrices can be viewed as pro-
jection and lifting operators, mapping between non-aliased
and aliased quantities.

Non-aliased part. The non-aliased part ofA is a stochas-
tic matrix Ā ∈ R(n−1)×(n−1), obtained by merging the two
aliased states n−1 and n into the pseudo-state n̄. Its entries
are given by

Ā=


P (1 | n̄)

A[1:n−2]×[1:n−2]

...
P (n−2 | n̄)

P (n̄ | 1) . . . P (n̄ |n−2) P (n̄ | n̄)

 , (3)

where the transition probabilities into the pseudo-state are

P (n̄ | j) = P (n−1 | j) + P (n | j), ∀j ∈ [n],

the transition probabilities out of the pseudo-state are de-
fined with respect to the stationary distribution by

P (i | n̄) = βP (i |n−1) + (1−β)P (i |n), ∀i ∈ [n]

and lastly, the probability to stay in the pseudo-state is

P (n̄ | n̄) = βP (n̄ |n−1) + (1−β)P (n̄ |n).

It is easy to check that the unique stationary distribution of
Ā is π̄ = (π1, π2, . . . , πn−2, πn̄) ∈ Rn−1. Finally, note that
Ā = BACβ , π̄ = Bπ and π = Cβπ̄, justifying the lifting
and projection interpretation of the matrices B,Cβ .

Aliased part. Next we introduce some key quantities that
distinguish between the two aliased states. Let suppin =
{j ∈ [n] |P (n̄ | j) > 0} be the set of states that can move
into at least one of the aliased states. We define

αj =

{
P (n−1 | j)
P (n̄ | j) j ∈ suppin

0 otherwise,
(4)

as the relative probability of moving from state j to state
n−1, conditional on moving to either n−1 or n. We define
the two vectors δout, δin ∈ Rn−1 as follows: ∀i, j ∈ [n−1],

δout
i =

{
P (i |n−1)− P (i |n) i < n− 1

P (n̄ |n−1)− P (n̄ |n) i = n− 1
(5)

δin
j =


(αj−β)P (n̄ | j) j < n−1

β(αn−1−β)P (n̄ |n−1)

+ (1−β)(αn−β)P (n̄ |n) j = n−1.

(6)

In other words, δout captures differences in the transi-
tion probabilities out of the aliased states. In particular, if
δout = 0 then starting from either one of the two aliased
states, the Markov chain evolution is identical. As proven
in Theorem 1 below, such an HMM is not minimal as its
two aliased states can be lumped together,

Similarly, δin compares the relative probabilities into the
aliased states αj , to the stationary one β = πn−1/πn̄. This
quantity also plays a role in the minimality of the HMM.

Lastly, for our decomposition, we define the scalar

κ = (αn−1 − β)P (n̄ |n−1)− (αn − β)P (n̄ |n). (7)

Decomposing A. The following lemma provides a de-
composition of the transition matrix in terms of Ā, δout,
δin, κ and β (all proofs are given in the Appendix).

Lemma 1. The transition matrix A of a 2A-HMM can be
decomposed as

A = CβĀB + Cβδ
outcT

β + b(δin)TB + κ bcT
β , (8)

where cβT = (0, . . . , 0, 1−β,−β) ∈ Rn and b =
(0, . . . , 0, 1,−1)T ∈ Rn.

In (8), the first term is the merged transition matrix Ā ∈
R(n−1)×(n−1) lifted back into Rn×n. This term captures all
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of the non-aliased transitions. The second matrix is zero
except in the last two columns, accounting for the exit tran-
sition probabilities from the two aliased states. Similarly,
the third matrix is zero except in the last two rows, differen-
tiating the entry probabilities. The fourth term is non-zero
only on the lower right 2 × 2 block involving the aliased
states n−1, n. This term corresponds to the internal dy-
namics between them. Note that each of the last three terms
is at most a rank-1 matrix, which together can be seen as a
perturbation due to the presence of aliasing.

In Section 4 we will show the importance of Eq. (8) for
the minimality and identifiability of two-aliased HMMs. In
section 5 we shall see that given a long output sequence
from the HMM, the presence of aliasing can be detected
and the quantities Ā, δout, δin, κ and β can all be estimated
from it. An estimate for A is then obtained via Eq. (8).

4. Minimality and Identifiability
Two HMMs H and H ′ are said to be equivalent if their ob-
served output sequences are statistically indistinguishable,
namely PH′ = PH . Similarly, an HMM H is minimal if
there is no equivalent HMM with fewer number of states.
Note that if H is non-aliased then Assumptions (A1-A2)
readily imply that it is also minimal (Leroux, 1992). In this
section we present necessary and sufficient conditions for a
2A-HMM to be minimal, and for two minimal 2A-HMMs
to be equivalent. Finally, we derive necessary and sufficient
conditions for a minimal 2A-HMM to be identifiable.

4.1. Minimality

The minimality of an HMM is closely related to the notion
of lumpability: can hidden states be merged without chang-
ing the distributionPH (Fredkin & Rice, 1986; White et al.,
2000; Huang et al., 2014). Obviously, an HMM is minimal
iff no subset of hidden states can be merged. The follow-
ing theorem gives precise conditions for the minimality of
a 2A-HMM.

Theorem 1. Let H be a 2A-HMM satisfying Assumptions
(A1-A2) whose initial state X0 is distributed according to
π0 = (π0

1 , π
0
2 , . . . , β

0π0
n̄, (1−β0)π0

n̄). Then,

(i) If π0
n̄ 6= 0 and β0 6= β then H is minimal iff δout 6= 0.

(ii) If π0
n̄ = 0 or β0 = β then H is minimal iff both

δout 6= 0 and δin 6= 0.

By Theorem 1, a necessary condition for minimality of a
2A-HMM is that the two aliased states have different exit
probabilities, δout 6= 0. Namely, there exists a non-aliased
state i ∈ [n−2] such that P (i |n−1) 6= P (i |n). Otherwise
the two aliased states can be merged. If the 2A-HMM is
started from its stationary distribution, then an additional

necessary condition is δin 6= 0. This last condition implies
that there is a non-aliased state j ∈ suppin \{n−1, n} with
relative entrance probability αj 6= β.

4.2. Identifiability

Recall that an HMM H is (strictly) identifiable if PH
uniquely determines the transition matrix A and the output
parameters θ, up to a permutation of the hidden states. We
establish the conditions for identifiability of a 2A-HMM in
two steps. First we derive a novel geometric characteriza-
tion of the set of all minimal HMMs that are equivalent to
H , up to a permutation of the hidden states (Theorem 2).
Then we give necessary and sufficient conditions for H to
be identifiable, namely for this set to be the singleton set,
consisting of only H itself (Appendix C). In the process,
we provide a simple procedure (Algorithm 1) to determine
whether a given minimal 2A-HMM is identifiable or not.

Equivalence between minimal 2A-HMMs. Necessary
and sufficient conditions for the equivalence of two min-
imal HMMs were studied in several works (Finesso, 1990;
Ito et al., 1992; Vanluyten et al., 2008). We now provide
analogous conditions for parametric output 2A-HMMs.
Toward this end, we define the following 2-dimensional
family of matrices S(τn−1, τn) ∈ Rn×n given by

S(τn−1, τn) =


0 0

In−2

...
...

0 0
0 . . . 0 τn−1 τn
0 . . . 0 1−τn−1 1−τn

 .

Clearly, for τn−1 6= τn, S is invertible. As in (Ito et al.,
1992), consider then the following similarity transforma-
tion of the transition matrix A,

AH(τn−1, τn) = S(τn−1, τn)−1AS(τn−1, τn). (9)

It is easy to verify that 1T
nAH = 1T

n. However, AH is
not necessarily stochastic, as depending on τn−1, τn it may
have negative entries. The following lemma resolves the
equivalence of 2A-HMMs, in terms of this transformation.
Lemma 2. Let H = (A,θ,π) be a minimal 2A-HMM
satisfying Assumptions (A1-A2). Then a minimal HMM
H ′ = (A′,θ′,π′) with n′ states is equivalent to H iff
n′ = n and there exists a permutation matrix Π ∈ Rn×n
and τn−1 > τn such that θ′ = Πθ and

π′ = ΠS(τn−1, τn)−1π, A′ = ΠAH(τn−1, τn) Π−1 ≥ 0.

The feasible region. By Lemma 2, any matrix
AH(τn−1, τn) whose entries are all non-negative yields an
HMM equivalent to the original one. We thus define the
feasible region of H by

ΓH = {(τn−1, τn) ∈ R2 |AH(τn−1, τn) ≥ 0, τn−1>τn}. (10)
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By definition, ΓH is non-empty, since (τn−1, τn) = (1, 0)
recovers the original matrix A. As we show below, ΓH is
determined by three simpler regions Γ1,Γ2,Γ3 ⊂ R2. The
region Γ1 ensures that all entries of AH are non-negative
except possibly in the lower right 2×2 block corresponding
to the two aliased states. The regions Γ2 and Γ3 ensure non-
negativity of the latter, depending on whether the aliased
relative probabilities of (4) satisfy αn−1 ≥ αn or αn−1 <
αn, respectively. For ease of exposition we assume as a
convention that P (n̄ |n−1) ≥ P (n̄ |n).

Theorem 2. Let H be a minimal 2A-HMM satisfy-
ing Assumptions (A1-A2). There exist (τmin

n−1 , τ
min
n ),

(τmax
n−1 , τ

max
n ), (τ−, τ+) ∈ R2, and convex monotonic de-

creasing functions f, g : R→ R such that

ΓH =

{
Γ1 ∩ Γ2 αn−1 ≥ αn
Γ1 ∩ Γ3 αn−1 < αn,

where the regions Γ1,Γ2,Γ3 ⊂ R2 are given by

Γ1 = [τmin
n−1 , τ

max
n−1 ]× [τmax

n , τmin
n ]

Γ2 = [τ+,∞)× [τ−, τ+]

Γ3 = {(τn−1, τn) ∈ Γ1 | f(τn−1) ≤ τn ≤ g(τn−1) }.

In addition, the set ΓH is connected.

The feasible regions in the two possible cases (αn−1 ≥ αn
or αn−1 < αn) are illustrated in Appendix C, Fig.4.

Strict Identifiability. By Lemma 2, for strict identifia-
bility of H , ΓH should be the singleton set ΓH = {(1, 0)}.
Due to lack of space, sufficient and necessary conditions
for this to hold, as well as a corresponding simple proce-
dure to determine whether a 2A-HMM is identifiable, are
given in Appendix C.2.

Remark. While beyond the scope of this paper, we note
that instead of strict identifiability of a given HMM, sev-
eral works studied a different concept of generic identifia-
bility (Allman et al., 2009), proving that under mild con-
ditions the class of HMMs is generically identifiable. In
contrast, if we restrict ourselves to the class of 2A-HMMs,
then our Theorem 2 implies that this class is generically
non-identifiable. The reason is that by Theorem 2, for any
2A-HMM whose matrix A has all its entries positive, there
are an infinite number of equivalent 2A-HMMs, implying
its non-identifiability.

5. Learning a 2A-HMM
Let (Yt)

T−1
t=0 be an output sequence generated by a

parametric-output HMM that satisfies Assumptions (A1-
A2) and initialized with its stationary distribution,X0 ∼ π.
We assume the HMM is either non-aliasing, with n− 1

determine model order n−1
and fit θ̄ = (θ1, . . . , θn−1)

(i)(Yt)
T−1
t=0

Is the HMM 2-aliasing? (ii)

estimate Ā

non-aliasing
(n−1 states)

(iii) identify aliasing
component θn−1

and estimate A

2-aliasing
(n states)

(iv)

Figure 1. Learning a 2A-HMM.

states, or 2-aliasing with n states. We further assume that
the HMM is minimal and identifiable, as otherwise its pa-
rameters cannot be uniquely determined.

In this section we study the problems of detecting whether
the HMM is aliasing and recovering its output parameters
θ and transition matrix A, all in terms of (Yt)

T−1
t=0 . As out-

lined in Fig.1, the proposed learning procedure consists of
the following steps:

(i) Determine the number of output components n−1 and
estimate the n−1 unique output distribution parame-
ters θ̄ and the projected stationary distribution π̄.

(ii) Detect if the HMM is 2-aliasing.

(iii) In case of a non-aliased HMM, estimate the (n−1)×
(n−1) transition matrix Ā, as for example in Kon-
torovich et al. (2013) or Anandkumar et al. (2012).

(iv) In case of a 2-aliased HMM, identify the component
θn−1 corresponding to the two aliased states, and esti-
mate the n× n transition matrix A.

We now describe in detail each of these steps. As far as
we know, our learning procedure is the first to consistently
learn a 2A-HMM in a computationally efficient way. In
particular, the solutions for problems (ii) and (iv) are new.

Estimating the output distribution parameters. As the
HMM is stationary, each observable Yt is a random realiza-
tion from the following parametric mixture model,

Y ∼
n−1∑
i=1

π̄ifθ̄i(y). (11)

Hence, the number of unique output components n−1, the
corresponding output parameters θ̄ and the projected sta-
tionary distribution π̄ can be estimated by fitting a mixture
model (11) to the observed output sequence (Yt)

T−1
t=0 .

Consistent methods to determine the number of compo-
nents in a mixture are well known in the literature (Titter-
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ington et al., 1985). Estimating θ̄ and π̄ can be done by ei-
ther the EM algorithm, or any recently developed spectral
method (Dasgupta, 1999; Achlioptas & McSherry, 2005;
Anandkumar et al., 2012). As our focus is on the aliasing
aspects of the HMM, in what follows we assume that the
number of unique output components n−1, the output pa-
rameters θ̄ and the projected stationary distribution π̄ are
exactly known. As in Kontorovich et al. (2013), it is pos-
sible to show that our method is robust to small errors in
these quantities (not presented).

5.1. Moments

To solve problems (ii), (iii) and (iv) above, we first intro-
duce the moment-based quantities we shall make use of.
Given θ̄ and π̄ or estimates of them, for any i, j ∈ [n−1],
we define the second order moments with time lag t by

M(t)
ij = E[fθi(Y0)fθj (Yt)], t ∈ {1, 2, 3}. (12)

The consecutive in time third order moments are defined by

G(c)
ij = E[fθi(Y0)fθc(Y1)fθj (Y2)], ∀c ∈ [n−1]. (13)

We also define the lifted kernel,K = BTK̄B ∈ Rn×n.One
can easily verify that for a 2A-HMM,

M(t) = K̄BAtCβ diag(π̄)K̄ (14)

G(c) = K̄BAdiag(K[·,c])ACβ diag(π̄)K̄. (15)

Next we define the kernel free moments M (t), G(c) ∈
R(n−1)×(n−1) as follows:

M (t) = K̄−1M(t)K̄−1 diag(π̄)−1 (16)
G(c) = K̄−1G(c)K̄−1 diag(π̄)−1. (17)

Note that by Assumption (A1), the kernel K̄ is full rank and
thus K̄−1 exists. Similarly, by (A2) π̄ > 0, so diag(π̄)−1

also exists. Thus, (16,17) are well defined.

Let R(2), R(3), F (c) ∈ R(n−1)×(n−1) be given by

R(2) = M (2) − (M (1))2 (18)

R(3) = M (3)−M (2)M (1)−M (1)M (2) + (M (1))3 (19)

F (c) = G(c) −M (1) diag(K̄[·,c])M
(1). (20)

The following key lemma relates the moments (18, 19, 20)
to the decomposition (8) of the transition matrix A.

Lemma 3. Let H be a minimal 2A-HMM with aliased
states n−1 and n. Let Ā, δout, δin and κ be defined in
(3,5,6,7) respectively. Then the following relations hold:

M (1) = Ā (21)
R(2) = δout(δin)T (22)
R(3) = κR(2) (23)
F (c) = K̄n−1,cR

(2), ∀c ∈ [n−1]. (24)

In the following, these relations will be used to detect alias-
ing, identify the aliased states and recover the aliased tran-
sition matrix A.

Empirical moments. In practice, the unknown moments
(12,13) are estimated from the output sequence (Yt)

T−1
t=0 by

M̂(t)
ij =

1

T − t

T−t−1∑
l=0

fθi(Yl)fθj (Yl+t),

Ĝ(c)
ij =

1

T − 2

T−3∑
l=0

fθi(Yl)fθc(Yl+1)fθj (Yl+2).

With known (or estimated) K̄, π̄ the corresponding empir-
ical kernel free moments are given by

M̂ (t) = K̄−1M̂(t)K̄−1 diag(π̄)−1 (25)
Ĝ(c) = K̄−1Ĝ(c)K̄−1 diag(π̄)−1. (26)

The empirical estimates for (18,19,20) similarly follow.

To analyze the error between the empirical and population
quantities, we make the following additional assumption:

(A3) The output distributions are bounded. Namely there
exists L > 0 such that ∀i ∈ [n] and ∀y ∈ Y , fθi(y) ≤ L.
Lemma 4. Let (Yt)

T−1
t=0 be an output sequence generated

by an HMM satisfying Assumptions (A1-A3). Then, as T →
∞, for any t ∈ {1, 2, 3} and c ∈ [n−1], all error terms
M̂ (t) −M (t), R̂(t) −R(t) and F̂ (c) − F (c) are OP (T−

1
2 ).

In fact, due to strong mixing, all of the above quantities are
asymptotically normally distributed (Bradley, 2005).

5.2. Detection of aliasing

We now proceed to detect if the HMM is aliased (step (ii)
in Fig.1). We pose this as a hypothesis testing problem:

H0 : H is non-aliased with n−1 states
vs.

H1 : H is 2-aliased with n states.

We begin with the following simple observation:
Lemma 5. LetH be a minimal non-aliased HMM with n−1
states, satisfying Assumptions (A1-A3). Then R(2) = 0.

In contrast, if H is 2-aliasing then according to (22) we
have R(2) = δout(δin)T. In addition, since the HMM is as-
sumed to be minimal and started from the stationary distri-
bution, Theorem 1 implies that both δout 6= 0 and δin 6= 0.
Thus R(2) is exactly a rank-1 matrix, which we write as

R(2) = σuvT with ‖u‖2 = ‖v‖2 = 1, σ > 0, (27)

where σ is the unique non-zero singular value of R(2).
Hence, our hypothesis testing problem takes the form:

H0 : R(2) = 0 vs. H1 : R(2) = σuvT with σ > 0.
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In practice, we only have the empirical estimate R̂(2). Even
if σ = 0, this matrix is typically full rank with n−1 non-
zero singular values. Our problem is thus detecting the rank
of a matrix from a noisy version of it. There are multiple
methods to do so. In this paper, motivated by Kritchman
& Nadler (2009), we adopt the largest singular value σ̂1 of
R̂(2) as our test statistic. The resulting test is

if σ̂1 ≥ hT returnH1, otherwise returnH0, (28)

where hT is a predefined threshold. By Lemma 4, as
T → ∞ the singular values of R̂(2) converge to those of
R(2). Thus, as the following lemma shows, with a suitable
threshold this test is asymptotically consistent.
Lemma 6. Let H be a minimal HMM satisfying Assump-
tions (A1-A3) which is either non-aliased or 2-aliased.
Then for any 0<ε< 1

2 , the test (28) with hT = Ω(T−
1
2 +ε)

is consistent. Namely, as T →∞

P (rejectH1 |H1 holds) + P (rejectH0 |H0 holds)→ 0

and asymptotically the test correctly detects whether the
HMM is non-aliased or 2-aliased.

If the HMM was detected as non-aliasing, then its (n−1)×
(n−1) transition matrix can be estimated, for example, by
the spectral methods of Kontorovich et al. (2013) or Anand-
kumar et al. (2012). We now turn our attention to the case
where the HMM was detected as an aliased one.

Estimating the non-aliased transition matrix Ā. It is
easy to show that in the 2-aliased case, the (n−1)× (n−1)
transition matrix most consistent with the first two mo-
ments is nothing but the non-aliased transition matrix Ā.
Hence, applying for example the spectral method of Kon-
torovich et al. (2013) yields an estimate ˆ̄A, which is not
only strongly consistent, but also satisfies that as T →∞,

ˆ̄A = Ā+OP (T−
1
2 ). (29)

5.3. Identifying the aliased component θn−1

Assuming the HMM was detected as 2-aliasing, our next
task, step (iv), is to identify the aliased component. Recall
that if the aliased component is θn−1, then by (24)

F (c) = K̄n−1,cR
(2), ∀c ∈ [n−1].

We thus estimate the index i ∈ [n−1] of the aliased com-
ponent by solving the following least squares problem:

î = argmin
i∈[n−1]

∑
c∈[n−1]

∥∥∥F̂ (c) − K̄i,cR̂
(2)
∥∥∥2

F
. (30)

The following result shows this method is consistent.
Lemma 7. For a minimal 2A-HMM satisfying Assumptions
(A1-A3) with aliased states n−1 and n,

lim
T→∞

Pr( î 6= n−1) = 0.

5.4. Learning the aliased transition matrix A

Given the aliased component, we estimate the n×n transi-
tion matrixA using the decomposition (8). First, recall that
by (22), R(2) = δout(δin)T = σuvT. As singular vectors
are determined only up to scaling, we have that

δout = γu and δin =
σ

γ
v,

where γ ∈ R is a yet undetermined constant. Thus, the
decomposition (8) of A takes the form:

A = CβĀB + γCβuc
T
β +

σ

γ
bvTB + κ bcT

β . (31)

Since Ā, σ,u and v were estimated in previous steps, we
are left to determine the scalars γ, β and κ of Eq. (7).

As for κ, according to (23) we have R(3) = κR(2). Thus,
plugging the empirical versions, κ̂ is estimated by

κ̂ = argmin
r∈R

∥∥∥R̂(3) − rR̂(2)
∥∥∥2

F
. (32)

To determine γ and β we turn to the similarity transfor-
mation AH(τn−1, τn), given in (9). As shown in Section
3, this transformation characterizes all transition matrices
equivalent to A. To relate AH to the form of the decompo-
sition (31), we reparametrize τn−1 and τn as follows:

γ′ = γ(τn−1 − τn), β′ =
β − τn
τn−1 − τn

.

Replacing τn−1, τn with γ′, β′ we find that AH is given by

AH = Cβ′ĀB + γ′Cβ′uc
T
β′ +

σ

γ′
bvTB + κ bcT

β′ . (33)

Note that putting γ′ = γ and β′ = β recovers the decom-
position (31) for the original transition matrix A.

Now, since H is assumed identifiable, the constraint
AH(τn−1, τn) ≥ 0 has the unique solution (τn−1, τn) =
(1, 0), or equivalently (γ′, β′) = (γ, β). Thus, with exact
knowledge of the various moments, only a single pair of
values (γ′, β′) will yield a non-negative matrix (33). This
perfectly recovers γ, β and the original transition matrixA.

In practice we plug into (33) the empirical versions ˆ̄A, κ̂,
σ̂1, û1 and v̂1, where û1, v̂1 are the left and right singu-
lar vectors of R̂(2), corresponding to the singular value σ̂1.
As described in Appendix D.5, the values (γ̂, β̂) are found
by maximizing a simple two dimensional smooth function.
The resulting estimate for the aliased transition matrix is

Â = Cβ̂
ˆ̄AB + γ̂Cβ̂û1c

T
β̂

+
σ̂1

γ̂
bv̂T

1B + κ̂ bcT
β̂
.

The following theorem proves our method is consistent.
Theorem 3. Let H be a 2A-HMM satisfying assumption
(A1-A3) with aliased states n−1 and n. Then as T →∞,

Â = A+ oP (1).



Learning Parametric-Output HMMs with Two Aliased States

1 2

34

.6

.1 .5

.25

.7

.2.8

.1

1 2

3

.6

.1 .5

.25

.087.453

Figure 2. The aliased HMM (left) and its corresponding non-
aliased version with states 3 and 4 merged (right).

6. Numerical simulations
The following simulation results illustrate the consistency
of our methods to detect aliasing, identify the aliased com-
ponent and learn the transition matrix A. As our focus is
on the aliasing, we assume for simplicity that the output pa-
rameters θ̄ and the projected stationary distributions π̄ are
exactly known.

Motivated by ion channel gating (Crouzy & Sigworth,
1990; Rosales et al., 2001; Witkoskie & Cao, 2004), we
consider the following HMM H with n = 4 hidden states
(Fig.2, left). The output distributions are univariate Gaus-
sians N (µi, σ

2
i ) , the matrix A and (fθi)

4
i=1 are given by

A =


0.3 0.25 0.0 0.8
0.6 0.25 0.2 0.0
0.0 0.5 0.1 0.1
0.1 0.0 0.7 0.1

 ,

fθ1 = N (3, 1)
fθ2 = N (6, 1)
fθ3 = N (0, 1)
fθ4 = N (0, 1).

States 3 and 4 are aliased and by Procedure 1 in Appendix
C.3 this 2A-HMM is identifiable. The rank-1 matrix R(2)

has a singular value σ = 0.33. Fig.2 (right) shows its non-
aliased version H̄ with states 3 and 4 merged.

To test our aliasing detection algorithm, we generated T
outputs from the original aliased HMM and from its non-
aliased version H̄ . Fig.3 (top left) shows the empirical den-
sities (averaged over 1000 independent runs) of the largest
singular value of R̂(2), for both H and H̄ . Fig.3 (top
right) shows similar results for a 2A-HMM with σ = 0.22.
When σ = 0.33, already T = 1000 outputs suffice for
essentially perfect detection of aliasing. For the smaller
σ = 0.22, more samples are required. Fig.3 (middle left)
shows the false alarm and misdetection probabilities vs.
sample size T of the aliasing detection test (28) with thresh-
old hT = 2T−

1
3 . The consistency of our method is evident.

Fig.3 (middle right) shows the probability of misidentify-
ing the aliased component θ3̄. We considered the same 2A-
HMM H but with different means for the Gaussian output
distribution of the aliased states, µ3̄ = {0, 1, 2}. As ex-
pected, when fθ3̄ is closer to the output distribution of the
non-aliased state fθ1 (with mean µ1 = 3), identifying the
aliased component is more difficult.

Finally, we considered the following methods to estimate
A: The Baum-Welch algorithm with random initial guess
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Figure 3. Top: Empirical density of the largest singular value of
R̂(2) with σ = 0.33 (left) and σ = 0.22 (right). Middle: Misde-
tection probability of aliasing/non-aliasing (left) and probability
of misidentifying the correct aliased component (right). Bottom:
Average error E||Â − A||2F and runtime comparison of different
algorithms vs. sample size T .

of the HMM parameters (BW); our method of moments
with exactly known θ̄ (MoM+Exact); BW initialized with
the output of our method (BW+MoM+Exact); and BW
with exactly known output distributions but random initial
guess of the transition matrix (BW+Exact). Fig.3 (bottom
left) shows on a logarithmic scale the mean square error
E||Â − A||2F vs. sample size T , averaged over 100 inde-
pendent realizations. Fig.3 (bottom right) shows the run-
ning time as a function of T . In both figures, the number of
iterations of the BW was set to 20.

These results show that with a random initial guess of the
HMM parameters, BW requires far more than 20 iterations
to converge. Even with exact knowledge of the output dis-
tributions but a random initial guess of the matrix A, BW
still fails to converge after 20 iterations. In contrast, our
method yields a relatively accurate estimator in only a frac-
tion of run-time. Furthermore, using this estimator as an
initial guess for BW yields even better accuracy.
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