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A. Proofs for Section 3 (Decomposing A)
Proof of Lemma 1. Writing each term in the decomposi-
tion (8) explicitly and summing these together we find a
match between all entries to those of A.

As a representative example let us consider the last entry
An,n = P (n |n). The first term gives

(CβĀB)[n,n] = (1− β)P (n̄ |n).

The second term gives

(Cβδ
outcT

β)[n,n] = −β(1−β)δout
n−1

= −β(1−β)(P (n̄ |n−1)−P (n̄ |n)).

The third term,

(b(δin)TB)[n,n] = −δin
n−1

= −β(αn−1−β)P (n̄ |n−1)

− (1−β)(αn−β)P (n̄ |n).

And lastly, the fourth term gives

(κbcT
β)[n,n] = β(αn−1 − β)P (n̄ |n−1)

−β(αn − β)P (n̄ |n).

PuttingP (n̄ |n) = P (n−1 |n)+P (n |n) andP (n̄ |n−1) =
P (n−1 |n−1) + P (n |n−1), and summing all these four
terms we obtain P (n |n) as needed. The other entries of A
are obtained similarly.

B. Proofs for Section 4.1 (Minimality)
Let H = (A,θ,π0) be a 2A-HMM. For any k ≥ 1 the
distribution PH,k ∈ PH can be cast in an explicit matrix
form. Let o ∈ Y . The observable operator Tθ(o) ∈ Rn×n
is defined by

Tθ(o) = diag (fθ1(o), fθ2(o), . . . , fθn(o)) .

Let y = (y0, y1, . . . , yk−1) ∈ Yk be a sequence of k ≥
1 initial consecutive observations. Then the distribution
PH,k(y) is given by (Jaeger, 2000),

PH,k(y) = 1T
nTθ(yk−1)A . . . ATθ(y1)ATθ(y0)π0. (34)

Proof of Theorem 1. Let us first show that δout 6= 0 is nec-
essary for minimality, namely if δout = 0 then H is not
minimal, regardless of the initial distribution π0. The non-
minimality will be shown by explicitly constructing a n−1
state HMM equivalent toH . Let us denote the lifting of the
merged transition matrix by

Ã = CβĀB ∈ Rn×n.

Assume that δout = 0. We will shortly see that for any
π0 and for any k ≥ 2 consecutive observations y =
(y0, y1, . . . , yk−1) ∈ Yk we have that

Tθ(yk−1)A . . . Tθ(y1)ATθ(y0)π0 (35)
− Tθ(yk−1)Ã . . . Tθ(y1)ÃTθ(y0)π0 ∝ b.

Combining (35) with (34), and the fact that 1T
nb = 0, we

have that P(A,θ,π0) = P(Ã,θ,π0). Since Ã has identical
(n−1)-th and n-th columns, and fθn−1 = fθn we have that
P(Ã,θ,π0) = P(Ā,θ̄,π̄0). Thus H ′ = (Ā, θ̄, π̄0) is an equiv-
alent (n−1)-state HMM and H is not minimal, proving the
claim. We prove (35) by induction on the sequence length
k ≥ 2. First note that since δout = 0, by Lemma 1 we have
that

A = Ã+ b((δin)TB + κcT
β).

Since for any y ∈ Y , Tθ(y)b = fθn̄(y)b, we have that

Tθ(y)A− Tθ(y)Ã = fθn̄(y)b((δin)TB + κcT
β) ∝ b.

This proves the case k = 2. Next, assume (35) holds for all
sequences of length at least 2 and smaller than k, namely,
for some a ∈ R

Tθ(yk−2)A . . . Tθ(y1)ATθ(y0)π0

= ab+ Tθ(yk−2)Ã . . . Tθ(y1)ÃTθ(y0)π0.

Using the fact that Bb = 0 we have Tθ(yk−1)Ãb = 0.
Inserting the expansion of A in the l.h.s of (35) we get

fθn̄(yk−1)b
(

(δin)TB + κcT
β

)
×

(
ab+ ÃTθ(yk−2) . . . Tθ(y1)ÃTθ(y0)π0

)
.

Since this last expression is proportional to b we are done.

(ii) The case π0
n̄ = 0 or β0 = β. As we just saw, having

δout = 0 implies that the HMM is not minimal. We now
show that if δin = 0 then H is not minimal either. By
contraposition this will prove the first direction of (ii).

So assume that δin = 0. Lemma 1 implies

A = Ã+ (Cβ(δout) + κb)cT
β . (36)

Now note that for all y ∈ Y , cT
βTθ(y) = fθn−1(y)cT

β and
since either π0

n̄ = 0 or β0 = β we have that cT
βπ

0 = 0.
Thus cβTθ(y)π0 = 0 and we find that

Tθ(yk−1)A . . . ATθ(y1)ATθ(y0)π0 (37)
= Tθ(yk−1)A . . . ATθ(y1)ÃTθ(y0)π0. (38)

Now since cT
βCβ = 0 we have that for any y ∈ Y ,

cT
βTθ(y)Ã = 0 and thus expanding A by (36) we find that

for any y ∈ Y ,

ATθ(y)Ã =
(
Ã+(Cβ(δout)+κb)cT

β

)
Tθ(y)Ã = ÃTθ(y)Ã.
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Thus each A in the right hand side of (37) can be replaced
by Ã and we conclude that P(A,θ,π0) = P(Ã,θn,π0). Simi-
larly to the case δout = 0 we have that H ′ = (Ā, θ̄, π̄0) is
an equivalent (n−1)-state HMM and thusH is not minimal.

In order to prove the other direction we will show that if H
is not minimal then either δout = 0 or δin = 0. This is
equivalent to the condition δoutδinT

= 0.

Assuming H is not minimal, there exists an HMM H ′ with
n′ < n states such that PH′ = PH . Assumptions (A1-
A3) readily imply that H ′ must have n′ = n−1 states and
that the unique n−1 output components are identical for
H and H ′. Since PH′ is invariant to permutations, we may
assume that θ̄′ = θ̄ and consequently the kernel matrices
in (1) for both H and H ′ are equal K̄ = K̄ ′.

Let A′ ∈ R(n−1)×(n−1) be the transition matrix of H ′ and
define H ′′ = (A′′,θ′′, π′′) as the equivalent n-state HMM
to H ′ by setting β′′ = β, A′′ = CβA

′B, θ′′ = θ̄
′
B and

π′′ = Cβπ̄
′. Note that for H ′′, by construction we have

δout′′(δin′′)T = 0.

Now, by the equivalence of the two models H and H ′′,
we have that the second order moments M(2) given in
(12) are the same for both. By the fact that K̄ ′′ = K̄,
π̄′′ = π̄ and by (22) in Lemma 3 we must have that
δout(δin)

T
= δout′′(δin′′)T. Thus δout(δin)

T
= 0 and the

claim is proved.

(i) The case π0
n̄ 6= 0 and β0 6= β. We saw above that ifH

is minimal then δout 6= 0. Thus, in order to prove the claim
we are left to show that if H is not minimal then δout = 0.

So assume H is not minimal and let H ′′ be constructed as
above. By way of contradiction assume δout 6= 0. As we
just saw, since H is not minimal then δout(δin)T = 0. Thus
by the assumption δout 6= 0 we must have δin = 0. This
implies that A is in the form (36). Since PH = PH′′ we
have PH,2 = PH′′,2 where:

PH,2 = 1T
nTθ(y2)ATθ(y1)π0

= 1T
nTθ(y2)

(
Ã+ (Cβδ

out + κb)cT
β

)
Tθ(y1)π0

PH′′,2 = 1T
nTθ(y2)A′′Tθ(y1)π0.

In addition, by the fact that K̄ ′′ = K̄, π̄′′ = π̄ we must
have that M (1) = M ′′

(1), where M (1) is defined in (16)
and M ′′(1) is defined similarly with the parameters of H ′′

instead of H . By (21) in Lemma 3 we thus have

M ′′
(1)

= A′ = Ā = M (1).

Hence A′′ = Ã and PH,2 = PH′′,2 is equivalent to

1T
nTθ(y2)

(
Cβδ

out + κb
)
cT
βTθ(y1)π0 = 0. (39)

Figure 4. The feasible region ΓH (shaded) in the (τn−1, τn)
plane. Any (τn−1, τn) ∈ ΓH induces an HMM equivalent to H
via Lemma 2. The pair (τn−1, τn) = (1, 0), corresponding to the
original transition matrix A, is indicated by a yellow point. Left:
αn−1 ≥ αn and Right: αn−1 < αn.

Now, note that ∀y1, y2 ∈ Y we have

1T
nTθ(y2)b = 0

cT
βTθ(y1)π0 = (β0 − β)π0

n̄fθn̄(y1)

1T
nTθ(y2)Cβ = (fθ1(y2), . . . , fθn−1(y2)).

Thus, (39) is given by

(β0 − β)π0
n̄fθn−1(y1)

(
fθ1(y2), . . . , fθn−1(y2)

)
· δout = 0.

Since by assumption (β0−β)π0
n̄ 6= 0 we have ∀y1, y2 ∈ Y

fθn−1(y1)
(
fθ1(y2), . . . , fθn−1(y2)

)
· δout = 0.

For each i ∈ [n−1], multiplying by fθi(y2) and integrating
over y1, y2 ∈ Y we get

K̄δout = 0.

Since K̄ is full rank we must have δout = 0 in contradic-
tion to the assumption δout 6= 0. This concludes the proof
of the Theorem.

C. Proofs for Section 4.2 (Identifiability)
C.1. Proof of Theorem 2

Before characterizing ΓH let us first give some intuition
on the role of (τn−1, τn). Consider the n−1 dimensional
columns {āi | i ∈ [n]} of the matrix BA. These can be
plotted on the n−1 dimensional simplex, as shown in Fig.5
(top), for n = 4 and aliased states {3, 4}. Recall that

AH(τn−1, τn) = S(τn−1, τn)−1AS(τn−1, τn)

and let {āH,i | i ∈ [n]} be the columns of the matrix
BAH ∈ Rn−1×n.
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ā3̄

ā1
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ā1

ā2
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Figure 5. Top: Plotting the columns of BA on the simplex for a
2A-HMM with aliased states {3, 4}. Here, ā3̄ = βā3 + (1 −
β)ā4. Bottom: Any vectors āH,n−1, āH,n within the depicted
bars results in a matrix AH with all entries non-negative, except
in possibly the 2× 2 aliased block.

Since BS(τn−1, τn)−1 = B we have BAH =
BAS(τn−1, τn). So the non-aliased columns of BAH are
unaltered from these of BA, i.e. for all i ∈ [n− 2],
āi = āH,i. The new aliased columns of BAH are

āH,n−1 = ān + τn−1δ
out

āH,n = ān + τnδ
out.

Thus τn−1 (τn) determines the position of the vector āH,n−1

(āH,n) along the ray passing through ān−1 and ān (dashed
line in Fig.5).

Hence a necessary condition forAH to be a valid transition
matrix is that āH,n−1 ≥ 0 and āH,n ≥ 0, and one cannot
take τn−1 and τn arbitrarily. In particular, there are τmax

n−1

and τmax
n such that āH,n−1 and āH,n are as “far” apart as

possible by putting them on the opposite sides of the ray
connecting them, such that both sit on the simplex bound-
ary. This is achieved by taking

āmax
H,n−1 = ān + τmax

n−1 δ
out

āmax
H,n = ān + τmax

n δout,

where

τmax
n−1 = minj∈X\{n−1,n}

1
2 (1+sign(δout

j ))−(ān)j
δout
j

≥ 0

τmax
n = maxj∈X\{n−1,n}

1
2 (1−sign(δout

j ))−(ān)j
δout
j

≤ 0.

(see Fig.5, bottom). Since we assumed as a convention that
τn−1 > τn we have that any τn−1 ≤ τmax

n−1 and τn ≥ τmax
n

results in a non negative matrixBAH . Note thatBAH ≥ 0
implies AH [1:n−2,1:n] ≥ 0.

Next, consider the new relative probabilities αH,i as de-
fined by (4) withAH replacingA. One can verify that these
satisfy

αH,i =
αi − τn
τn−1 − τn

, i ∈ suppin \{n−1, n}.

Obviously, a necessary condition for AH to be a valid tran-
sition matrix is that

0 ≤ αH,i =
αi − τn
τn−1 − τn

≤ 1, i ∈ suppin \{n−1, n}. (40)

Define the minimal and maximal relative probabilities of
the non-aliased states by

αmin = min {αi | i ∈ suppin \{n−1, n}}
αmax = max {αi | i ∈ suppin \{n−1, n}}.

Let αmin
H and αmax

H be defined similarly. Taking

τmin
n−1 = αmax

τmin
n = αmin,

we have αmin
H = 0 and αmax

H = 1. Hence, for any
τn−1 ≥ τmin

n−1 and τn ≤ τmin
n the constraint (40) holds

and consequently AH [1:n,1:n−2] is non-negative. The cor-
responding columns āmin

H,n−1 = ān + τmin
n−1 δ

out and āmin
H,n =

ān + τmin
n δout are depicted in Fig.5 (bottom).

Combining the above constraints we have that the four pa-
rameters τmin

n−1 , τ
min
n , τmax

n−1 , τ
max
n define the rectangle

Γ1 = [τmin
n−1 , τ

max
n−1 ]× [τmax

n , τmin
n ], (41)

which characterize the equivalent matrices AH having all
entries non-negative except of possibly in the 2× 2 aliased
block (see Fig.4). Thus we must have ΓH ⊂ Γ1.

We are left to find the conditions under which the 2 × 2
aliased block is non-negative. Writing AH explicitly we
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have that these conditions are

AH,n,n−1 = τn−1(τn−1 − αn−1)P (n̄ |n−1) (42)
+ (1− τn−1)(τn−1 − αn)P (n̄ |n) ≥ 0

AH,n−1,n = τn(αn−1 − τn)P (n̄ |n−1) (43)
+ (1− τn)(αn − τn)P (n̄ |n) ≥ 0

AH,n−1,n−1 = τn−1(αn−1−τn)P (n̄ |n−1) (44)
+ (1−τn−1)(αn − τn)P (n̄ |n) ≥ 0

AH,n,n = τn(τn−1 − αn−1)P (n̄ |n−1) (45)
+ (1− τn)(τn−1 − αn)P (n̄ |n) ≥ 0.

As the case P (n̄ |n−1) = P (n̄ |n) = 0 is trivial, we as-
sume that at least one of P (n̄ |n−1), P (n̄ |n) is nonzero
(and since by convention P (n̄ |n−1) ≥ P (n̄ |n), this is
equivalent to P (n̄ |n−1) > 0).

Recall that by definition δout
n−1 = P (n̄ |n−1)−P (n̄ |n) (see

(5)). We now consider the cases δout
n−1 = 0 and δout

n−1 > 0
separately.

The case δout
n−1 = 0. Consider first the off-diagonal con-

straint (43) for AH,n−1,n ≥ 0, taking the form

τn(1− (αn−1 − αn))) ≤ αn.

Denote
τ0 = αn/(1− (αn−1 − αn)).

Since αn−1 − αn ≤ 1 we need τn ≤ τ0. Similarly, (42)
is satisfied if and only if τn−1 ≥ τ0. Thus in order for the
off-diagonal entries AH,n,n−1, AH,n−1,n to be non-negative
we need (τn−1, τn) ∈ Γ0

2 where

Γ0
2 = [τ0,∞]× [−∞, τ0]. (46)

Next, the on-diagonal constraint (44) for AH,n−1,n−1 ≥ 0 is
equivalent to

τn ≤ αn + τn−1(αn−1 − αn). (47)

Similarly, the on-diagonal constrain (45) for AH,n,n ≥ 0 is

τn(αn−1 − αn) ≤ τn−1 − αn. (48)

Define the two linear functions g0, f0 : R→ R by

g0(τn−1) = αn + τn−1(αn−1 − αn)

f0(τn−1) =
τn−1 − αn
αn−1 − αn

.

Note that τ0 is a fixed point of both g0 and f0,

τ0 = g0(τ0) = f0(τ0).

Note also that for αn−1 ≥ αn the functions g0 and f0 are
increasing, while for αn−1 < αn they are decreasing. Thus,
if αn−1 ≥ αn the constrains (47,48) are automatically satis-
fied for (τn−1, τn) ∈ Γ0

2, so in this case AH,n−1,n−1, AH,n,n
are also guaranteed to be non-negative.

If αn−1 < αn then with τn−1 ≥ τn (as we assume here)
we have f0(τn−1) ≤ g0(τn−1) ≤ τ0 and the constraints
(47,48) take the form f0(τn−1) ≤ τn ≤ g0(τn−1). Thus, in
order for the on-diagonal entries AH,n−1,n−1 and AH,n,n to
be non-negative we must have (τn−1, τn) ∈ Γ0

3, where

Γ0
3 = {(τn−1, τn) ∈ Γ1 | f0(τn−1) ≤ τn ≤ g0(τn−1)}. (49)

We are left to ensure that for αn−1 < αn the off diagonal
entries are also non-negative. Indeed, since τn ≤ τn−1, τ0

is a fixed point and g(τn−1), f(τn−1) are decreasing, for any
(τn−1, τn) ∈ Γ0

3 we automatically have that τ0 ≤ τn−1 and
τn ≤ τ0, so (τn−1, τn) ∈ Γ0

3 implies (τn−1, τn) ∈ Γ0
2. Thus

all entries of the aliasing block are guaranteed to be non-
negative.

To conclude, we have shown that for δout
n−1 = 0 the feasible

region (10) is given by

Γ0
H =

{
Γ1 ∩ Γ0

2 αn−1 ≥ αn
Γ1 ∩ Γ0

3 αn−1 < αn.

The case δout
n−1 > 0. This case has the same characteristics

as for the δout
n−1 = 0 case, but it is a bit more complex to

analyze. Define τ± (as the analogues of τ0) by

τ± =
1

2δout
n−1

(
αn−1P (n̄ |n−1) (50)

−(1 + αn)P (n̄ |n)±
√

∆
)
,

where

∆ =
(
αn−1P (n̄ |n−1)− (1 + αn)P (n̄ |n)

)2

+ 4αnP (n̄ |n)δout
n−1 ≥ 0.

And define the regions

Γ2 = [τ+,∞]× [τ−, τ+] (51)

Γ3 = {(τn−1, τn) ∈ Γ1 | f(τn−1) ≤ τn ≤ g(τn−1)}(52)

where the functions g, f : R→ R are given by

g(τn−1) =

(
αn−1P (n̄ |n−1)− αnP (n̄ |n)

δout
n−1

)
(53)

− P (n̄ |n−1)P (n̄ |n)(αn−1 − αn)

(δout
n−1)2

×
(
τn−1 −

(−P (n̄ |n)

δout
n−1

))−1
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and

f(τn−1) =

(
−P (n̄ |n)

δout
n−1

)
(54)

− P (n̄ |n−1)P (n̄ |n)(αn−1 − αn)

(δout
n−1)2

×
(
τn−1 −

(αn−1P (n̄ |n−1)− αnP (n̄ |n)

δout
n−1

))−1

.

Lemma 8. Let Γ1 be defined in (41) and let Γ2 and Γ3

be defined according to whether δout
n−1 = 0 (46,49) or not

(51,52). Then the feasible region ΓH satisfies

ΓH =

{
Γ1 ∩ Γ2 αn−1 ≥ αn
Γ1 ∩ Γ3 αn−1 < αn.

Proof. As the case δout
n−1 = 0 was treated above, we con-

sider the case δout
n−1 > 0. Consider first the off diagonal

constraint (43). Multiplying by (−1), we need to solve the
following inequality for τ ∈ R,

τ2δout
n−1 − τ(αn−1P (n̄ |n−1) (55)
−(1 + αn)P (n̄ |n))− αnP (n̄ |n) ≤ 0.

We first solve with equality to find the solutions τ−, τ+

given in (50). Thus, since ∆ ≥ 0 we have that any feasible
τn must satisfy τ− ≤ τn ≤ τ+. Note that the constraint
(42) for τn−1 is the complement of (43), and by assump-
tion τn−1 ≥ τn, so (42) is satisfied iff τ+ ≤ τn−1. Thus,
the region Γ2 given in (51) indeed characterize the non-
negativity of both An−1,n and An,n−1. With some algebra,
τ+ and τ− can be shown to satisfy the following useful
relations:

• If αn−1 ≥ αn then

− P (n̄ |n−1)

δout
n−1

≤ τ− ≤ 0 (56)

and

0 ≤ τ+ ≤ αn−1P (n̄ |n−1)− αnP (n̄ |n)

δout
n−1

. (57)

• If αn−1 < αn then

τ− ≤ −P (n̄ |n)

δout
n−1

(58)

≤ αn−1P (n̄ |n−1)− αnP (n̄ |n)

δout
n−1

≤ τ+.

We proceed to handle the constraints (44) and (45) corre-
sponding to the region Γ3. We begin by solving the in-
equality (44):

−τn(P (n̄ |n) + τn−1δ
out
n−1) + αnP (n̄ |n)

+ τn−1(αn−1P (n̄ |n−1)− αnP (n̄ |n)) ≥ 0.

Note that for (τn−1, τn) ∈ Γ1 we have (P (n̄ |n) +
τn−1δ

out
n−1) ≥ 0. Rearranging we get that in order for

AH,n−1,n−1 to be non-negative we must have that

if τn−1 ≥ −
P (n̄ |n)

δout
n−1

then τn ≤ g(τn−1), (59)

where g is the function given in (53). Similarly, consider
the condition (45),

τn

(
αnP (n̄ |n)− αn−1P (n̄ |n−1) + τn−1δ

out
n−1

)
+P (n̄ |n)(αn − τn−1) ≥ 0.

Rearranging we find that in order for AH,n,n ≥ 0 we must
have{

τn ≤ f(τn−1) τn−1 ≤ αn−1P (n̄ |n−1)−αnP (n̄ |n)
P (n̄ |n−1)−P (n̄ |n)

τn ≥ f(τn−1) otherwise,
(60)

where the function f is given in (54). Note that g (res.
f ) defines the boundary where (44) (res. (45)) changes
sign, namely any pair (τn−1, τn) = (τn−1, g(τn−1)) is on
the curve making Equation (44) equal zero, and similarly
f(τn−1) is such that (τn−1, τn) = (τn−1, f(τn−1)) is on the
curve making (45) equal zero. Having the boundaries g, f
in our disposal let us first consider the case αn−1 ≥ αn.

The sub-case αn−1 ≥ αn. We show that in this case,
having (τn−1, τn) ∈ Γ1 ∩ Γ2 already ensures that con-
ditions (59) and (60) are trivially met, which in turn im-
plies the non-negativity of both AH,n−1,n−1 and AH,n,n.
This is done by showing that for any (τn−1, τn) ∈ Γ1 ∩
Γ2 the curve (τn−1, g(τn−1)) is above (τn−1, τ

+). Sim-
ilarly, for τn−1 < (αn−1P (n̄ |n−1)− αnP (n̄ |n))/δout

n−1

the curve (τn−1, f(τn−1)) is above (τn−1, τ
+) and for

τn−1 > (αn−1P (n̄ |n−1)− αnP (n̄ |n))/δout
n−1 the curve

(τn−1, f(τn−1)) is below (τn−1, τ
−), thus making condi-

tions (59) and (60) true. Toward this end consider the
equality g(τ) = f(τ) given by

0 =
(
αn−1P (n̄ |n−1) + (1− αn)P (n̄ |n)

)
×(

τ2δout
n−1 + τ((1 + αn)P (n̄ |n)

−αn−1P (n̄ |n−1))− αnP (n̄ |n)
)
.

Thus if (αn−1P (n̄ |n−1) + (1− αn)P (n̄ |n)) = 0 we
have that g = f identically. Otherwise we need to solve
again (55) so the solutions are τ+, τ− with g(τ+) = f(τ+)
and g(τ−) = f(τ−). In addition one can show that τ+ and
τ− are in fact fixed points of both g and f , so together we
have

τ+ = g(τ+) = f(τ+)

τ− = g(τ−) = f(τ−).
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Ai,n−1 =0 0<Ai,n−1<1 Ai,n−1 =1

Ai,n=0

0<Ai,n<1

Ai,n=1
not

aliased

Table 1. For any state i ∈ X \ {n−1, n} with Ai,n ∈ {0, 1} or
Ai,n−1 ∈ {0, 1}, pick the relevant diagram.

Inspecting g(τn−1) one can see that for τn−1 ≥
−P (n̄ |n)/δout

n−1, g(τn−1) is monotonic increasing and
concave. Since by (57) we have τ+ ≥ −P (n̄ |n)/δout

n−1

we get that for τn−1 ≥ τ+ we must have
g(τn−1) ≥ τ+ as needed. Similarly, for τ+ ≤ τn−1 <
(αn−1P (n̄ |n−1)− αnP (n̄ |n))/δout

n−1 the function
f(τn−1) is increasing and convex and thus above τ+, while
for (αn−1P (n̄ |n−1)− αnP (n̄ |n))/δout

n−1 < τn−1 it is
increasing but always below τ−. Thus, for αn−1 ≥ αn we
have that Γ1 ∩ Γ2 also characterize the non-negativity of
AH,n−1,n−1 and AH,n,n as claimed.

The sub-case αn−1 < αn. Note that by (58) we have
τ+ ≥ (αn−1P (n̄ |n−1)− αnP (n̄ |n))/δout

n−1. Thus for
τ+ ≤ τn−1 both g and f are decreasing and convex and
f(τn−1) ≤ g(τn−1). Thus in order to ensure (59, 60) we
need f(τn−1) ≤ τn ≤ g(τn−1). Thus, Γ3 as defined in (52)
characterize the non-negativity of AH,n,n, AH,n−1,n−1. Fi-
nally we need to show that having (τn−1, τn) ∈ Γ3 also en-
sures the non-negativity of AH,n,n−1 and AH,n−1,n. But by
(58) we have that for τn−1 ≥ τ+ both g(τn−1), f(τn−1) ≥
τ− and thus Γ3 ⊂ Γ2. Hence we have shown that ΓH is
characterized as claimed.

Lemma 9. The set ΓH is connected.

Proof. If αn−1 ≥ αn then ΓH = Γ1 ∩ Γ2 is a rectangle
and thus connected. In the case αn−1 < αn we have that
f(τn−1) ≤ g(τn−1) and are both decreasing and convex thus
the region Γ3 with intersection with a rectangle is a con-
nected set.

C.2. Conditions for |ΓH | = 1

Let us first write

(τn−1, τn) = (1, 0) + (∆τn−1,∆τn).

αj=0

0<αj<1

αj=1

Table 2. For any state j ∈ suppin \{n−1, n} with αj ∈ {0, 1}
pick the corresponding diagram.

An−1,n−1 =0 An−1,n−1>0

An,n=0

An,n>0

Table 4. If αn−1 < αn pick the relevant diagram from here.

∆τn−1

∆τn

no constraints

∆τn−1

∆τn

∆τn ≥ 0

∆τn−1

∆τn

∆τn−1,∆τn=0

Figure 6. The effective feasible region for various con-
straints, ensuring AH(1 + ∆τn−1,∆τn) ≥ 0 for
|∆τn−1| , |∆τn| << 1.
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An−1,n−1<An,n An−1,n−1 =An,n

An,n <
An−1,n−1

< An̄,n−1

An−1,n−1 =An̄,n−1

An−1,n = 0

An−1,n > 0

Table 3. If αn−1 ≥ αn pick the relevant diagram from here.

We characterize the conditions for |ΓH | = 1 by deter-
mining the geometrical constraints the entries of the tran-
sition matrix A pose on (∆τn−1,∆τn) in order to ensure
AH(1 + ∆τn−1,∆τn) ≥ 0. Note that |ΓH | = 1 iff these
constraints imply that (∆τn−1,∆τn) = (0, 0) is the unique
feasible pair.

As a first example, consider a 2A-HMM H having a tran-
sition matrix with all entries being strictly positive, A ≥
ε > 0. Since the mapping (9) is continuous in ∆τn−1,∆τn,
there exists a neighborhood N ⊂ R2 of (∆τn−1,∆τn) =
(0, 0), such that for any (∆τn−1,∆τn) ∈ N the matrix
AH(1 + ∆τn−1,∆τn) is non-negative, and thus N ⊂ ΓH .
This condition can be represented in the (∆τn−1,∆τn)
plane (i.e. R2) as the ”full” diagram Fig.6. On the other
hand, the condition that (∆τn−1,∆τn) = (0, 0) is the
unique feasible pair can be represented by a point like dia-
gram as in Fig.6.

In general, the entries of the transition matrix A put
constraints on the feasible (∆τn−1,∆τn) only when
(τn−1, τn) = (1, 0) is on the boundary of ΓH . These con-
straints can be explicitly determined in terms of A’s en-
tries by considering the exact characterization of ΓH given
in Theorem 2. Note however that by the fact that ΓH is
connected, and as far as the condition |ΓH | = 1 is con-
cerned, we only need to consider the shape of these con-
straints in a small neighborhood of (τn−1, τn) = (1, 0), i.e
for |∆τn−1| , |∆τn| << 1. Any such neighborhood can be
represented on the R2 plane (as in Fig.6). The shape of this
neighborhood for a given H is called the effective feasible
region of ΓH .

Now, as the example with A ≥ ε > 0 shows, a non-
trivial constraint on the (effective) feasible region must re-
sults from A having some zeros entries. Each such a zero
entry, as determined by its position in A, put a boundary
constraint on (∆τn−1,∆τn). These in turn corresponds to
a suitable diagram in R2 (as the diagram for ∆τn ≥ 0 in
Fig.6). The effective feasible region of A is obtained by
taking the intersection of all these diagrams. The exact

correspondence between A’s entries and the correspond-
ing diagrams is given in Tables 1,2,3,4. The procedure for
determining the effective feasible region of a 2A-HMM is
given in Algorithm 1. The correctness of the algorithm is
demonstrated in the proof of Lemma 8.

Algorithm 1 determining the effective feasible region for
minimal 2A-HMM H

1: permute aliased states so that P (n̄ |n−1) ≥ P (n̄ |n)
2: collect the following diagrams:

- ∀i ∈ [n−2] with Ai,n ∈ {0, 1} or Ai,n−1 ∈ {0, 1}
pick the relevant diagram in Table 1

- ∀j ∈ suppin \{n−1, n} with αj ∈ {0, 1} pick
corresponding diagram in Table 2

- if αn−1 ≥ αn pick relevant diagram in table 3 and
if αn−1 < αn pick relevant diagram in Table 4

3: Return the intersection of all the regions obtained in
previous step

C.3. Examples.

We demonstrate our Algorithm 1 for determining the iden-
tifiability of 2A-HMMs on the 2A-HMM given in Section
6, shown in Fig 2 (left). Going through the steps of Al-
gorithm 1 we get the following diagrams for the effective
feasible region:

︸ ︷︷ ︸
from Table 1:

A1,3=0∧A1,4 6=0

∩ ︸ ︷︷ ︸
from Table 1:

A2,4=0∧A2,3 6=0

∩ ︸ ︷︷ ︸
from Table 2:
α1=1

∩ ︸ ︷︷ ︸
from Table 2:
α2=0

= .

Since their intersection results in a point like diagram, this
2A-HMM is identifiable.
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More generally, for a minimal stationary 2A-HMM sat-
isfying Assumptions (A1-A2) with aliased states n and
n−1, a sufficient condition for uniqueness is the following
constraints on the allowed transitions between the hidden
states: ∃in−1, jn−1, in, jn ∈ [n−2] such that

X in−1 → n−1 → jn−1 X in−1 → n→ ∗
X in → n→ jn X in → n−1 → ∗

X ∗ → n−1 → jn

X ∗ → n→ jn−1.

One can check that these conditions give the same set of
diagrams as above.

D. Proofs for Section 5 (Learning)
D.1. Proof of Lemma 3

The claim in (21) thatM (1) = BACβ = Ā follows directly
from (14) and (16). Next, we have

R(2) = BAACβ −BACβBACβ
= BA(In − CβB)ACβ

= BAbcT
βACβ ,

where the last equality is by the fact that (In − CβB) =

bcT
β . Since BAb = δout and cT

βACβ = (δin)T we have
R(2) = δout(δin)T as claimed in (22).

As for (23) we have,

R(3) = BAAACβ −BAACβBACβ
−BACβBAACβ +BACβBACβBACβ

= BA(In − CβB)A(In − CβB)ACβ

= δoutcT
βAb(δ

in)T.

Since by definition κ = cT
βAb we have R(3) = κR(2) and

the claim in (23) is proved.

Finally,

F (c) = BA
(

diag(K[·,c])− Cβ diag(K̄[·,c])B
)
ACβ .

Since

diag(K[·,c])− Cβ diag(K̄[·,c])B = K̄n−1,cb(cβ)T

we have that F (c) = K̄n−1,cR
(2) as claimed in (24).

D.2. Proof of Lemma 4

Assumption (A2) combined with the fact that the HMM has
a finite number of states imply that the HMM is geometri-
cally ergodic: there exist parametersG <∞ andψ ∈ [0, 1)
such that from any initial distribution π0,∥∥Atπ0 − π

∥∥
1
≤ 2Gψt, ∀t ∈ N. (61)

Thus, we may apply the following concentration bound,
given in Kontorovich & Weiss (2014):
Theorem 4. Let Y = Y0, . . . , YT−1 ∈ YT be the output
of a HMM with transition matrix A and output parameters
θ. Assume that A is geometrically ergodic with constants
G,ψ. Let F : (Y0, . . . , YT−1) 7→ R be any function that
is Lipschitz wit constatnt l with respect to the Hamming
metric on YT . Then, for all ε > 0,

Pr(|F (Y )− EF | > εT ) ≤ 2 exp

(
−T (1− ψ)2ε2

2l2G2

)
. (62)

In order to apply the theorem note that ∀t ∈ {1, 2, 3},
E[M̂(t)

ij ] =M(t)
ij for any i, j ∈ [n−1]. In addition, follow-

ing Assumption (A3), (T − t)M̂(t)
ij is (t+ 1)L2-Lipschitz

with respect to the Hamming metric on YT . Thus, taking
ε ≈ T− 1

2 in Theorem 4 and applying a union bound on i, j
readily gives

M̂(t) = M(t) +OP

(
T−

1
2

)
.

The kernel-free moments M̂ (t) given in (25) incur ad-
ditional error which results in a factor of at most
1/(σmin(K̄)2 mini πi) hidden in the OP notation. Since
R(t) are (low order) polynomials of M (t), the asymptotics
OP

(
T−

1
2

)
carry on to the error in R̂(t). A similar argu-

ment yields the claim for F (c).

D.3. Proof of Lemma 6

Let σ1 and σ̂1 be the largest singular values of R(2) and
R̂(2), respectively. Combining Weyl’s Theorem (Stewart &
Sun, 1990) with Lemma 4 gives

|σ1 − σ̂1| ≤
∥∥∥R(2) − R̂(2)

∥∥∥
F

= OP (T−
1
2 ),

Recall that under the null hypothesis H0, we have σ1 = 0.
Thus, with high probability σ̂1 < ξ0T

− 1
2 , for some ξ0 > 0.

In contrast, under H1 we have σ1 = σ > 0, thus for some
ξ1 > 0, σ̂1 > σ − ξ1T−

1
2 . Hence, taking T sufficiently

large, we have that for any ch > 0 and 0 < ε < 1
2 , with

hT = chT
− 1

2 +ε,

in caseH0 : σ̂1 < hT

in caseH1 : σ̂1 > hT ,

with high probability. Thus, the correct detection of alias-
ing is with high probability.

D.4. Proof of Lemma 7

Let us define the following score function for any i ∈ [n−1],

score(i) =
∑

j∈[n−1]

∥∥∥F̂ (j) − K̄i,jR̂
(2)
∥∥∥2

F
.
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According to Eq. (30) the chosen aliased component is the
index with minimal score. Hence, in order to prove the
Lemma we need to show that

lim
T→∞

Pr(∃i 6= n−1 : score(i) < score(n−1)) = 0.

By Lemma 4 and (20) we have

F̂ (j) = F (j) +
ξ

(j)
F√
T

= K̄n−1,jR
(2) +

ξ
(j)
F√
T

R̂(2) = R(2) +
ξR√
T
,

for some ξR, ξ
(j)
F ∈ R(n−1)×(n−1) with OP (ξR) = 1 and

OP (ξ
(j)
F ) = 1. Thus,

score(n−1) =
1√
T

∑
j∈[n−1]

∥∥∥ξ(j)
F − K̄j,n−1ξR

∥∥∥2

F

P−→ 0.

In contrast, for any i 6= n−1 we may write score(i) as

∑
j∈[n−1]

∥∥∥∥(K̄j,i − K̄j,n−1)R(2) +
1√
T

(ξ
(j)
F − K̄j,n−1ξR)

∥∥∥∥2

F

.

Applying the (inverse) triangle inequality we have

score(i) ≥ σ2
∥∥K̄[·,n−1] − K̄[·,i]

∥∥2 −OP (T−
1
2 ).

Since K̄ is full rank, σ2
∥∥K̄[·,n−1] − K̄[·,i]

∥∥2
> 0. Thus, for

any i 6= n−1 as T → ∞, w.h.p score(i) > score(n−1).
Taking a union bound over i yields the claim.

D.5. Estimating γ and β

We now show how to estimate γ and β. As discussed in
Section 5.4, this is done by searching for γ′, β′ ensuring
the non-negativity of (33), namely, A′H(γ′, β′) ≥ 0, where

A′H(γ′, β′) ≡ Cβ′ĀB + γ′Cβ′ucβ′
T +

σ

γ′
bvTB + κ bcβ′

T.

We pose this as a non-linear two dimensional optimization
problem. For any γ′ ≥ 0 and 0 ≤ β′ ≤ 1 define the
objective function h : R2 → R by

h(γ′, β′) = min
i,j∈[n]

{γ′A′H(γ′, β′)ij}.

Note that h(γ′, β′) ≥ 0 iff A′H(γ′, β′) does not have neg-
ative entries. Recall that by the identifiability of H , if we
constrain γ′ ≥ 0 then the constraint A′H(γ′, β′) ≥ 0 has
the unique solution (γ, β) (this is the equivalent to the con-
vention τn−1 ≥ τn made in Section 4.2). Namely, any
(γ′, β′) 6= (γ, β) results in at least one negative entry in
A′H(γ′, β′). Hence, h(γ′, β′) has a unique maximum, ob-
tained at the true (γ, β). In addition, since ‖u‖2 = ‖v‖2 =

1, a feasible solution must have γ′ ≤ 2/σ. So our opti-
mization problem is:

(γ̂, β̂) = argmax
(γ′,β′)∈[0, 2

σ ]×[0,1]

h(γ′, β′) (63)

This two dimensional optimization problem can be solved
by either brute force or any non-linear problem solver.

In practice, we solve the optimization problem (63) with
the empirical estimates plugged in, that is

Â′H(γ′, β′) = Cβ̂
ˆ̄AB + γ′Cβ′û1c

T
β′ +

σ̂1

γ′
bv̂T

1B + κ̂ bcT
β′ .

The empirical objective function ĥ(γ′, β′) is defined sim-
ilarly. Such a perturbation may results in a problem with
many feasible solutions, or worse, with no feasible solu-
tions at all. Nevertheless, as shown in the proof of Theorem
3, this method is consistent. Namely, as T →∞, the above
method will return an arbitrarily close solution (in ‖·‖F) to
the true transition matrix A, with high probability.

D.6. Proof of Theorem 3

Recall the definitions of A′H(γ′, β′) and its empirical ver-
sion Â′H(γ′, β′), given in the previous Section D.5. To
prove the theorem we show that∥∥∥Â′H(γ̂, β̂)−A′H(γ, β)

∥∥∥
F

P−→ 0.

Toward this goal we bound the l.h.s by∥∥∥Â′H(γ̂, β̂)−A′H(γ̂, β̂)
∥∥∥

F
+
∥∥∥A′H(γ̂, β̂)−A′H(γ, β)

∥∥∥
F
, (64)

and show that each term converges to 0 in probability.

We shall need the following lemma, establishing the point-
wise convergence in probability of ÂH to AH :

Lemma 10. For any 0 < γ′ and 0 ≤ β′ ≤ 1,∥∥∥ÂH(γ′, β′)−AH(γ′, β′)
∥∥∥

F
= oP (1).

Proof. By (29), ˆ̄A
P−→ Ā. In addition, in Section D.3 we

saw σ̂1
P−→ σ and one can easily show that κ̂ P−→ κ. Thus,

in order to prove the claim it suffices to show that û1
P−→ u

and v̂1
P−→ v. By Wedin’s Theorem (Stewart & Sun, 1990):

‖û1 − u‖2 ≤ C

∥∥∥R̂(2) −R(2)
∥∥∥

2

σ
,

for some C > 0. Combining this with Lemma 4 gives that
‖û1 − u‖2 = OP (T−

1
2 ). The same argument goes for

‖v̂1 − v‖2.
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We begin with the second term in (64). The first step is
showing that the estimated parameters γ̂, β̂ in (63) con-
verge with probability to the true parameters γ, β. We first
need to following lemma, establishing the convergence of
ĥ to h uniformly in probability:

Lemma 11. For any ε > 0,

Pr

(
sup

(γ′,β′)∈[0,2]×[0,1]

∣∣∣ĥ(γ′, β′)− h(γ′, β′)
∣∣∣ > ε

)
= o(1).

Proof. Note that ĥ(γ′, β′) is the value of the minimal en-
try of a matrix with all entries being polynomials of γ′, β′

with bounded coefficients. Thus ĥ is Lipschitz. In addi-
tion [0, 2] × [0, 1] is compact and, similarly to Lemma 10,
ĥ(γ′, β′) converges in probability pointwise to h(γ′, β′).
Hence, the claim follows by Newey (1991, Corollary
2.2).

Lemma 12. (γ̂, β̂)
P−→ (γ, β).

Proof. Recall that (γ̂, β̂) are the maximizers of ĥ(γ′, β′)
and (γ, β) are the maximizers of h(γ′, β′), over (γ′, β′) ∈
[0, 2]× [0, 1]. To prove the claim we need to show that for
any δ > 0,

Pr
(∥∥∥(γ̂, β̂)− (γ, β)

∥∥∥ > δ
)

= o(1).

Toward this end define

ε(δ) ≡ h(γ, β)− max
‖(γ′,β′)−(γ,β)‖>δ

h(γ′, β′).

Note that ε(δ) > 0 since h(γ′, β′) has the unique maximum
(γ, β).

Now,by Lemma 11, we have that

Pr

(
sup
γ′,β′

∣∣∣ĥ(γ′, β′)− h(γ′, β′)
∣∣∣ > ε(δ)/4

)
= o(1). (65)

Thus, if we show that sup
∣∣∣ĥ− h∣∣∣ ≤ ε(δ)/4 implies∥∥∥(γ̂, β̂)− (γ, β)

∥∥∥ ≤ δ then the claim is proved. So assume

sup
γ′,β′

∣∣∣ĥ(γ′, β′)− h(γ′, β′)
∣∣∣ ≤ ε(δ)/4.

Toward getting a contradiction let us assume that∥∥∥(γ̂, β̂)− (γ, β)
∥∥∥ > δ. Then the following relations hold:

h(γ̂, β̂) ≤ h(γ, β)− ε(δ)
ĥ(γ̂, β̂) ≤ h(γ̂, β̂) + ε(δ)/4

ĥ(γ, β) ≥ h(γ, β)− ε(δ)/4.

Thus,

ĥ(γ̂, β̂) ≤ ĥ(γ, β)− ε(δ)/2,

in contradiction to the optimality of (γ̂, β̂).

By Lemma 12, (γ̂, β̂)
P−→ (γ, β). Since H is minimal,

Theorem 1 implies γ > 0 and thus γ̂ ≥P γ/2. In addition,
AH is continuous in the compact set [γ/2, 2]× [0, 1]. Thus,
by the continuous mapping theorem we have∥∥∥AH(γ̂, β̂)−AH(γ, β)

∥∥∥
F

P−→ 0.

This proves the case for the right term of (64).

The convergence in probability of the left term of (64) to
zero is a direct consequence of the following uniform con-
vergence lemma:

Lemma 13.

sup
(γ′,β′)∈[ γ2 ,2]×[0,1]

∥∥∥ÂH(γ′, β′)−AH(γ′, β′)
∥∥∥

F
= oP (1).

Proof. Since γ′ ≥ γ/2 we have that for any i, j ∈ [n],
ÂH(γ′, β′)ij is Lipschitz. In addition, by Lemma 10, for
any (γ′, β′) ∈ [γ2 , 2]× [0, 1], each entry ÂH(γ′, β′)ij con-
verge pointwise in probability to AH(γ′, β′)ij . Finally,
[γ2 , 2] × [0, 1] is compact. Thus, the claim follows from
Newey (1991, Corollary 2.2) with an application of a union
bound over i, j ∈ [n].


