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Abstract

We consider the problem of Bayesian learn-
ing on sensitive datasets and present two sim-
ple but somewhat surprising results that con-
nect Bayesian learning to “differential privacy”,
a cryptographic approach to protect individual-
level privacy while permitting database-level
utility. Specifically, we show that under standard
assumptions, getting one sample from a posterior
distribution is differentially private “for free”;
and this sample as a statistical estimator is of-
ten consistent, near optimal, and computation-
ally tractable. Similarly but separately, we show
that a recent line of work that use stochastic gra-
dient for Hybrid Monte Carlo (HMC) sampling
also preserve differentially privacy with minor or
no modifications of the algorithmic procedure at
all, these observations lead to an “anytime” algo-
rithm for Bayesian learning under privacy con-
straint. We demonstrate that it performs much
better than the state-of-the-art differential private
methods on synthetic and real datasets.

1. Introduction

Bayesian models have proven to be one of the most suc-
cessful classes of tools in machine learning. It stands out
as a principled yet conceptually simple pipeline for com-
bining expert knowledge and statistical evidence, model-
ing with complicated dependency structures and harness-
ing uncertainty by making probabilistic inferences (Ge-
man & Geman, 1984; Gelman et al., 2014). In the past
few decades, the Bayesian approach has been intensively
used in modeling speeches (Rabiner, 1989), text documents
(Blei et al., 2003), images/videos (Fei-Fei & Perona, 2005),
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social networks (Airoldi et al., 2009), brain activity (Penny
etal., 2011), and is often considered gold standard in many
of these application domains. Learning a Bayesisan model
typically involves sampling from a posterior distribution,
therefore the learning process is inherently randomized.

Differential privacy (DP) is a cryptography-inspired notion
of privacy (Dwork, 2006; Dwork et al., 2006). It is de-
signed to provide a very strong form of protection of indi-
vidual user’s private information and at the same time al-
low data analyses to be conducted with proper utility. Any
algorithm that preserves differential privacy must be appro-
priately randomized too. For instance, one can differential-
privately release the average salary of Californian males by
adding a Laplace noise proportional to the sensitivity of this
figure upon small perturbation of the data sample.

In this paper, we connect the two seemingly unrelated con-
cepts by showing that under standard assumptions, the in-
trinsic randomization in the Bayesian learning can be ex-
ploited to obtain a degree of differential privacy. In partic-
ular, we show that:

e Any algorithm that produces a single sample from
the exact (or approximate) posterior distribution of a
Bayesian model with bounded log-likelihood is € (or
(€, 9))-differentially private'. By the classic results in
asymptotic statistics (Le Cam, 1986; Van der Vaart,
2000), we show that this posterior sample is a consis-
tent estimator whenever the Bayesian model is con-
sistent; and near optimal whenever standard regularity
conditions of the maximum likelihood estimate hold.

e The popular large-scale sampler Stochastic Gradient
Langevin Dynamics (Welling & Teh, 2011) and exten-
sions, e.g. Ahn et al. (2012); Chen et al. (2014); Ding
et al. (2014) obey (e, §)-differentially private with no
algorithmic changes when the stepsize is chosen to

'The same observation appeared earlier in Mir (2013) and

Dimitrakakis et al. (2014) under slightly different regimes and as-
sumptions (see Appendix F for details).
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be small. This gives us a procedure that can poten-
tially output many (correlated) samples from an ap-
proximate posterior distribution.

These simple yet interesting findings make it possible for
differential privacy to be explicitly considered when de-
signing Bayesian models, and for Bayesian posterior sam-
pling to be used as a valid DP mechanism. We demon-
strate empirically that these methods work as well as or
better than the state-of-the-art differential private empirical
risk minimization (ERM) solvers using objective perturba-
tion (Chaudhuri et al., 2011; Kifer et al., 2012).

The results presented in this paper are closely related to
a number of previous work, e.g., McSherry & Talwar
(2007); Mir (2013); Bassily et al. (2014); Dimitrakakis
et al. (2014). We invite readers to refer to our full paper
(Wang et al., 2015), or refer to Appendix F in the supple-
mentary document.

2. Notations and Preliminary

Throughout the paper, we assume data point x € X and
0 < O is the model. This can be the finite dimensional
parameter of a single exponential family model or a collec-
tion of these in a graphical model, or a function in a Hilbert
space or other infinite dimensional objects if the model is
nonparametric. (@) denotes a prior belief of the model
parameters and p(x|@) and £(x|@) are the likelihood and
log-likelihood of observing data point = given model pa-
rameter 6. If we observe X = {x1, ..., , }, the posterior

N

N 7(0) Hi:l p(x;]0)
- N

J 12 p(i|0)7(6)dm
denotes the updated belief conditioned on the observed
data. Learning Bayesian models correspond to finding the
mean or mode of the posterior distribution, but often, the
entire distribution is treated as the output, which provides
much richer information than just a point estimator. In par-
ticular, we get error bars of the estimators for free (credi-
bility intervals).

(0] X)

Ignoring the philosophical disputes of Bayesian methods
for the moment, practical challenges of Bayesian learning
are often computational. As the models get more compli-
cated, often there is not a closed-form expression for the
posterior. Instead, we often rely on Markov Chain Monte
Carlo methods, e.g., Metropolis-Hastings algorithm (Hast-
ings, 1970) to generate samples. This is often prohibitively
expensive when the data is large. One recent approach
to scale up Bayesian learning is to combine stochastic
gradient estimation as in Robbins & Monro (1951) and
Monte Carlo methods that simulates stochastic differen-
tial equations, e.g. Neal (2011). These include Stochas-
tic Gradient Langevin dynamics (SGLD) (Welling & Teh,

2011), Stochastic Gradient Fisher scoring (SGFS) (Ahn
etal., 2012), Stochastic Gradient Hamiltonian Monte Carlo
(SGHMC) (Chen et al., 2014) as well as more recent
Stochastic Gradient Nosé-Hoover Thermostat (SGNHT)
(Ding et al., 2014). We will describe them with more de-
tails and show that these series of tools provide differential
privacy as a byproduct of using stochastic gradient and re-
quiring the solution to not collapse to a point estimate.

2.1. Differential privacy

Now we will talk about what we need to know about dif-
ferential privacy. Let the space of data be X and data
points X, Y € X". Define d(X,Y) to be the edit dis-
tance or Hamming distance between data set X and Y, for
instance, if X and Y are the same except one data point,
then d(X,Y) = 1.

Definition 1. (Differential Privacy) We call a randomized
algorithm A (e, §)-differentially private with domain X" if
for all measurable set S C Range(.A) and for all X, Y €
X" such that d(X,Y) < 1, we have

P(A(X) € S) <exp(e)P(A(Y) € S) + 4.
If 0 = 0, then A is the called e-differential private.

This definition naturally prevents linkage attacks and the
identification of individual data from adversaries having ar-
bitrary side information and infinite computational power.

There are several interesting properties of differential pri-
vacy that we will exploit here. Firstly, the definition is
closed under post-processing.

Lemma 1 (Post-processing immunity). If A is an (e, )-
DP algorithm, B o Ais also (e, §)-DP algorithm VB.

This is natural because otherwise the whole point of differ-
ential privacy will be forfeited. Also, the definition auto-
matically allows for cases when the sensitive data are ac-
cessed more than once.

Lemma 2 (Composition rule). If A; is (€1, d1)-DP, and As
is (€2,02)-DP then (Ay o As) is (€1 + €2,61 + d2)-DP.

We will describe more advanced properties of DP as we
need in Section 4.

3. Posterior sampling and differential privacy

In this section, we make a simple observation that un-
der boundedness condition of a log-likelihood, getting one
single sample from the posterior distribution (denoted by
“OPS mechanism” from here onwards) preserves a degree
of differential privacy for free. Then we will cite classic
results in statistics and show that this sample is a consistent
estimator in a Frequentist sense and near-optimal in many
cases.
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Algorithm 1 One-Posterior Sample (OPS ) estimator

input Data X, log-likelihood function £(-|-) satisfying
sup,, ¢ [|[£(x|0)|| < B aprior 7(-). Privacy loss e.
1. Set p = min{1, ;5 }.
2. Re-define log-likelihood function and the prior
O (]) = pl(-]-) and 7' (-) := (m(-))”.

output 8 ~ P(8]X) x exp (zle e/(a\xi)) ©(8).

3.1. Implicitly Preserving Differential Privacy

To begin with, we show that sampling from the posterior
distribution is intrinsically differentially private.

Theorem 1. If sup,cy gco |logp(x|@)| < B, releasing
one sample from the posterior distribution p(01X™) with
any prior preserves 4 B-differential privacy. Alternatively,
if X is a bounded domain (e.g., ||z||« < R Ve € X)
and log p(x|0) is an L-Lipschitz function in || - || for any
0 < O, then releasing one sample from the posterior dis-
tribution preserves 4L R-differential privacy.

The proof is provided in the Appendix. Readers familiar
with differential privacy must have noticed that this is ac-
tually an instance of the exponential mechanism (McSh-
erry & Talwar, 2007), a general procedure that preserves
privacy while making outputs with higher utility exponen-
tially more likely. If one sets the utility function to be the
log-likelihood and the privacy parameter being 45, then
we get exactly the one-posterior sample mechanism. This
exponential mechanism point of view provides an an sim-
ple extension which allows us to specify e by simply scal-
ing the log-likelihood (see Algorithm 1). We will overload
the notation OPS to also represent this mechanism where
we can specify e. The nice thing about this algorithm is
that there is almost zero implementation effort to extend all
posterior sampling-based Bayesian learning models to have
differentially privacy of any specified e.

Assumption on the boundedness. The boundedness on
the loss-function (log-likelihood here) is a standard as-
sumption in many DP works (Chaudhuri et al., 2011; Bass-
ily et al., 2014; Song et al., 2013; Kifer et al., 2012). Lip-
schitz constant L is usually small for continuous distribu-
tions (at least when the parameter space © is bounded).
This is a bound on log p(x|0)) so as long as p(x|@) does
not increase or decrease super exponentially fast at any
point, L will be a small constant. R can also be made
small by a simple preprocessing step that scales down all
data points. In the aforementioned papers that assume L,
it is typical that they also assume R = 1 for convenience.
So we will do the same. In practice, we can algorithmi-
cally remove large data points from the data by some prede-
fined threshold or using the “Propose-Test-Release” frame-
work in (Dwork & Lei, 2009) or perform weighted training

where we can assign lower weight to data points with large
magnitude. Note that this is a desirable step for the robust-
ness to outliers too. Exponential families (in Hilbert space)
are an example, see e.g. Bialek et al. (2001); Hofmann et al.
(2008); Wainwright & Jordan (2008).

3.2. Consistency and Near-Optimality

Now we move on to study the consistency of the OPS
estimator. In great generality, we will show that the
one-posterior sample estimator is consistent whenever the
Bayesian model is posterior consistent. Since the consis-
tency in Bayesian methods can have different meanings, we
briefly describe two of them according to the nomenclature
in Orbanz (2012).

Definition 2 (Posterior consistency in the Bayesian Sense).
For a prior 7, we say the model is posterior consistent in
the Bayesian sense, if @ ~ 7(0), 1, ..., &, ~ pg, and the
posterior

w(0|x1, ..., zy) Y 5o as. .

dg is the Dirac-delta function at 6.

In great generality, Doob’s well-known theorem guarantees
posterior consistency in the Bayesian sense for a model
with any prior under no conditions except identifiability
and measurability. A concise statement of Doob’s result
can be found in Van der Vaart (2000, Theorem 10.10)).

An arguably more reasonable definition is given below. It
applies to the case when the statistician who chooses the
prior 7 does not know about the true parameter.

Definition 3 (Posterior consistency in the Frequentist
Sense). For a prior 7, we say the model is posterior con-
sistent in the Frequentist sense, if for every 6, € O,
i, ..., T, ~ Pg, the posterior

m(0|xy, ..., T,) veakly de, a.S. Po,-

This type of consistency is much harder to satisfy espe-
cially when © is an infinite dimensional space, in which
case the consistency often depends on the specific priors to
use (Ghosal, 2010).

Regardless which definition one favors, the key notion of
consistency is that the posterior distribution to concentrates
around the true underlying 0 that generates the data.

Proposition 1. The one-posterior sample estimator is con-
sistent if and only if the Bayesian model is posterior con-
sistent (in either Definition 2 or 3 ).

Proof. The equivalence follows from the standard equiv-
alence of convergence weakly and convergence in proba-
bility when a random variable converges weakly to a point
mass. O
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How about the rate of convergence? In the low dimensional
setting when 8 € © C R and pg(x) is suitably differen-
tiable and the prior is supported at the neighborhood of the
true parameter, then by the Bernstein-von Mises theorem
(Le Cam, 1986), the posterior mean is an asymptotically
efficient estimator and the posterior distribution converges
in L-distance to a normal distribution with covariance be-
ing the inverse Fisher Information.

Proposition 2. Under the regularity conditions where
Bernsteip-von Mises theorem holds, the One-Posterior
sample 0 ~ 7w(0|x1, .., z,) obeys

V(8 = 80) "B N (0,217),

i.e., the One-Posterior sample estimator has an asymptotic
relative efficiency of 2.

Proof. Let the One-Posterior sample 6 ~ 7(8|x, .., x,).

By Bernstein-von Mises theorem \/ﬁ(é — é) Wﬂdy
N(0,171). By the asymptotic normality and efficiency of

the posterior mean estimator v/7(6 — ) el N(0,T71).
The proof is complete by taking the sum of the two asymp-
totically independent Gaussian vectors (6 and 6 — 6 are
asymptotically independent). O

The above proposition suggests that in many interesting
classes of parametric Bayesian models, the One-Posterior
Sample estimator is asymptotically near optimal. Similar
statements can also be obtained for some classes of semi-
parametric and nonparametric Bayesian models (Ghosal,
2010), which we leave as future work.The drawback of the
above two propositions is that it is only stated for the ver-
sion of the OPS when € = 4B. Using results in De Blasi
& Walker (2013) and Kleijn et al. (2012) for misspeci-
fied models, we can prove consistency, asymptotic normal-
ity for any € and parameterize the asymptotic relative effi-
ciency of the OPS estimator as a function of e. Details are
given in the appendix.

3.3. (Efficient) sampling from approximate posterior

The privacy guarantee in Theorem 1 requires sampling
from the exact posterior. In practice, however, exact sam-
plers are rare. As Bayesian models get more and more
complicated, often the only viable option is to use Markov
Chain Monte Carlo (MCMC) samplers which are almost
never exact. There are exceptions, e.g., Propp & Wilson
(1998) but they only apply to problems with very special
structures. A natural question to ask is whether we can still
say something meaningful about privacy when the posterior
sampling is approximate. It turns out that we can, and the
level of approximation in privacy is the same as the level of
approximation in the sampling distribution.

Proposition 3. If A that sampling from distribution Px
preserves e-differential privacy, then any approximate sam-
pling procedures A’ that produces a sample from P such
that |Px — P% ||, < 0 for any X preserves (e, (1+¢)0)-
differential privacy.

We are using L; distance of the distribution because it is
a commonly accepted metric to measure the convergence
rate MCMC (Rosenthal, 1995), and Proposition 3 leaves a
clean interface for computational analysis in determining
the number of iterations needed to attain a specific level of
privacy protection.

A note on computational efficiency. The (unsurprising)
bad news is that even approximate sampling from the pos-
terior is NP-Hard in general, see, e.g. Sontag & Roy (2011,
Theorem 8). There are however interesting results on when
we can (approximately) sample efficiently. Approximation
is easy for sampling LDA when o« > 1 while NP-Hard
when a < 1. A more general result in Applegate & Kan-
nan (1991) suggests that we can get a sample with arbi-
trarily close approximation in polynomial time for a class
of near log-concave distributions. The log-concavity of the
distributions would imply convexity in the log-likelihood,
thus, this essentially confirms the computational efficiency
of all convex empirical risk minimization problems under
differential privacy constraint (see Bassily et al. (2014)).

The nice thing is that since we do not modify the form of
the sampling algorithm at all, the OPS algorithm is going
to be a computationally tractable DP method whenever the
Bayesian learning model of interest is proven to be compu-
tationally tractable.

3.4. Discussions and comparisons

OPS has a number of advantages over the state-of-the-art
differentially private ERM method: objective perturbation
(Chaudhuri et al., 2011; Kifer et al., 2012) (OBJPERT from
here onwards). OPS works with arbitrary bounded loss
functions and priors while OBJPERT needs a number of
restrictive assumptions including twice differentiable loss
functions, strongly convexity parameter to be greater than a
threshold and so on. These restrictions rule out many com-
monly used loss functions, e.g., #1-loss, hinge loss, Huber
function just to name a few.

Also, OBJPERT ’s privacy guarantee holds only for the ex-
act optimal solution, which is often hard to get in practice.
In contrast, OPS works when the sample is drawn from an
approximate posterior distribution. From a practical point
of view, since OPS stems from the intrinsic privacy pro-
tection of Bayesian learning, it requires very little imple-
mentation effort to deploy it for practical applications. It
also requires the problem to be strong convexity with a
minimum strong convexity parameter. When the condi-
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tion is not satisfied, OBJPERT will need to add additional
quadratic regularization to make it so, which may bias the
problem unnecessarily.

4. Stochastic Gradient MCMC and
(¢, §)-Differential privacy

Given a fixed privacy budget, we saw that the single poste-
rior sample produces an nearly optimal point estimate, but
what if we want multiple samples? Trivially, we can run
OPS multiple times but the privacy loss will aggregate lin-
early. Can we use the privacy budget in a different way that
produces many approximate posterior samples?

In this section we will provide an answer to it by look-
ing at a class of Stochastic Gradient MCMC techniques de-
veloped over the past few years. We will show that they
are also differentially private for free if the parameters are
chosen appropriately. The idea is to simply privately re-
lease an estimate of the gradient (as in Song et al. (2013);
Bassily et al. (2014)) and leverage upon the following two
celebrated lemmas in differential privacy in the same way
as Bassily et al. (2014) does in deriving the near-optimal
(e, §)-differentially private SGD.

The first lemma is the advanced composition which allows
us to trade off a small amount of § to get a much better
bound for the privacy loss due to composition.

Lemma 3 (Advanced composition, c.f.,Theorem 3.20 in
(Dwork & Roth, 2013)). For all €,6,6" > 0, the class of
(€, 8)-DP mechanisms satisfy (¢, k6 +6')-DP under k-fold
adaptive composition for:

€ = /2klog(1/8")e + ke(e® — 1).

Remark 1. When ¢ = ——~-——
2k log(1/6")

¢ < +/log(1/4"), we can simplify the above expression into
€ < 2c. To see this, apply the inequality e —1 < 2¢ (easily
shown via Taylor’s theorem and the assumption that € < 1).

< 1 for some constant

In addition, we will also make use of the following lemma
due to Beimel et al. (2014).

Lemma 4 (Privacy for subsampled data. Lemma 4.4 in
Beimel et al. (2014).). Over a domain of data sets XN, if
an algorithm A is (e, d) differentially private (with e < 1),
then for any data set X € X, running A on a uniform
random ~yN -entries of X ensures (2-ve, §)-DP.

To make sense of the above lemma, notice that we are sub-
sampling uniform randomly and the probability of any sin-
gle data point being sampled is only «. Thus, if we arbi-
trarily perturb one of the data points, its impact is evenly
spread across all data points thanks to random sampling.

Let f : X" — R< be an arbitrary d-dimensional function.

Define the /5 sensitivity of f to be

Aof = sup [|f(X
Y:d(X,Y)<1

) = F(Y)ll2-

Suppose we want to output f(X) differential pri-
vately, “Gaussian Mechanism” output f(X) = f(X) +
N(0,0%1,) for some appropriate o.

Theorem 2 (Gaussian Mechanism, c.f. Dwork & Roth
(2013)). Let ¢ € (0,1) be arbitrary. “Gaussian
Mechanism” with o > Agf+/2log(1.25/8)/¢€ is (e, 6)-

differentially private.

This will be the main workhorse that we use here.

4.1. Stochastic Gradient Langevin Dynamics

SGLD iteratively update the parameters to by running a
perturbed version of the minibatch stochastic gradient de-
scent on the negative log-posterior objective function

N N
— logp(w;|0) —logw(0) = > £(x:;6) +7(6)
=1 =1

where {(x;; 0) and r(0) are loss-function and regularizer
under the empirical risk minimization.

If one were to run stochastic gradient descent or any other
optimization tools on this, one would eventually a deter-
ministic maximum a posteriori estimator. SGLD avoids
this by adding noise in every iteration. At iteration ¢t SGLD
first samples uniform randomly 7 data points {x;,, ..., T+, }
and then updates the parameter using

N T
O 1 =0 —m (VT(G) + - Zl Ve(x;|0) | + z¢,

(4.1)
where z; ~ N(0,7;) and 7 is the mini-batch size.

For the ordinary stochastic gradient descent to converge in
expectation, the stepsize 7; can be chosen as anything that
Soeim = oo and Y oo, n? < oo (Robbins & Monro,
1951). Typically, one can chooses stepsize 7; = a(b +
t)~7 with v € (0.5, 1]. In fact, it is shown that for general
convex functions and p-strongly convex functions % and

I% can be used to obtain the minimax optimal O(1/+/t) and

O(1/t) rate of convergence. These results substantiate the
first phase of SGLD: a convergent algorithm to the optimal
solution. Once it gets closer, however, it transforms into a
posterior sampler. According to Welling & Teh (2011) and
later formally proven in Sato & Nakagawa (2014), if we
choose 17; — 0, the random iterates ; of SGLD converges
in distribution to the p(€|X). The idea is that as the stepsize
gets smaller, the stochastic error from the true gradient due
to the random sampling of the minibatch converges to 0
faster than the injected Gaussian noise.
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Algorithm 2 Differentially Private Stochastic Gradient

Langevin Dynamics (DP-SGLD)

Require: Data X of size N, Size of minibatch 7, number
of data passes 7T, privacy parameter €, §, Lipschitz con-
stant L and initial 8. Set ¢t = 1.
fort=1:|NT/7| do

1. Random sample a minibatch S C [N] of size 7.

2. Sample each coordinate of z; iid from
W (0, 128572 1og (2241 ) log(2/8) V 1)
3. Update 6041 — 0, —

i (VT(B) + g dics Vé(aciw)) + 2y,
4. Return 0;,; as a posterior sample (after a pre-
defined burn-in period).
S. Increment ¢ <— ¢t + 1.
end for

Algorithm 3 Hybrid Posterior Sampling Algorithm
Require: Data X of size N, log-likelihood function ¢(-|9)
with Lipschitz constant L in the first argument, assume
SUpLcy |||, a prior 7. Privacy requirement €.
1. Run OPS estimator: Algorithm 1 with €/2. Collect
sample point 6y
2. Run DP-SGLD (Algorithm 2) or other Stochastic
Gradient Monte Carlo algorithms and collect samples.
output : Return all samples.

In addition, if we use some fixed stepsize lower bound,
such that n, = max{1/(t + 1),70} (to alleviate the slow
mixing problem of SGLD), the results correspond to a dis-
cretization approximation of a stochastic differential equa-
tion (Fokker-Planck equation), which obeys the following
theorem due to Sato & Nakagawa (2014) (simplified and
translated to our notation).

Theorem 3 (Weak convergence (Sato & Nakagawa,
2014)). Assume f(6|X) is differentiable, V f(0|X) is gra-
dient Lipschitz and bounded *. Then

[Eo~p(01)[1(8)] — Eo~scrolh(0(t))]] = O(m),
for any continuous and polynomial growth function h.

This theorem implies that one can approximate the poste-
rior mean (and other estimators) using SGLD. Finite sam-
ple properties of SGLD is studied in Vollmer et al. (2015).

Now we will show that with a minor modification to just
the “burn-in” phase of SGLD, we will be able to make it
differentially private (see Algorithm 2).

Theorem 4 (Differentially private Minibatch SGLD). As-
sume initial 01 is chosen independent of the data, also

*We use boundedness to make the presentation simpler.
Boundedness trivially implies the linear growth condition in Sato
& Nakagawa (2014, Assumption 2).

assume {(x|0) is L-smooth in || - ||a for any * € X
and @ € O. In addition, let €,6,T,T be chosen such
N
that T Z m
differential privacy.

Then Algorithm 2 preserves (¢, 0)-

The proof is provided in the Appendix.

a-Phase transition. For any o € (0, 1), if we choose

Nt = o8I Tog(@ENT/(79)) Tog(z/a)e> then whenever ¢ >

aNT /7, then we are essentially running SGLD for the last
(1 — a)NT/ iterations, and we can collect approximate
posterior samples from there.

Small constant 7. Instead of making 7; to converge to
0 as t increases, we may alternatively use constant g after
t is larger than a threshold. This is a suggested heuristic
in Welling & Teh (2011) and is inline with the analysis in
Sato & Nakagawa (2014) and Vollmer et al. (2015).

Choice of 7" and 7 By Bassily et al. (2014), it takes at
least N data passes to converge in expectation to a point
near the minimizer, so taking 7" = 2N is a good choice.
The variance of both random components in our stochastic
gradient is smaller when we use larger 7. Smaller variances
would improve the convergence of the stochastic gradient
methods and make the SGLD a better approximation to the
full Langevin Dynamics. The trade-off is that when 7 is
too large, we will use up the allowable T" datapasses with
just O(T) iterations and the number of posterior samples
we collect from the algorithm will be small.

Overcoming the large-noise in the ‘“Burn-in”> phase
When the stepsize 7, is not small enough initially, we need
to inject significantly more noise than what SGLD would
have to ensure privacy. We can overcome this problem
by initializing the SGLD sampler with a valid output of
the OPS estimator, modified according to the exponential
mechanism so that the privacy loss is calibrated to €/2. As
the initial point is already in the high probability region of
the posterior distribution, we no longer need to “Burn-in”
the Monte Carlo sampler so we can simply choose a suf-
ficiently small constant stepsize so that it remains a valid
SGLD. This algorithm is summarized in Algorithm 3.

Comparing to OPS The privacy claim of DP-SGLD is
very different from OPS . It does not require sampling to
be nearly correct to ensure differential privacy. In fact, DP-
SGLD privately releases the entire sequence of parameter
updates, thus ensures differential privacy even if the inter-
nal state of the algorithm gets hacked. However, the qual-
ity of the samples is usually worse than OPS due to the
random-walk like behavior. The interesting fact, however,
is that if we run SGLD indefinitely without worrying about
the stronger notion of internal privacy, it leads to a valid
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posterior sample, which is private by our first part. We can
potentially use SGLD to sample from a “scaled” version so
as to balancing the two ways of getting privacy.

4.2. Hamiltonian Dynamics, Fisher Scoring and
Nosé-Hoover Thermostat

One of the practical drawback of SGLD is its random walk-
like behavior which slows down the mixing significantly.
In this section, we describe three extensions of SGLD that
attempts to resolve the issue by either using auxiliary vari-
ables to counter the noise in the stochastic gradient(Chen
et al., 2014; Ding et al., 2014), or to exploit second order
information so as to use Newton-like updates with large
stepsize (Ahn et al., 2012).

We note that in all these methods, stochastic gradients are
the only form of data access, therefore similar results like
what we described for SGLD follow nicely. We briefly de-
scribe each method and how to choose their parameters for
differential privacy.

Stochastic Gradient Hamiltonian Monte Carlo. Ac-
cording to Neal (2011), Langevin Dynamics is a special
limiting case of Hamiltonian Dynamics, where one can
simply ignore the “momentum” auxiliary variable. In its
more general form, Hamiltonian Monte Carlo (HMC) is
able to generate proposals from distant states and hence
enabling more rapid exploration of the state space. Chen
et al. (2014) extends the full “leap-frog” method for HMC
in Neal (2011) to work with stochastic gradient and add a
“friction” term in the dynamics to “de-bias” the noise in the
stochastic gradient.

{ 0,=06; 1+ ht":\tfl R
P =P — IV —mAp,_ + N(0,2(A - B)hy).
R 4.2)
where B is a guessed covariance of the stochastic gradient
(the authors recommend restricting Btoa single number or
a diagonal matrix) and A can be arbitrarily chosen as long
as A = B. If the stochastic gradient V~N (V,B) for
some B and B = B, then this dynamics is simulating a
dynamic system that yields the correct distribution. Note
that even if the normal assumption holds and we somehow
set B = B, we still requires h; to go to 0 to sample from
the actual posterior distribution, and as h; converges to 0
the additional noise we artificially inject dominates and we
get privacy for free. All we need to do is to set A, B and h;

so that 2(A — B) /by = 128NTL? 150 (2-if§T) log(2/8)1,

Te2

Note that as h; — 0 this quickly becomes true.

Stochastic Gradient Nosé-Hoover Thermostat As we
discuAssed, the qu issue about SGHMC is still in choos-
ing B. Unless B is chosen exactly as the covariance of
true stochastic gradient, it does not sample from the cor-

rect distribution even as h; — 0 unless we trivially set
B = 0. The Stochastic Gradient Nosé-Hoover Thermostat
(SGNHT) overcomes the issue by introducing an additional
auxiliary variable &, which serves as a thermostat to absorb
the unknown noise in the stochastic gradient. The update
equations of SGNHT are given below

Py =Py — &—1Pi_1he — Ve + N(0,2Ahy);
0 =01+ hhp_q;
& =&+ (=pfp, — Dy
4.3)
Similar to the case in SGHMC, appropriately selected dis-
cretization parameter h; and the friction term A will imply

differential privacy.

Chen et al. (2014); Ding et al. (2014) both described a re-
formulation that can be interpret as SGD with momentum.
This is by setting parameters 7 = h?, a = hA, b= hB for
SGHMC:
{ 0;=0;_1+ Vi1 R
vy =vi_1 — iV —av +N(0,2(a — b)nI);

and v = ph,n; = h?, o = £h and a = Ah for SGNHT:

4.4)

vy =V — 101 — V(0i_s)n: + N (0, 2an.I);
0, =0,_1+ Ut 1,
o =1+ (2oTvy —my).
4.5)
where 1 — a is the momentum parameter and 7 is the learn-
ing rate in the SGD with momentum. Again note that to ob-

tain privacy, we need 2“ > % log (2L ) log(1/6).

Note that as n; gets smaller, we have the flexibility of
choosing a and 7, within a reasonable range.

Stochastic Gradient Fisher Scoring Another extension
of SGLD is Stochastic Gradient Fisher Scoring (SGFS),
where Ahn et al. (2012) proposes to adaptively interpo-
late between a preconditioned SGLD (see precondition-
ing (Girolami & Calderhead, 2011)) and a Markov Chain
that samples from a normal approximation of the posterior
distribution. For parametric problem where Bernstein-von
Mises theorem holds, this may be a good idea. The heuris-
tic used in the SGFS is that the covariance matrix of 6| X,
which is also the inverse Fisher information Ig,l is esti-
mated on the fly. The key features of SGFS is that one can
use the stepsize to trade off speed and accuracy, when the
stepsize is large, it mixes rapidly to the normal approxima-
tion, as the stepsize gets smaller the stationary distribution
converges to the true posterior. Further details of SGFS and
ideas to privatize it is described in the appendix.

5. Experiments

To evaluate how our proposed methods work in practice,
we selected two binary classification datasets: Abalone and
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(b) Abalone: 9 features, 4177 data points.
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(c) Adult: 109 features, 32561 data points.

Figure 1. Comparison of Differential Private methods.

Adult, from the first page of UCI Machine Learning Repos-
itory and performed privacy constrained logistic regression
on them. Specifically, we compared two of our proposed
methods, OPS mechanism and hybrid algorithm against
the state-of-the-art empirical risk minimization algorithm
OBJPERT (Chaudhuri et al., 2011; Kifer et al., 2012) un-

der varying level of differential privacy protection. The
results are shown in Figure 1. As we can see from the
figure, in both problems, OPS significantly improves the
classification accuracy over OBJPERT . The hybrid algo-
rithm also works reasonably well, given that it collected
N samples after initializing it from the output of a run of
OPS with privacy parameter €/2. For fairness, we used
the (e, 0)-DP version of the objective perturbation (Kifer
et al., 2012) and similarly we used Gaussian mechanism
(rather than Laplace mechanism) for output perturbation.
All optimization based methods are solved using BFGS al-
gorithm to high numerical accuracy. OPS is implemented
using SGNHT and we ran it long enough so that we are
confident that it is a valid posterior sample. Minibatch size
and number of data passes in the hybrid DP-SGNHT are
chosen to be both v/N.

We note that the plain DP-SGLD and DP-SGNHT without
an initialization using OPS does not work nearly as well.
In our experiments, it often performs equally or slightly
worse than the output perturbation. This is due to the few
caveats (especially “the curse of numerical constant”) we
described earlier.

6. Conclusion and future work

In this paper, we described two simple but conceptually in-
teresting examples that Bayesian learning can be inherently
differentially private. Specifically, we show that getting
one sample from the posterior is a special case of expo-
nential mechanism and this sample as an estimator is near-
optimal for parametric learning. On the other hand, we il-
lustrate that the algorithmic procedures of stochastic gradi-
ent Langevin Dynamics (and variants) that attempts to sam-
ple from the posterior also guarantee differential privacy
as a byproduct. Preliminary experiments suggests that the
One-Posterior-Sample mechanism works very well in prac-
tice and it substantially outperforms earlier privacy mech-
anism in logistic regression. While suffering from a large
constant, our second method is also theoretically and prac-
tically meaningful in that it provides privacy protection in
intermediate steps.

To carry the research forward, we think it is important
to identify other cases when the existing randomness can
be exploited for privacy. Randomized algorithms such as
hashing and sketching, dropout and other randomization
used in neural networks might be another thing to look at.
More on the application end, we hope to explore the one-
posterior sample approach in differentially private movie
recommendation. Ultimately, the goal is to make differ-
ential privacy more practical to the extent that it can truly
solve the real-life privacy problems that motivated its very
advent.
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