
A Deterministic Analysis of Noisy Sparse Subspace Clustering for Dimensionality-reduced Data

In this document, we provide detailed technical proofs of our main results, as well as the additional results (differentially
private subspace clustering), experiments and dicussions that do not fit into the paper due to space constraint.

Appendix A contains proofs for our main results. The proofs are sorted in the order that their corresponding statements
appear in the paper. Appendix B formalizes our claims in the paper about attribute privacy and the corresponding utility
theorem and includes additional discussions on the difficulty of a stronger user-level privacy claim. Appendix C contains
numerical simulations on the performance of compressed SSC under fully random models. Appendix D summarizes a few
concentration bounds that we used in the paper.

Lastly, for readers’ easy reference, we compile a table of symbols and notations used.

A. Proofs of the main results
A.1. Proofs of propositions in Section 3

In this section we prove that a subspace embedding enjoys the property detailed in Proposition 1. We also prove that
both random Gaussian projection and uniform row sampling are subspace embeddings with respect to B = {span(U (`) ∪
U (`′)); `, `′ ∈ [k]} ∪ {xi, zi; i ∈ [N ]}.

Proof of Proposition 1. Fix `, `′ ∈ {1, · · · , k} and let U = span(U (`) ∪ U (`′)) denote the subspace spanned by the union
of the two subspaces U (`) and U (`′). By assumption, the rank of U (`) ∪ U (`′), r′, satisfies r′ ≤ r` + r`′ ≤ 2r. For any
x ∈ U (`) and y ∈ U (`′) we have

〈x,y〉 =
1

4

(
‖x+ y‖22 − ‖x− y‖22

)
; (A.1)

subsequently,

∣∣〈x,y〉 − 〈Ψx,Ψy〉
∣∣ ≤ 1

4

(∣∣‖x+ y‖2 − ‖Ψ(x+ y)‖2
∣∣+
∣∣‖x− y‖2 − ‖Ψ(x− y)‖2

∣∣) . (A.2)

Since Ψ is a subspace embedding, the following holds for all x+ y,x+ y ∈ span(U (`) ∪ U (`′)):

(1− ε)2‖x+ y‖2 ≤ ‖Ψ(x+ y)‖2 ≤ (1 + ε)2‖x+ y‖2,
(1− ε)2‖x− y‖2 ≤ ‖Ψ(x− y)‖2 ≤ (1 + ε)2‖x− y‖2.

The bound for
∣∣〈x,y〉 − 〈Ψx,Ψy〉

∣∣ then follows by noting that (1 − ε)2 ≥ 1 − 3ε, (1 + ε)2 ≤ 1 + 3ε and ‖x + y‖2 +
‖x−y‖2 = 2(‖x‖2 + ‖y‖2). Finally, a union bound over all k2 subspaces and 2N data points yields the proposition.

Proof of Proposition 2. Fix U ⊆ Rd to be any subspace of dimension at most r′ and let U ∈ Rd×r be an orthonormal
basis of U . Let Ψ̃ =

√
pΨ denote the unnormalized version of Ψ. Since each entry in Ψ̃ follows i.i.d. standard Gaussian

distribution and U is orthogonal, the projected matrix Ψ̃U ∈ Rp×r′ follows an entrywise standard Gaussian distribution,
too. By Lemma 28 (taking t =

√
2δ and scale the matrix by 1/

√
p), the singular values of the Gaussian random matrix Ψ

obey

1−
√
r′

p
−
√

2 log(1/δ)

p
≤ σr′(Ψ) ≤ σ1(Ψ) ≤ 1 +

√
r′

p
+

√
2 log(1/δ)

p
(A.3)

with probability at least 1− δ. Let ε :=
√

r′
p +

√
2 log(1/δ)

p , then with the same probability, (supposing x = Uα ∈ U)

∣∣‖x‖22 − ‖Ψx‖22
∣∣ =

∣∣α>U>Uα−α>U>Ψ>ΨUα
∣∣

≤ ‖α‖22‖U>U−U>Ψ>ΨU‖2
= ‖x‖22‖Ir′×r′ −U>Ψ>ΨU‖2
≤ ε‖x‖22. (A.4)

Subsequently,
(1− ε)‖x‖ ≤

√
1− ε‖x‖ ≤ ‖Ψx‖ ≤

√
1 + ε‖x‖ ≤ (1 + ε)‖x‖. (A.5)
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Proof of Proposition 5. Let Ω ⊆ {1, · · · , d}, |Ω| = p be the subsampling indices of Ω. By definition, Pr[Ω(j) = i] = 1/d
for every i ∈ {1, · · · , d} and j ∈ {1, · · · , p}. Fix any subspace U ⊆ Rd of dimension at most r′ with incoherence level
bounded by µ(U) ≤ µ0. Let U ∈ Rd×r′ be an orthonormal basis of U . By definition, U>U = Ir′×r′ .

For any x ∈ U , there exists α ∈ Rr′ such that x = Uα. Subsequently, we have
∣∣‖x‖2 − ‖Ωx‖2

∣∣ =
∣∣α>α−α>(ΩU)>(ΩU)α

∣∣ ≤ ‖α‖2 · ‖I− (ΩU)>(ΩU)‖. (A.6)

Our next objective is to bound the norm ‖I− (ΩU)>(ΩU)‖ with high probability. First let UΩ := (uΩ(1), · · · ,uΩ(p)) =√
p
d (ΩU)> be the unnormalized version of subsampled orthogonal operators. By definition we have

‖(ΩU)>(ΩU)− I‖ =
d

p

∥∥∥UΩU>Ω −
p

d
I
∥∥∥ . (A.7)

With Eq. (A.7), we can use noncommutative Matrix Berstein inequality (Gross et al., 2010; Recht, 2011) to bound
‖UΩU>Ω − p

dI‖ and subsequently obtain an upper bound for the rightmost term in Eq. (A.6). The proof is very simi-
lar to the one presented in (Balzano et al., 2010; Krishnamurthy & Singh, 2014), where an upper bound for ‖(UΩU>Ω)−1‖
is obtained. More specifically, let B1, · · · ,Bp be i.i.d. random matrices such that Bj = uΩ(j)u

>
Ω(j) − 1

dI. We then have

UΩU>Ω −
p

d
I =

p∑

j=1

Bj (A.8)

and furthermore,

E
[
UΩU>Ω −

p

d
I
]

= p

(
d∑

i=1

uiu
>
i − I

)
= 0. (A.9)

To use Matrix Bernstein, we need to upper bound the range and variance parameters of Bj . Under the matrix incoherence
assumption Eq. (3.5) the range of Bj can be bounded as

‖Bj‖ ≤ max
i

∥∥∥∥uiu>i −
1

d
I

∥∥∥∥ ≤
√
r′2µ0

d
+

1

d
≤ r′µ0

d
+

1

d
≤ 2r′µ0

d
=: R. (A.10)

The last inequality is due to the fact that 1 ≤ µ(U) ≤ d
r′ for any subspace U of rank r′. For the variance, we have

‖E[B>j Bj ]‖ = ‖E[BjB
>
j ]‖ =

∥∥∥∥E
[(
uΩ(j)u

>
Ω(j) −

1

d
I

)(
uΩ(j)u

>
Ω(j) −

1

d
I

)]∥∥∥∥

=

∥∥∥∥E
[
uΩ(j)u

>
Ω(j)uΩ(j)u

>
Ω(j)

]
− 1

d2
I

∥∥∥∥

≤
∥∥∥E
[
uΩ(j)u

>
Ω(j)uΩ(j)u

>
Ω(j)

]∥∥∥+
1

d2

≤ µ0

√
r′2

d2
‖E[uΩ(j)u

>
Ω(j)]‖+

1

d2

≤ µ0r
′

d2
+

1

d2
≤ 2µ0r

′

d2
.

As a result, we can define σ2 := 2µ0r
′/d2 such that σ2 ≥ max{‖E[BjB

>
j ]‖, ‖E[B>j Bj ]‖} for every j. Using Lemma 27,

for every t > 0 we have

Pr
[
‖UΩU>Ω −

p

d
I‖ ≥ t

]
≤ 2r exp

(
− t2/2

σ2p+Rp/3

)
= 2r′ exp

(
− t2/2

2µ0r′

d2 p+ 2µ0r′

d t/3

)
. (A.11)

For ε < 1 set t = p
dε and p = 8ε−2µ0r

′ log(2r′/δ). Then with probability ≥ 1− δ we have
∥∥∥UΩU>Ω −

p

d
I
∥∥∥ ≤ p

d
ε. (A.12)

The proof is then completed by multiplying both sides in Eq. (A.12) by d
p .



A Deterministic Analysis of Noisy Sparse Subspace Clustering for Dimensionality-reduced Data

A.2. Proof of the main theorems in Section 4

In this section we give rigorous proofs of the three key lemmas in Section 4. We also prove Theorem 15 and 18, which are
simple corollaries of Lemma 12, 14 and 16.

Proof of Lemma 12. Fix ` ∈ [k] and one column xi in X. Let U (`) and Ũ (`) denote the low-rank subspaces to which xi
belongs before and after compression. That is, Ũ (`) = {Ψx : x ∈ U (`)}.
First note that (1 − 2λ)2 ≤ ‖ν‖2 ≤ 1/(2λ). ‖ν‖ ≥ 1 − 2λ because 〈x,ν〉 − 2λ‖ν‖2 ≤ ‖ν‖ and putting ν = x we
obtain a solution with value 1− 2λ. On the other hand, 〈x,ν〉 − 2λ‖ν‖2 ≤ ‖ν‖− 2λ‖ν‖2 and putting ν = 0 we obtain a
solution with value 0. Also, under the noiseless setting ν ∈ U (`), if x ∈ U (`).

Define ν̃′ =
√

1−ε
1+εmax(1,‖ν‖) · ν̃, where ν̃ = Ψν. Let f(ν) = 〈ν,x〉 − λ

2 ‖ν‖22 and f̃(ν̃′) = 〈ν̃′, x̃′〉 − λ
2 ‖ν̃

′‖22 denote
the values of the optimization problems. The first step is to prove that ν̃ is feasible and nearly optimal to the projected
optimization problem; that is, f̃(ν̃′) is close to f̃(ν∗).

We first show that ν̃′ is a feasible solution with high probability. By Proposition 1, the following bound on |x̃>i ν̃| holds:

|x̃>i ν̃| ≤ |xi,ν|+ ε · ‖xi‖+ ‖ν‖
2

≤ 1 + εmax(1, ‖ν‖). ∀xi ∈ X. (A.13)

Furthermore, with probability ≥ 1− δ
‖x̃i‖22 ≥ (1− ε)‖xi‖22 = 1− ε. (A.14)

Consequently, by the definition of ν̃′ one has

‖X̃′>ν̃′‖∞ ≤
1√

1− ε ·
√

1− ε
1 + εmax(1, ‖ν‖)‖X̃

>ν̃‖∞ ≤ 1. (A.15)

Next, we compute a lower bound on f̃(ν̃′), which serves as a lower bound for f̃(ν∗) because ν∗ is the optimal solution to
the dual optimization problem on the projected data.

f̃(ν̃′) = 〈x̃′, ν̃′〉 − λ

2
‖ν̃′‖22

≥
√

1− ε
1 + ε

〈x̃, ν̃〉
1 + εmax(1, ‖ν‖) −

λ

2
(1− ε)‖ν̃‖22

≥ (1− ε)(1− εmax(1, ‖ν‖)) (〈x,ν〉 − εmax(1, ‖ν‖))− λ

2
(1− ε)(1 + ε)‖ν‖2

≥ 〈x,ν〉 − εmax(1, ‖ν‖)− ε (〈x,ν〉 − εmax(1, ‖ν‖))− λ

2
‖ν‖2

≥ f(ν)− 2εmax(1, ‖ν‖). (A.16)

On the other hand, since ν∗ ∈ Ũ (`), there exists ν̄ ∈ U (`) such that ν∗ = Ψν̄. Let ν̄′ be a scaled version of ν̄ so that it
is a feasible solution to the optimization problem in Eq. (4.1) before projection. Using essentially similar analysis one can
show that f(ν̄′) ≥ f̃(ν∗) − 2εmax(1, ‖ν∗‖). Consequently, the following bound on the gap between f̃(ν̃′) and f̃(ν∗)
holds: ∣∣f̃(ν̃′)− f̃(ν∗)

∣∣ ≤ 4εmax(1, ‖ν‖, ‖ν∗‖). (A.17)

Because the dual problem in Eq. (4.1) is strongly convex with parameter λ (this holds for both the projected and the original
problem), we can bound the perturbation of dual directions ‖ν̃′ − ν∗‖ by the bounds on their values |f̃(ν̃′)− f̃(ν∗)| as

‖ν̃′ − ν∗‖2 ≤

√
2|f̃(ν̃′)− f̃(ν∗)|

λ
≤
√

8εmax(1, ‖ν‖, ‖ν∗‖)
λ

. (A.18)

Next, note that ν̃′,ν∗ ∈ Ũ (`). Also note that for any two vector a, b the following holds:
∥∥∥∥
a

‖a‖ −
b

‖b‖

∥∥∥∥ =

∥∥∥∥
a

‖a‖ −
b

‖a‖ +
b

‖a‖ −
b

‖b‖

∥∥∥∥
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≤ ‖a− b‖
‖a‖ +

‖b‖ ·
∣∣‖a‖ − ‖b‖

∣∣
‖a‖‖b‖

≤ ‖a− b‖
‖a‖ +

‖a− b‖
‖a‖

=
2‖a− b‖
‖a‖ .

By symmetry we also have ‖ a
‖a‖ − b

‖b‖‖ ≤
2‖a−b‖
‖b‖ . Therefore,

∥∥∥∥
a

‖a‖ −
b

‖b‖

∥∥∥∥ ≤
2‖a− b‖

max(‖a‖, ‖b‖) . (A.19)

Now we can bound ‖ṽ′ − v∗‖ as follows:

‖ṽ′ − v∗‖ =

∥∥∥∥
ν̃′

‖ν̃′‖ −
ν∗

‖ν∗‖

∥∥∥∥

≤ 2‖ν̃′ − ν∗‖
max(‖ν̃′‖, ‖ν∗‖) ≤

2‖ν̃′ − ν∗‖
max(‖ν‖/4, ‖ν∗‖)

≤ 16
√

2εmax(1, ‖ν‖, ‖ν∗‖)√
λmax(‖ν‖, ‖ν∗‖)

≤ 16

√
2ε

λ
max

(
1,

1

‖ν‖ ,
1

‖ν∗‖

)

≤ 16

√
2ε

λ(1− 2λ)
≤ 32

√
ε

λ
.

Note that after normalization ṽ′ is exactly the same with ṽ. Subsequently, for any y ∈ X\X(`) we have
∣∣〈v,y〉 − 〈v∗, ỹ′〉

∣∣ ≤
∣∣〈ṽ′, ỹ′〉 − 〈v∗, ỹ′〉

∣∣+
∣∣〈ṽ′, ỹ′〉 − 〈v,y〉

∣∣
≤ ‖ṽ′ − v∗‖‖ỹ′‖+

∣∣〈ṽ, ỹ′〉 − 〈v,y〉
∣∣

≤ ‖ṽ′ − v∗‖+

∣∣∣∣
1

‖Ψv‖‖Ψy‖〈Ψv,Ψy〉 − 〈v,y〉
∣∣∣∣

≤ 32

√
ε

λ
+

(
1− 1

‖Ψv‖‖Ψy‖

)
‖Ψv‖‖Ψy‖+

∣∣〈Ψv,Ψy〉 − 〈v,y〉
∣∣

≤ 32

√
ε

λ
+

(
1− 1

1 + ε

)
(1 + ε) + ε

= 32

√
ε

λ
+ 2ε.

Proof of Lemma 14. For notational simplicity re-define Y = Y(−i) and Ỹ′ = Ỹ′(−i) for some fixed data point x(`)
i . Let

C, C̃ be the largest Euclidean balls inscribed in Q(Y) and Q(Ỹ). Since both Q(Y) and Q(Ỹ) are symmetric convex
bodies with respect to the origin, the centers of C and C̃ are the origin. Let c̃ be any point in C̃ ∩ ∂Q(Ỹ). By definition,
r(Q(Ỹ)) = ‖c̃‖. Since c̃ ∈ Ũ (`), we can find c ∈ U (`) such that c̃ = Ψc. By Proposition 1, we have (with probability
≥ 1− δ)

‖c̃‖ ≥ 1√
1 + ε

‖c‖. (A.20)

On the other hand, c is not contained in the interior of Q(Y). Otherwise, we can find a scalar a > 1 such that ac ∈ Q(Y)

and hence ac̃ ∈ Q(Ỹ), contradicting the fact that c̃ ∈ ∂Q(Ỹ). Consequently, we have ‖c‖ ≥ r(Q(Y)) by definition.
Therefore,

r(Q(Ỹ)) = ‖c̃‖ ≥ 1√
1 + ε

‖c‖ ≥ r(Q(Y))√
1 + ε

. (A.21)
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Next, we need to lower bound r(Q(Ỹ′)) in terms of r(Q(Ỹ)). This can be easily done by noting that the maximum
column norm in Ỹ is upper bounded by

√
1 + ε. Consequently, we have

r(Q(Ỹ′)) ≥ r
(
Q
(

1√
1 + ε

Ỹ

))
≥ r(Q(Y))

1 + ε
. (A.22)

Proof of Lemma 16. Fix ` ∈ {1, 2, · · · , k} and a particular column x = xi. Suppose ν is the optimal solution to the
original dual problem in Eq. (4.1). Define ν‖ = PU(`)ν and ν⊥ = PU(`)⊥ν. Let f(·) be the objective value of the dual
problem under a specific solution. Then it is easy to observe that

f(ν‖) ≥ f(ν)− 〈x⊥,ν⊥〉 ≥ f(ν)− η‖ν⊥‖2. (A.23)

We then cite the following upper bound for ‖ν⊥‖, which appears as Eq. (5.16) in (Wang & Xu, 2013).

‖ν⊥‖2 ≤ λη
(

1

r(Q(Y
(`)
−i ))

+ 1

)
≤ 2λη

ρ`
. (A.24)

Let ν̃ = Ψν‖ and ν̃′ =
√

1−ε
1+(η+ε) max(1,‖ν‖) · ν̃. It is easy to verify that ν̃′ is a feasible solution to the projected dual

problem. Define η′ := maxi=1,··· ,n ‖z̃i‖2. Since Ψ is well behaved, η′ ≤
√

1 + εη with high probability. Applying
essentially the same chain of argument as in the proof of Lemma 12 we obtain

f̃(ν̃′) = 〈x̃′, ν̃′〉 − λ

2
‖ν̃′‖22

= 〈ỹ′, ν̃′〉+ 〈z̃, ν̃′〉 − λ

2
‖ν̃′‖22

≥ 〈y,ν‖〉 −
λ

2
‖ν‖‖2 − 2(ε+ η) max(1, ‖ν‖)− ‖z̃‖2‖ν̃′‖2

≥ 〈y,ν‖〉 −
λ

2
‖ν‖‖2 − 2(ε+ η) max(1, ‖ν‖)− η′ ·

√
(1− ε)(1 + ε)

1 + εmax(1, ‖ν‖)‖ν‖

≥ 〈y,ν‖〉 −
λ

2
‖ν‖‖2 − 2(ε+ η) max(1, ‖ν‖)−

√
1 + εη‖ν‖

≥ 〈x,ν‖〉 −
λ

2
‖ν‖‖2 − 2(ε+ η) max(1, ‖ν‖)−

√
1 + εη‖ν‖ − η‖ν‖

≥ f(ν‖)− (2ε+ 5η) max(1, ‖ν‖)

≥ f(ν)− 2λη2

ρ`
− (2ε+ 5η) max(1, ‖ν‖).

Similarly, one can show that

f̃(ν∗) ≤ f(ν) +
2λη′2

ρ`
+ (2ε+ 5η′) max(1, ‖ν∗‖) ≤ f(ν) +

3λη2

ρ`
+ (2ε+ 6η) max(1, ‖ν∗‖). (A.25)

Consequently, noting that f̃(ν̃′) ≤ f̃(ν∗) one has

∣∣f̃(ν∗)− f̃(ν̃′)
∣∣ ≤ 5λη2

ρ`
+ 4(ε+ 3η) max(1, ‖ν‖, ‖ν∗‖). (A.26)

Since both dual problems (before and after projection) are strongly convex with parameter λ, the following perturbation
bound on ‖ν∗ − ν̃′‖ holds:

‖ν∗ − ν̃′‖ ≤

√
2|f̃(ν∗)− f̃(ν̃′)|

λ
≤
√

5η2

ρ`
+

8(ε+ 3η) max(1, ‖ν‖, ‖ν∗‖)
λ

. (A.27)
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Subsequently,

‖ṽ′ − v∗‖ ≤ 8‖ν̃′ − ν∗‖
max(‖ν‖, ‖ν∗‖)

≤ 8

√
5η2

ρ` max(‖ν‖2, ‖ν∗‖2)
+

8(ε+ 3η)

λmax(1, ‖ν‖2, ‖ν∗‖2)

≤ 8

√
5η2

ρ`(1− 2λ)2
+

8(ε+ 3η)

λ(1− 2λ)2

≤ 16

√
5η2

ρ`
+

8(ε+ 3η)

λ
.

Finally, the perturbation of the angle between v and y can be bounded by

∣∣〈v,y〉 − 〈v∗, ỹ′〉
∣∣ ≤ ‖ṽ′ − ṽ∗‖+ 2ε ≤ 16

√
5η2

ρ`
+

8(ε+ 3η)

λ
+ 2ε. (A.28)

Proof of Theorem 15. Let µ̃`, ρ̃` denote the subspace incoherence and inradius of subspace U (`) after dimensionality re-
duction. Theorem 11 shows that Lasso SSC satisfies the subspace detection property if µ̃` < ρ̃` for every ` and λ < ρ̃. By
Lemma 14, ρ̃ ≥ ρ/2 with high probability. Note also that ρ̃` ≥ ρ`

1+ε ≥ ρ`(1 − ε). Subsequently, the following inequality
yields µ̃` < ρ̃` for every `:

µ` + 32
√
ε/λ+ (2 + ρ`)ε < ρ`, ∀` = 1, · · · , k. (A.29)

Taking 32
√
ε/λ < ∆/2 and (2 +ρ`)ε < ∆/2 where ∆ = min`(ρ`−µ`), Eq. (A.29) is subsequently satisfied. This yields

ε < min

{
∆

2(2 + ρ)
, c1λ∆2

}
(A.30)

for some absolute constant c1. The ε < 1/2 term comes from the ε < 1/‖ν‖ condition in Lemma 12.

Proof of Theorem 18. Define ∆̃ := min`(ρ̃`− µ̃`) to be the maximum margin of error after dimensionality reduction. First
we prove that with λ = ρ/4 < 1/4 and the upper bound in Eq. (4.15) we have ∆̃ ≥ ∆/2. Essentially, this requires

16

√
5η2

ρ`
+

8(ε+ 3η)

λ
<

∆

4
, (A.31)

2ε+ ρε <
∆

4
. (A.32)

This amounts to

ε < min

{
∆

4(2 + ρ)
,
λ

8

(
c2∆2 − 5η2

ρ

)
− 3η

}
, (A.33)

where c2 > 0 is an absolute constant.

Next we verify that Eq. (4.5) are satisfied after dimensionality reduction. Let η̃ denote the noise level after projection, that
is, maxi{‖z̃i‖} ≤ η̃. Because ε < 1/3, by Proposition 1 η̃ ≤ 2η with high probability. Consequently, η < ρ

96 in Eq.
(4.14) implies (ρ̃ = min` ρ̃` and µ̃ = max` µ̃`)

ρ̃− 2η̃ − η̃2 ≥ ρ(1− ε)− 6η ≥ 2ρ

3
− 6ρ

18
=
ρ

3
≥ ρ

4
= λ. (A.34)

Hence the upper bound on λ in Eq. (4.5) is satisfied. For the lower bound, note that η � 1, ρ̃` < 1 and hence

η̃(1 + η̃)(2 + ρ̃`)

ρ̃` − µ̃` − 2η̃
≤ 6η̃

∆̃
≤ 12η

∆/2
=

24η

∆
<
ρ

4
= λ. (A.35)

The last inequality is due to Eq. (4.14).
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Proof of Theorem 19. Let the JL transform matrix be Ψ. Since it is a linear transformation, zi ∼ N (0, σ
2

d I) implies that
Ψzi ∼ N (0, σ

2

d ΨΨ>). Using the fact that this algorithm is invariant to arbitrary unitary transformations, we can apply
the rotation that diagonalizes the covariance matrix σ2

d ΨΨ> to every column of the projected (and renormalized) data.
This decouples the noise matrix Z such that every coordinate is independent Gaussian. Moreover, the maximum entrywise
variance is upper bounded by

max
ij

σ2
ij

p
≤ ‖Ψ‖2σ

2(1 + ε)2

d
≤ ξ2 d

p

σ2(1 + ε)2

d
≤ ξ2σ

2(1 + ε)2

p
≤ 2ξ2σ

2

p
,

where ε is the JL parameter included to acount for the renormalization of the y part. The last inequality holds because
ε > 1/3 by our assumption.

Applying the same argument as in the proof of Theorem 18 we get ∆̃ = min` (ρ̃` − µ̃`) ≥ ∆/2 when Eq. (4.17) is
satisfied.

The proof is then completed by invoking the second part of Theorem 11 on the compressed problem with the bounded
entrywise independent Gausian noise, we get the condition that

√
logN

p
σ(1 + σ) ≤ C

4ξ2
min

`=1,...,k

{
ρ, r−1/2, ρ` − µ`

}

as claimed in (4.6).

Note that for random Gaussian transforms Ψ, by Lemma 28, ‖Ψ‖ ≤ 3
√
d/p (hence ξ2 ≤ 9) with high probability.

B. Privacy preserved subspace clustering
In this section, we formalize the claims on attribute-level differential privacy and the corresponding utility guarantee in the
paper.

Privacy Claim In classic statistical privacy literature, transforming data set X by taking X̃ = AX+∆ for some random
matrix A and ∆ is called matrix masking. (Zhou et al., 2009) show that random compression allows the mutual information
of the output X̃ and raw data X to converge to 0 with rate O(p/d) even when ∆ = 0, their result directly applies to our
problem. The guarantee suggests that the amount of information in the compressed output X̃ about the raw data X goes to
0 as the ambient dimension d gets large.

On the other hand, if ∆ 6= 0 is an iid Gaussian noise matrix, we can protect the (ε, δ)-differential privacy of every data
entry. Such attribute differential privacy notion is defined below.

Definition 20 (Attribute Differential Privacy). Suppose O is the set for all possible outcomes. We say a randomized
algorithm A : Rd×N → O is (ε, δ)-differential private at attribute level if

P(A(X) ∈ S) ≤ eεP(A(X′) ∈ S) + δ

for any measurable outcome S ⊂ O, any X and X′ that differs in only one entry.

This is a well-studied setting in (Kenthapadi et al., 2013). It is weaker than protecting the privacy of individual users,
which remains an open question, but much stronger than the average protection via mutual information. In fact, it forbids
any feature of an individual user from being identified “for sure” by an adversary with arbitrary side information.

Theorem 21. Assume the data (and all other users that we need to protect) satisfy column spikiness conditions with
parameter µ0 as in Definition 4. Let Ψ be a Johnson-Lindenstrauss transform with parameter ε. Releasing compressed

data X̃′ = Normalize(ΨX) + N (0, σ2Ip×d) with σ = 1+ε
1−ε

√
32µ0 log(1.25/δ)

dε2 preserves attribute-level (ε, δ)-differential
privacy.

The proof involves working out the `2-sensitivity of the operator Normalize(Ψ(·)) in terms of column incoherence µ0

and apply “Gaussian Mechanism”. By the closeness to post-processing property of differential privacy, the subsequent
subspace clustering results protects the same level of privacy. Details are given as follows.



A Deterministic Analysis of Noisy Sparse Subspace Clustering for Dimensionality-reduced Data

Proof of Theorem 21. Let X and X′ differs by only one entry, w.l.o.g, assume it is the ith column and jth row,

‖Ψ(X−X′)‖F = ‖Ψ(Xi −X′i)‖2 ≤ ‖Ψej‖|Xji −X′ji| ≤ 2

√
µ

d
‖Ψej‖.

Now we derive the `2-sensitivity of Normalize(Ψ(·)).

‖Normalize(ΨX)− Normalize(ΨX′)‖F

=

∥∥∥∥
ΨXi

‖ΨXi‖
− ΨX′i
‖ΨX′i‖

∥∥∥∥
2

=

∥∥∥∥
ΨXi

‖ΨXi‖
− ΨX′i
‖ΨXi‖

+
ΨX′i
‖ΨXi‖

− ΨX′i
‖ΨX′i‖

∥∥∥∥
2

=

∥∥∥∥
Ψ(Xi −X′i)
‖ΨXi‖

+ ΨX′i

(
1

‖ΨXi‖
− 1

‖ΨX′i‖

)∥∥∥∥

≤‖Ψ(Xi −X′i)‖2
‖ΨXi‖

+ ‖ΨX′i‖
|‖ΨX′i‖ − ‖ΨXi‖|
‖ΨXi‖‖ΨX′i‖

≤2‖Ψ(Xi −X′i)‖2
‖ΨXi‖

≤ 4

√
µ0

d

‖Ψej‖
‖ΨXi‖

≤ 4

√
µ0

d

1 + ε

1− ε .

The last step uses the fact that Ψ is JL with parameter ε.

Lemma 22 (Gaussian Mechanism, (Kenthapadi et al., 2013)). Let ∆2f be the `2 sensitivity of f , Let ε ∈ (0, 1) be arbitrary.
The procedure that output f(X) +N (0, σ2I) with σ ≥ ∆2f

√
2 log(1.25/δ)/ε is (ε, δ)-differentially private.

Our claim follows by applying Gaussian Mechanism and the closedness to postprocessing property of data privacy.

Utility Claim It turns out that if column spikiness µ0 is a constant, Lasso-SSC is able to provably detect the correct
subspace structures, despite privacy constraints.

Corollary 23. Let the raw data X be compressed and privatized data X̃′ using the above described mechanism. Assume
the same set of notations and assumptions in Theorem 15. Suppose Ψ is a JL transform with parameter ε. Let B :=
min`=1,...,k{ρ, r−1/2, ρ` − µ`}, and C be the constant in Theorem 15 and 19. If the privacy parameter ε is set to

ε >

√
512µ0 log(1.25/δ)

d
max

{
(p logN)1/4

(CB)1/2
,

√
logN

CB

}
.

Then the solution to Lasso-SSC using obeys the subspace detection property with probability 1− 8/N − δ.

The idea is simple. We are now injecting artificial Gaussian noise to a compressed subspace clustering problem with fixed
input, and Theorem 19 ( Theorem 8 in (Wang & Xu, 2013) ) directly addresses that. All we have to do is to replace the
geometric quantities in µ` and ρ` by their respective bound after compression in Corollary 13 and Lemma 14.

Proof of Corollary 23. The proof involves applying Theorem 19 with ξ = 1 and

σ =
1 + ε

1− ε

√
32pµ0 log(1.25/δ)

dε2
≤
√

128pµ0 log(1.25/δ)

dε2

according to Theorem 21 and rearranging the expressions in terms of the limit for privacy requirement ε.

Note that the noise here is added after the compression and normalization, but the effect is the same as adding Gaussian
noise in the original dimension and scaled orthogonal random projection on a noise. In fact, we can replace C/4 with C
because there is no renormalization here.

Denote B := min`=1,...,k{ρ, r−1/2, ρ` − µ`}, and C to be the same as in Theorem 19, the conditions for success is

σ(1 + σ) < CB

√
p

logN
, (B.1)
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which holds if

σ < min

{
CB

2

√
p

logN
,

√
CB

2

p1/4

(logN)1/4

}
.

Substitute the expression of σ into (B.1) and rewrite it in terms of ε, we get our claim:

ε >

√
512µ0 log(1.25/δ)

d
max

{
(p logN)1/4

(CB)1/2
,

√
logN

CB

}
.

B.1. Discussion of user-level privacy and its impossiblity under perfect subspace detection property

As we described in the main results, attribute-level differential privacy is a much weaker notion of privacy. While it is easy
to handle a small group of attributes (in the order of O(

√
d/p) if we consider B = O(1/r)) by the composition rule, it

does not protect any individual user’s complete information. However, this is arguably the best we can do if our measure
of utility is in terms of (perfect) subspace detection property.

Let us define formally the user-level differential privacy.
Definition 24 (User-Level Differential Privacy). We say a randomized algorithm A : Rd×N → O is (ε, δ)-differential
private at attribute level if

P(A(X) ∈ S) ≤ eεP(A(X′) ∈ S) + δ

for any measurable outcome S ⊂ O, any X,X′ ∈ Xn that differs in only one column.

The only difference to the attribute differential privacy is how X and X′ may differ. Note that we can arbitrarily replace
any single point in X with any x ∈ X , to form X′.
Proposition 25. User-level differential privacy is NOT possible for any 0 ≤ ε <∞ if we assume perfect subspace detection
property, or perfect clustering results. In addition, If an algorithm achieves perfect clustering or subspace detection with
probability 1− δ, user-level differential privacy is NOT possible for any ε < log

(
1−δ
δ

)
.

Proof. First of all, if a data point can be arbitrarily chosen, then we can change it entirely into a different subspace. Let’s
first ignore the gap from subspace detection property and perfect clustering. Assume that the output is the clustering result
and it is always correct. then if we arbitrarily change the kth data point from one Subspace A to Subspace B, the result must
reflect the change and cluster this data point correctly to its new subspace and the probability of observing an output that
has kth data point clustered into Subspace A will change from 1 to 0, which blatantly violates the definition of differential
privacy.

The same line of arguments holds if we treat the output as the graph embedding. Note that having subspace detection
property for data point k in Subspace A (connected only to a set of points) and having subspace detection for data point
k in Subspace B (connected only to another set of points) are two disjoint measurable events. With a perturbation that
changes a data point from one subspace to another will blow the likelihood ratio of observing one of these two event to
infinity.

The high probability statement holds because

P(SDP according to X|X)

P(SDP according to X|X′) ≥
1− δ
δ
≥ elog( 1−δ

δ ).

The reason why attribute-level privacy will work is because the promise is much weaker. Also our assumption that the
columns are non-spiky ensures that perturbing any attribute of any user will not inject too much error. Intuitively, random
projection and the injected dense Gaussian noise makes sure that it is not possible to identify any small changes in one
attribute of a single user.

To be fair, the same problem still exists, namely, differential privacy breaks whenever the clustering can be shown to be
always correct. What attribute-differential privacy ensures is that it is not possible to tell if a specific attribute of this user
used in coming up with the result is actually the same or close to what it truly is.
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Figure 5. Relative Violation (top) and clustering accuracy (bottom) of Lasso-SSC on noiseless and noisy synthetic datasets. Left: noise-
less; right: σ/

√
d = 0.1. λ ranges from 10−1 to 10−8 and the projected data dimension (p) ranges from 5 to 60. For each figure the

rightmost columns indicate trivial solutions.
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Figure 6. Relative violation of Lasso-SSC on noiseless and noisy synthetic datasets with varying number of clusters (k). Top row: λ
ranges from 10−8 to 1; data dimension after random projection (p) is set to 25; rightmost columns indicate trivial solutions. Bottom
row: p ranges from 5 to 50; λ is set to 10−2. Left: noiseless; right: σ/

√
d = 0.1.

User-level privacy for subspace clustering and for privacy in general remains an important open problem. What we know
for sure is that, we need to come up with a different/soft measure of utility other than exact clustering or subspace detection
property.

C. Numerical results on synthetic datasets
We generate synthetic datasets to verify and extend theoretical findings in this paper. All subspaces and data points within
each subspace are generated uniformly at random. We fix the ambient dimension (d) to be 100 and generate 50 data points
per cluster. The intrinsic rank of each subspace is fixed to r = 5.

In the first set of experiments we generate K = 10 clusters and plot the relative violation of SEP as well as clustering
accuracy with respect to different λ and p values in Figure 5. It can be shown that when the projected dimension p is
smaller than the rank of the union of subspaces (i.e., p < kr) the performance of Lasso SSC degrades as λ decreases. This
holds even for the noiseless case, which nicely justifies our theoretical findings. Note that when p is large (e.g., p > kr)
both Lasso SSC and exact SSC (λ → 0) succeeds when the input data matrix is not corrupted with noise. On the other
hand, when λ is too large we obtain trivial solutions and clustering fails immediately.

In Figure 6 we report the relative violation of SEP and clustering accuracy with varying number of clusters k. It can be seen
that even when there are a large number of clusters (e.g., k = 50) SEP still holds for a wide range of tuning parameters λ.
In addition, the bottom two plots in Figure 6 show that the choice of projection dimension p is insensitive to the number of
clusters (k).

D. Some tail inequalities
Lemma 26 (Matrix Gaussian and Rademacher Series, the general case (Tropp, 2012)). Let {Bk}k be a finite sequence of
fixed matrices with dimensions d1 × d2. Let {γk}k be a finite sequence of i.i.d. standard normal variables. Define the
summation random matrix Z as

Z =
∑

k

γkBk. (D.1)



A Deterministic Analysis of Noisy Sparse Subspace Clustering for Dimensionality-reduced Data

Define the variance parameter σ2 as
σ2 := max{‖E[ZZ>]‖, ‖E[Z>Z]‖}. (D.2)

Then for every t > 0 the following concentration inequality holds:

Pr [‖Z‖ ≥ t] ≤ (d1 + d2)e−t
2/2σ2

. (D.3)

Lemma 27 (Noncommutative Matrix Berstein Inequality, (Gross et al., 2010; Recht, 2011)). Let B1, · · · ,Bp be indepen-
dent zero-mean square r × r random matrices. Suppose σ2

j = max{‖E[BjB
>
j ]‖, ‖E[B>j Bj ]‖} and ‖Bj‖ ≤ R almost

surely for every j. Then for any t > 0 the following inequality holds:

Pr



∥∥∥∥∥∥

p∑

j=1

Bj

∥∥∥∥∥∥
2

> t


 ≤ 2r exp

(
− t2/2∑p

j=1 ρ
2
j +Rt/3

)
. (D.4)

Lemma 28 (Spectrum bound of a Gaussian random matrix,(Davidson & Szarek, 2001)). Let A be an m × n (m > n)
matrix with i.i.d standard Gaussian entries. Then, its largest and smallest singular values s1(A) and sn(A) obeys

√
m−√n ≤ Esn(A) ≤ Es1(A) ≤ √m+

√
n,

moreover, √
m−√n− t ≤ sn(A) ≤ s1(A) ≤ √m+

√
n+ t,

with probability at least 1− 2 exp(−t2/2) for all t > 0.

The expectation result is due to Gordon’s inequality and the concentration follows from the concentration of measure
inequality in Gauss space by the fact that s1 and sn are both 1-Lipchitz functions. Take t =

√
n in the above inequality we

get

1− 2

√
n

m
− ε ≤ sn(A/

√
m) ≤ s1(A/

√
m) ≤ 1 + 2

√
n

m

with probability 1− 2 exp(−n2/2).
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Table of symbols and notations

Table 1. Summary of symbols and notations
| · | Either absolute value or cardinality
‖ · ‖; ‖ · ‖2 2 norm of a vector/spectral norm of a matrix
‖ · ‖1 1 norm of a vector
‖ · ‖∞ Infinity norm (maximum absolute value) of a vector
〈·, ·〉 Inner product of two vectors
‖A‖(i) The ith row of matrix A
σ1(·), σr(·) The largest and rth largest singular value of a matrix
N Number of data points (number of columns in X)
k Number of subspaces (clusters)
d The ambient dimension (number of rows in X)
N`, r` for ` = 1, · · · , k Number of data points and instrinsic dimension for each subspace
r Largest intrinsic dimension across all subspaces
X Observed data matrix
Y Uncorrupted (noiseless) data matrix
Z Noise matrix, can be either deterministic or stochastic
X̃, Ỹ, Z̃ Projected matrices of X,Y,Z

X̃′, Ỹ′, Z̃′ Normalized projected matrices of X,Y,Z
U (`), U(`) Subspace and its orthonormal basis of the `th cluster
X−i, Y−i, Z−i All columns in X,Y,Z except the ith column.
X(`),Y(`),Z(`) All columns in X,Y,Z associated with the `th subspace
X

(`)
−i ,Y

(`)
−i ,Z

(`)
−i All columns in X(`),Y(`),Z(`) except the ith column

Q(·),conv(·) (Symmetric) convex hull of a set of vectors
r(·) Radius of the largest ball inscribed in a convex body
PU (·) Projection onto subspace U
p Target dimension after random projection
ε Approximation error of random projection methods
δ Failure probability
Ψ,Ω,Φ,S Projection operators for random Gaussian projection, uniform sampling, FJLT and sketching
µ0 Column space incoherence or column spikiness
µ`, ρ` for ` = 1, · · · , k Subspace incoherence and inradius for each subspace
µ̃`, ρ̃` for ` = 1, · · · , k Subspace incoherence and inradius on the projected data
f(·), f̃(·) Objective functions of Eq. (4.1) on the original data and projected data
ν,v Unnormalized and normalized dual direction
ν̃ Random projection of ν
ν̃′ A shrinked version of ν̃ such that it is feasible for Eq. (4.1) on projected data
ν∗ Optimal solution to Eq. (4.1) on projected data
ν̄ A vector in the original space that corresponds to ν∗ after projection
ν̄′ A shrinked version of ν̄ such that it is feasible for Eq. (4.1) on the original data
λ Regularization coefficient for Lasso SSC
∆ Margin of error (i.e., min` ρ` − µ`)
η, η̃ Noise level for deterministic noise, before and after projection
σ, σ̃ Noise level for random Gaussian noise, before and after projection
C Similarity matrix
q Number of nonzero entries in regression solutions. Used in solution path algorithms.


