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Abstract

Stochastic partition processes in a product space
play an important role in modeling relational da-
ta. Recent studies on the Mondrian process have
introduced more flexibility into the block struc-
ture in relational models. A side-effect of such
high flexibility is that, in data sparsity scenarios,
the model is prone to overfit. In reality, relation-
al entities are always associated with meta infor-
mation, such as user profiles in a social network.
In this paper, we propose a metadata dependent
Mondrian process (MDMP) to incorporate meta
information into the stochastic partition process
in the product space and the entity allocation pro-
cess on the resulting block structure. MDMP
can not only encourage homogeneous relation-
al interactions within blocks but also discourage
meta-label diversity within blocks. Regularized
by meta information, MDMP becomes more ro-
bust in data sparsity scenarios and easier to con-
verge in posterior inference. We apply MDMP to
link prediction and rating prediction and demon-
strate that MDMP is more effective than the base-
line models in prediction accuracy with a more
parsimonious model structure.

1. Introduction

Relational data exist widely and many real-world applica-
tions boil down to relational data modeling, such as com-
munity detection, link prediction, and collaborative filter-
ing. Although in different applications relational data may
appear in different forms (e.g., binary links in a social net-
work and discrete ratings in a recommender system), the
essence of relational data modeling is similar — To repre-
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sent the relational data as an adjacency matrix and clus-
ter rows and columns simultaneously to uncover the block
structure. Such “co-clustering” operation can be under-
stood as permuting row/column entities on each dimension
of the data matrix, with the objective to make the intensity
of relational interactions consistent within blocks.

Block models (White et al., 1976) have been widely used
in modeling, analyzing and predicting relational data. S-
tochastic block models were first proposed in (Holland
etal., 1983) to establish a stochastic generalization of block
models. By imposing a Chinese restaurant process on each
dimension of the adjacency matrix, the infinite relational
model (IRM) (Kemp et al., 2006) discards the restriction on
the number of blocks. While IRM and its variants (Airoldi
et al., 2009) have obtained the flexibility of the number of
blocks, their block structures are restricted to regular grid-
s (Muthukrishnan et al., 1999). The Mondrian process (M-
P) (Roy & Teh, 2009) was proposed to relax this restriction
with a more flexible structure of blocks, which are generat-
ed recursively as a kd-tree.

While the Mondrian process is a powerful prior for com-
plex relational modeling, its flexibility may lead to some
side-effects compared to other regular block models: 1) It
is prone to overfit in data sparsity scenarios; and 2) it is
hard to converge based on a uniform prior assumption. In
this paper, we aim to incorporate meta information of enti-
ties into MP to relieve these problems. The rationale behind
is that the entities with similar meta information are more
likely to have similar behaviors than those entities with d-
ifferent meta information. For example, people graduating
from the same university are more likely to become friends
on an online social network. Based on this observation, we
propose a metadata dependent Mondrian process (MDM-
P), which seamlessly integrates the meta information into
an MP-like hierarchical partition process.

MDMP can be viewed as a generalization of MP by inte-
grating meta information into both the stochastic partition
process in the product space and the entity allocation pro-
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cess on the resulting block structure. MDMP adopts a sim-
ilar hierarchical partition process as MP to generate blocks;
while at each step of MDMP, a block is first reshaped ac-
cording to the meta label distribution on each dimension for
uniformly sampling the cutting position, such that the parti-
tion is more likely to occur on the dimension with relatively
diverse meta labels. Due to the reshaping of blocks, parti-
tioning a block with diverse meta labels becomes cheaper
and MDMP has higher probability to accept the partition
proposal on it. Thus, MDMP will produce a very differ-
ent block structure compared to MP. For entity clustering
on each dimension (i.e., allocating rows/columns onto the
block structure), we rescale the cutting intervals on each
dimension of the block structure such that a row/column
is more likely to be allocated to an interval with the same
meta label as the majority.

We empirically study the performance of MDMP and base-
line models on three real-world data sets for link prediction
and rating prediction. The experimental results demon-
strate that, by incorporating meta information, MDMP is
able to outperform the baselines in prediction accuracy
with a more parsimonious model structure.

The remainder of the paper is organized as follows: Sec-
tion 2 introduces the related work. The proposed MDMP
relational model and its posterior inference method will be
described in Section 3 and Section 4, respectively. The ex-
perimental results are reported in Section 5 and the paper
is concluded in Section 6.

2. Related Work

The infinite relational model IRM) (Kemp et al., 2006) is
a Bayesian nonparametric model that does not require to
know the number of partitions in advance. The Chinese
restaurant process on each dimension of IRM enables an
infinite partition on entities. IRM is only restricted to gen-
erate a regular grid partition (see Figure 1(b)), which is
one of the three types of rectangular partitions (Muthukr-
ishnan et al., 1999). IRM was extended by incorporating
temporal dynamics to analyze time-varying relational da-
ta (Ishiguro et al., 2010). Then the mixed-membership s-
tochastic blockmodel (MMSB) (Airoldi et al., 2009) was
introduced to enable mixed memberships over the laten-
t clusters. Another expressive feature-based block model,
named nonparametric latent feature model (Miller et al.,
2009), was proposed to model relational data through the
combination of latent groups. In this paper, we only con-
sider hard-membership block models.

The Mondrian process (MP) (Roy & Teh, 2009) is the base-
line model of MDMP (which can naturally degrade to MP
if meta labels are uniformly distributed). MP is a stochas-
tic partition process that recursively generates axis-aligned

(b)

Figure 1. Block models on a synthetic relational data set: (a) The
input data; (b) a posterior regular block structure; and (c) a poste-
rior hierarchical block structure.

cuts in a unit hypercube (see Figure 1(c)). In contrast to
IRM, MP can partition the space in a hierarchical fash-
ion (Muthukrishnan et al., 1999), known as kd-tree, and
results in an irregular block structure. An MP in the prod-
uct space [0, 1] x [0,1] is started from a random cut on
the perimeter and results in two sub-rectangles, in each
of which a random cut is made in the same way and so
forth. Before cutting on [ai,a;] x [b},b;] (block k),
a cost is drawn from an exponential distribution Ej ~
Exponential(a; — ai + b —b}). If A — B < 0 (A
is the budget), the recursive procedure halts; otherwise, a
random cut is made my, ~ MP(), [ai,a}l ], [b}, b5]) and
set A = A — Ej. Recently, rectangular tiling process (RT-
P) (Nakano et al., 2014) was proposed to produce arbitrary
partitions (Muthukrishnan et al., 1999).

Under many circumstances, a more sophisticated model is
required to capture dependence among entities (e.g., tem-
poral dependence and spatial dependence). This constraint
has been introduced into Bayesian nonparametric mixture
models, such as dependent Dirichlet process (MacEach-
ern, 2000) and distance-dependent Chinese restaurant pro-
cess (Blei & Frazier, 2011), and Bayesian nonparametric
latent feature models, such as dependent Indian buffet pro-
cess (Williamson et al., 2010), dependent hierarchical beta
process (Zhou et al., 2011), kernel beta process (Ren et al.,
2011), and distance dependent Indian buffet process (Ger-
shman et al., 2014). In the scope of Bayesian nonpara-
metric relational models with regular block structures, the
dependence based on the side information has been intro-
duced in (Choi et al., 2011; Kim et al., 2012). In addition
to considering constraints for grouping entities, MDMP di-
rectly uses meta information to rectify the generating pro-
cess of hierarchical block structures.

3. Metadata Dependent Mondrian Process

The input relational data can be represented as an N x M
matrix! Y, where N and M are the numbers of entities in
the two interacted sets, respectively, and y,, ,,, denotes the

'MDMP can be straightforwardly extended to the cases of
multi-arrays as the Mondrian process (Roy & Teh, 2009).
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value of the interaction between entity n from one set and
entity m from the other. Each entity is also associated with
a meta label, ¢ € C, for entity n and c?, € C, for enti-
ty m. In a social network, Y can be a symmetric binary
matrix indicating links between users, which have meta in-
formation like locations as meta labels; in a recommender
system, Y can be an asymmetric integer matrix indicating
ratings of movies provided by users, which have meta in-
formation like occupations and genres as meta labels.

The quality of the block structure uncovered by an MP
largely relies on the likelihood homogeneity of the rela-
tional data within blocks. In the cases that within-block
interactions are very sparse, the MP is prone to overfit. To
address this limitation, we incorporate meta information in-
to the model, such that the block structure relies not only
on the likelihood homogeneity but also the meta-label ho-
mogeneity. The goal of MDMP is to make use of metadata
as side information to improve relational modeling by un-
covering better block structures.

In the following, we introduce the proposed MDMP re-
lational model, including one cutting strategy for gener-
ating partitions and one indexing strategy for allocating
rows/columns to the resulting block structure. Both strate-
gies are dependent on the meta information and will be ex-
ploited in Section 4 for inferring the block structure and
row/column allocations.

3.1. Cutting Strategy

Given an axis-aligned block & in the product space [0, 1] x
[0, 1], bounded in [a;-, @/l | on the vertical axis and [b}, b;]
on the horizontal axis, an MP makes a cut on either
[a;-,a]l ] or [bf,by] in proportional to its length (see Fig-
ure 2(a-b)). This cutting strategy is based on a reasonable
assumption that the longer side is more likely to cover more
heterogeneous entities. In the case of meta information be-
ing provided, an MDMP also reduces the meta label diver-
sity on each side. Take community detection for example:
Communities (blocks in a relational model) are likely to
comprise users with similar occupations; in other words, it
is more likely to detect reasonable communities by discour-
aging occupation diversity within blocks while modeling
social interaction data.

To this end, an intuitive strategy is to increase (or decrease)
the side-length of block k if high (or low) label diversity is
observed on that side. We rescale the side-lengths of block
k in the following way

laic s ag ] % [by, by] =
wilai,ag ] x wilbl, by] = [ai,ag ] x [by, by

(D

where w{ = exp(Entropy(h{)) € [1,+00), where h{ is
the normalized histogram of meta labels (i.e., label propor-

tions) on the vertical side of block k and Entropy(h{) mea-
sures the diversity of meta label distribution in h{; and wz
is defined similarly for the horizontal side.

In this way, a uniform sampling of cutting position on
[ai-, @, ] x [bl;,b,] will be in terms of both the true side-
length, corresponding to the number of entities, and the
meta label diversity on that side, corresponding to the het-
erogeneity of entities (see Figure 2(c—d)).

After sampling a cutting position v from a uniform distri-
bution on the perimeter of the reshaped block
~ ~ Uniform (0, &, — ait + by — bf;) )

the physical cutting position my, should be mapped back to
its original coordinate system (see Figure 2(d—e))

Y. N R
mg = a,i‘+ﬁ,1f'y<a£—ai‘ 3)
k
_(aT _ Al
my = b+ L})ak), otherwise G))
Wi,

where m§ (or m?) denotes the cutting position on the ver-
tical (or horizontal) axis of block k.

It is worth noting that cost sampling is also influenced by
the reshaping: Ej, ~ Exponential(a} — a; + IA);' — l;',;)
If the meta label diversity has become reasonably low in
block k, the cost will increase and the recursive partition
process in this branch is likely to halt earlier.

3.2. Indexing Strategy

Given the current block structure (e.g., Figure 3(a)) ob-
tained in the cutting step, the indexing step aims to allocate
rows/columns of Y to the vertical/horizontal axis of the
partition space [0, 1] x [0, 1] by making each block have
homogeneous relational data (e.g., Figure 1(c)). Since Y
is separately exchangeable given the partition structure and
the meta information, the allocation of rows/columns is e-
quivalent to the permutation of rows/columns.

Suppose the current blocks are {[ai,a/ ] x [bf, b1},
(K is the number of blocks?). We can obtain all the ver-
tical/horizontal cutting positions projected onto the axes.
Let [r{p, 7. 5] and [s}, , 5], ] be the intervals on the ver-
tical and horizontal axes, respectively. An MP assumes a
uniform prior distribution for indexing rows/columns on
these intervals: &, ~ Uniform(UlE:l[rL r]) and n,, ~

Uniform(Uf:1 s, 57]), where &, and 7,,, are the indexing
variables of the nth row and mth column in Y.
To make within-block meta label distribution more homo-

geneous, we can increase the probability of sampling &,, (or

The blocks correspond to the leaves of the underlying kd-
tree, which is produced by hierarchically partitioning the space.
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Figure 2. Cutting strategy: (a—b) MP only considers side-length (number of entities) and performs a uniform sampling on the perimeter.
(c—e) MDMP considers both side-length (number of entities) and meta label diversity (heterogeneity of entities). The original block (c)
with meta label information (different colors denote different labels) is first reshaped to (d); after a uniform sampling on the perimeter
of the reshaped block, the cutting position should be mapped back to the original block.

Nm) from the intervals with higher proportion of the corre-
sponding meta label ¢ (or ¢¥,). We also use rescaling to
this end: An MDMP samples indexing variables, &, and
7m, on the rescaled intervals conditioned on the index as-
signments of the other rows £, and columns 7—,,. The
rescaled intervals are calculated as

[rhrl] = o) [T%ﬁ]—[f%cgﬁcg] )
b
[s7.s]] = U;m[sg,s;]:[é;c%,sgicﬁn} (6)

where v" and v]c»l:”
in Egs. 7 and 8; ¢ and C?n denote meta labels. For example,
in a rating matrix, ¢ € {student engineer, professor} can
be occupation of users while 2, € {classic, folk, jazz} can

be genre of music.

are rescaling weighs implicitly defined

We rescale the intervals as follows: Calculate the normal-
ized portion of meta labels over vertical cuts and horizon-
tal cuts; then use this proportion to weight 71,7/ ;] and

[S'I;FaSI':F]
. B B (rf =7 )Nica
(’ri,c“ - ri,ca) - T L @
o n SO ) =) Ny e
A I—
(51, —8.,) = (5 = 5,)Nsct, (®)
2:Chn 2:Cm 25:1(83_{' - S;’ )'/\/,‘j’)c?n

where /\/z‘,cg denotes the number of rows with meta label
c allocated to the 7th interval on the vertical axis; N},cgn
is similarly defined for the columns. In implementation, a
small number can be added to N; ¢« and N .. for regu-
larization. This rescaling method is illustrated in Figure 3.
We will use the rescaled lengths of intervals for sampling
indexing variables in Eqs. 16 and 17.

3.3. Graphical Model

The generative process of the MDMP relational model is
as follows (the corresponding graphical model is shown in
Figure 4):

g
(=@

(o= (o)3]

Figure 4. The graphical representation of the MDMP relational
model (with the beta-Bernoulli model in each block).

4—30‘

0y ~ Beta(ayg, Bo) (link data) or 6, ~ Dirichlet(c)
(rating data), k = 1,..., K;

o lag,al by, by] ~ MDMP(X cfy, ). k =
1,...,K;
o &y~ Uniform(UzEzl[ﬁ:ca,f;"—ca,]), n=1,...,N;

- o

§" s
[ Jscb, ) 7g,cb,

e 7 ~ Uniform (|

=1 ]),m=1,...,M;

Yn,m ~ Bernoulli(0r¢, , y) (link data) or gy, ., ~
Discrete(6 ¢, 1,,)) (rating data), n = 1,..., N, m =
1,....,.M

where M = {[a;, ]l , b, b;/]HE | denotes the block struc-
tures (a kd-tree on [0, 1] x [0,1]) and %(&,,, 7, ) denotes a
mapping from a row-column index pair to a block index
in M. Note that we neglect some intermediate steps, such

as {[7; ca,r;rca]}Z ; and {[ b 7§j"cb ]}, are calculated

based on {[ai, a} , b}, bﬁ]}k 1
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Figure 3. Indexing strategy: (a) The block structure; (b—c) rescaled intervals on the vertical axis for two different meta labels; (d—e)
rescaled intervals on the horizontal axis for two different meta labels. After rescaling, indices &, and 7,,, are more likely to be assigned

to those vertical/horizontal intervals with higher proportion of the same meta label.

4. Inference

The joint probability of relational data Y, model parame-
ters { M, 01.x }, and indexing variables {&1.n,n1.77} is

p(Y, M7 91:K7 El:N? nl:M|>\a g, BO’ Ctll:Nv Cl{:M)

N M
= H H p(yn,m‘Mael:Kafnvnm)
n=1m=1
N . M . (9)
x HP(ﬁn‘M»CLN) H P | M, ct.ap)
n=1 m=1
K
X p(Mp‘?clll:Nﬂcli:]W) X HP(GHQO,BO)
k=1

where 61. can be marginalized out (if we use beta-
Bernoulli, Dirichlet-multinomial, or other conjugate distri-
butions). Thus, we need to estimate M and {&1.n, 101 }-

The inference framework for MDMP is outlined in Algo-
rithm 1. We adopt two nested loops of MCMC sampling
for approximate inference: The outer loop is to infer the
block structure M by proposing adding or removing a cut.
Since this part of inference involves dimensionality change
of the parameter space, we adopt the reversible-jump M-
CMC (Green, 1995) algorithm (see Section 4.1). The in-
ner loop is to infer row/column indexing variables &;. 5 and
1., given the current M. This part of inference can be
simply solved by using the collapsed Gibbs sampling algo-
rithm (see Section 4.2).

4.1. Sampling Partitions M

The reversible-jump MCMC (RIMCMC) (Green, 1995) is
aimed to sample posterior distributions in which the dimen-
sionality of parameter space varies between iterations of a
Markov chain. RIMCMC has been used in MP-based co-
clustering ensembles in (Wang et al., 2011). We also adopt
this technique for sampling the block structure M in an
MDMP. Each step of the RIMCMC algorithm proposes to
add or remove a cut in M.

Suppose from iteration ¢ to ¢t + 1 (the outer loop in Algo-

Algorithm 1 Approximate inference for MDMP

Input: Y and {\, ao, Bo, . x> ch.0s }
Output: M and {1.5,71:01 }
repeat
Initialize M as [0, 1] x [0, 1];
Propose a partition (add/remove a cut) in M,
Accept/Reject the proposal (RIMCMCOC);
if Accepted then
Sample &1 and 7.3, from M (Gibbs sampling);
end if
until Exceed the number of iterations

rithm 1), the RIMCMC algorithm proposes to add a cut (the
change of the block structure is denoted by M; — M1 1),
the acceptance ratio of this proposal is

AMy— Myt
—min{l P(Mi1|Y, En, M, A, o, Bo)
T p(MY €N i, N, ao, Bo) (10)
aMe1 = My)
q(M¢ — Miyq)

X |k7Mt—>Mt,+1|}

where the first term % is the ratio of the posterior

probabilities of the two block structures given the data; the
g(Mip1—My)
q(M—Miq1)
abilities; and the last term | a4, A4, , | is the determinant

of the Jacobian inter-model transition matrix.

Let My, = {M;,my, E} (as defined before, my, de-
notes a cutting and Ej, denotes the associated cost) and
{u1, us} (generated using the sample proposal distribution-
s as {my, E} }) be the corresponding auxiliary variables for
{my, E}}, there is a bijection between { M, u1,us} and
M1 characterised by an identity inter-model transition
matrix; thus we have |7, —a,,,| = 1. For simplicity,
we can also assume that the state transition proposal distri-
bution is symmetric.

second term is the ratio of the proposal prob-

The ratio of the posterior probabilities % can be

rewritten as a production of a prior ratio and a likelihood
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p(Miy1|N)
p(M¢[X)

PMig1|A) _ p(mi)p(Ex)or or an
P(M¢|N) Ok

L(Miy1)

X LMD

ratio

. The prior ratio is

where p(my, )p(Ex) = exp(—¢i Ey) denotes the probabili-
ty of sampling a cut my, in block k (¢x, = a, — ai + b“
bk), or = exp(—o¢rAx) denotes the probablhty of termi-
nating at block k (same definitions for gy and g+ in block
k' and k", respectively).

If we adopt the compound beta-Bernoulli distribution, the
likelihoods given M, and M, are

I 1I

LM;) = P(Yn,m|Ok,)

kt=1Yn,mEMpg,

- He”’ft+ O, e~ (12)
k=1
K1

LMiy1) = H H PWn.mlOk, )
kip1=1 yn‘me/\/lkwl
Kyt
Nt 1

= H ekt};r ’ 1_9kt+l)th+1’(13)

kip1=1

where K; denotes the number of blocks in M; and
N, +/— denotes the number of observed positive/negtive
entries in block k.

Similarly, if we adopt the compound Dirichlet-multinomial
distribution, the likelihoods given M;,; and M, are

L(M;) = HHQNMI (14)
ki=11=1
K1 N

LMn) = ] H Ot ()
kip1=11=1

where 0y, ., denotes the parameter of the Dirichlet distri-
bution in block k; of M;; L denotes the number of meta
label categories; and %,,1 denotes the number of observed
entries with meta label [ in block k;.

The RIMCMC algorithm for removing a cut from Mj is as
similar as adding a cut. We assume that the probability of
proposing to add or remove a cut is equal.

4.2. Sampling Indices &1. and 7.5/

Given a block structure M, we can use Gibbs sam-
pling (Geman & Geman, 1984) to approximate the posteri-
or distribution of the indexing variables &1.y and 71.5;.

Based on the joint probability Eq. 9, the conditional poste-
rior of &, (i.e., probability of allocating nth row to the ith

vertical interval) with beta-Bernoulli likelihood gives

p(gn € [ T Ty ”Y M ElenleclN)
Nzk: Nzk
(’FzT,cfl _rf‘iJ,_ch) H ( n+ zk )
keS; N
BN+ ap, NJ&+ Br)
B(a, Br)

where (7. .. — 7. .. ) are the rescaled vertical intervals
according to ﬁq 7,S; ‘denotes the set of blocks which have
interactions with the ith vertical interval, and N ’i /_ de-
notes the number of positive/negtive entries in the nth row
if it is assigned to the kth block which is traversed by the

ith vertical interval.

(16)

The conditional posterior of &,, with Dirichlet-multinomial
likelihood gives

p(&n € [z T4 ]|Y M ETN M, €y ) o

(AT ’I"l(. ) H Hl 1 ( nl +akl) F(ak)

hen keS; (Zl N +ak) Hl 1 Dla,)
(17)

where N} ¥ denotes the number of entries with meta label
l in the nth row if it is assigned to the kth block which is
traversed by the ith vertical interval.

The conditional posterior of 7,,, can be derived in the same
way as &,. The conditional posterior of 6y is simple. For
beta-Bernoulli likelihood, we have

o + N+
0, : 18
" a0+ Bo + Nig + N, — (18)
while for Dirichlet-multinomial likelihood, we have
Or, < Ny + (19)

5. Experiment

We empirically test the proposed MDMP relational mod-
el on three real-world data sets with various meta infor-
mation. We compare MDMP to IRM (Kemp et al., 2006)
(block model with Bernoulli distribution in each block) for
link prediction, BiLDA (Porteous et al., 2008) (block mod-
el with discrete distribution in each block) for rating pre-
diction, and MP (Roy & Teh, 2009) for both.

We adopt the following performance measures: 1) Log-
likelihood (LL) for measuring the fitness of block model-
ing; 2) Bayesian information criterion (BIC) for measuring
the fitness of block modeling penalized by free parameters;
3) Area under curve (AUC) for measuring the link predic-
tion performance; and 4) Root mean square error (RMSE)
for measuring the rating prediction performance.
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In our experiments, each data set is partitioned into 5 splits,
and each time 4 splits are used for training and the rest
one is used for testing. All the reported results are average
values over five runs. For MP and MDMP, we perform 500
iterations of RIMCMC sampling.

5.1. Link Prediction: Lazega’s Lawyer

The first data set adopted for link prediction is the Laze-
ga’s lawyer data’ (Lazega, 2003). In this data set, there are
three different relationships among 71 lawyers in a law fir-
m, which are “Advisory”, “Friendship” and ‘“Workmate”.
For each lawyer in the network, seven different types of
side information is also provided, including gender, law
school they graduated from, office, practice, status, years
with the firm, and age. The first five types of this side in-
formation is incorporated into MDMP for evaluation.

The block modeling results are visualized in Figure 5 and
the performance comparison results are reported in Table 1.
For a fair comparison, we select proper hyper-parameters to
make the total number of blocks in IRM, MP and MDM-
P be approximately at the same level. From Figure 5, we
can see that MDMP can uncover clearer block structures
than IRM and MP. From Table 1, we can see that MDMP
not only most fits the data (in LL) but also has the most
parsimonious model structure (in BIC). It is worth not-
ing that, among five types of meta information, “gender”
is most helpful for predicting friendships, “law school” is
most helpful for predicting advisory, and “practice” is most
helpful for predicting workmates.

5.2. Link Prediction: Douban

Douban is an SNS provider which allows users to share and
review movies, books, and music. The user connections in
Douban form an asymmetric network, on which each user
has a profile with demographical information. We adopt
“City” information of each user as the meta information
for MDMP. In this experiment, we adopt a preprocessed
data set* (Ma et al., 2011), which comprises 21593 users.
We randomly select 50 users for evaluation. The density of
links in the resulting network is around 14.3%.

The block modeling results are visualized in Figure 6 and
the performance comparison results are reported in Table 2.
We can see that MDMP has a more parsimonious block
structure than IRM and a clearer block structure than MP.
MDMP performs best; while MP performs even worse than
IRM and seems to have not yet converged given the same
number of sampling iterations.

*https://www.stats.ox.ac.uk/-snijders/
siena/Lazega_lawyers_data.htm

*nttps://www.cse.cuhk.edu.hk/irwin.king.
new/pub/data/douban

LT BB

o

P B S
(a) Input (b) IRM (c) MP (d) MDMP

Figure 6. Block structure visualization on the Douban dataset.

Dataset: Douban IRM MP MDMP
LL (Blockmodeling) -782.8 -935.6  -757.5
BIC (Blockmodeling) 1690.7 1925.8  1509.5
AUC (Prediction) 0.7420 0.6987  0.7638

Table 2. Performance comparison on the Douban dataset.

5.3. Rating Prediction: MovieLens

We adopt the MovieLens data set® for rating prediction. It
comprises 6040 users and 3883 movies. Each user is as-
sociated with three types of meta information: gender, age
and career. We don’t consider movie meta information for
simplicity. The three types of user meta information are in-
corporated into MDMP. We randomly select 70 users and
70 items from the entire data set and keep the sparsity of
the rating matrix being 80% for evaluation.

The block modeling results are visualized in Figure 7 and
the performance comparison results are reported in Table 3.
From Figure 7, we can see that the ratings within blocks
are more homogeneous in MDMP than in BiLDA and MP,
especially in the case of incorporating gender information.
From Table 3, we can see that MDMP with gender gives
the best block modeling result; while MDMP with career
gives the best rating prediction result.

6. Conclusion

In this paper, we propose a metadata dependent Mondri-
an process (MDMP) that incorporates meta information of
entities into the partition process. MDMP can not only en-
courage homogeneous relational data within blocks but al-
so discourage meta-label diversity within blocks. By incor-
porating meta information, MDMP becomes more robust
in data sparsity scenarios and converges faster in posterior
inference. The empirical tests on three real-world data sets
demonstrate that, regularized by meta information, MDMP
can uncover clearer block structures than IRM and MP with
a more parsimonious model structure and higher prediction
accuracy. In our future work, we will 1) investigate how to
make better use of meta information and 2) exploit MDMP
for generating related rating matrices (Li et al., 2009).

Shttps://movielens.org/
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Figure 5. Block structure visualization on the Lazega’s Lawyer dataset: (a) Input data with three types of links (Advisory, Friend,
Workmate); (b) IRM; (c) MP; (d—h) MDMP with 5 different meta information (Gender, Lawschool, Office, Practice, Status).

Dataset: Lazega Lawyer’s IRM MP MDMP:G MDMP:L MDMP:O MDMP:P MDMP:S
LL (Blockmodeling): Advisory  -1961.3  -2206.8 -1996.0 -1953.7 -1970.7 -1994.2 -1974.9
LL (Blockmodeling): Friend -1546.6  -1653.6 -1507.9 -1521.8 -1546.0 -1552.3 -1534.0
LL (Blockmodeling): Work -1960.7 -2048.5 -1955.2 -1958.2 -1958.1 -1954.3 -1954.7

BIC (Blockmodeling): Advisory ~ 3990.7  4481.8 4000.4 3916.0 3949.9 3996.9 3958.4
BIC (Blockmodeling): Friend 3127.0  3315.7 3024.2 3052.2 3100.5 3113.2 3076.5

BIC (Blockmodeling): Work 39724  4207.8 3918.9 3924.8 3924.6 39171 3917.9
AUC (Prediction): Advisory 0.7418  0.7026 0.7497 0.7645 0.7605 0.7507 0.7518
AUC (Prediction): Friend 0.7208  0.6954 0.7715 0.7547 0.7116 0.6857 0.7407
AUC (Prediction): Work 0.6752  0.6662 0.6265 0.6379 0.6629 0.6767 0.6842

Table 1. Performance comparison on the Lazega’s Lawyer dataset.
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Figure 7. Block structure visualization on the MovieLens dataset (five rating scores are denoted by the color ranging from green to
purple; unobserved ratings are denoted by white entries).

Dataset: MovieLens BiLDA MP MDMP:Age MDMP:Career MDMP:Gender
LL (Blockmodeling)  -1256.4 -1244.7 -1246.7 -1243.2 -1225.4
BIC (Blockmodeling)  2650.8  2493.5 24974 24914 2456.8
RMSE (Prediction) 0.8116  0.7916 0.7982 0.7239 0.7755

Table 3. Performance comparison on the MovieLens dataset.
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