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1. Multi-Task Subspace Clustering (MTSC)
Algorithm Summary

Throughout this supplementary file, equations from the
main paper will be prefixed by an ‘M’, e.g., (M.12) would
denote equation (12) from the main paper. Regarding
MTSC, the input is the D x [N data matrix X. We must first
inialize the hyperparameter matrices A and W and choose
some [ sufficiently large. We then iterate the following
updates:
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Note that the index k& above is used for convenience, and
is unrelated to the subspace number which frequently uses
the same index in the main text. These rules are guaran-
teed to reduce or leave unchanged (M.16) at every iteration
by construction (as a majorization-minimization algorith-

m); however, there is admittedly no formal guarantee of
convergence to a stationary point.

The underlying general derivations are based on the selec-
tion

p(W)=p Z wij log wij, 2
iJ

which we advocate in (Wang et al., 2015) as a convex func-
tion that leads to convenient iterations that closely resem-
ble those from (Qi et al., 2008). However, the exact form
of this function is likely not that important as long as it
favors sharing of basis functions within the constraint set.
Note that Lemma 2 is based upon the alternative selection
p(W) = B||W]|2 which accomplishes more or less the
same thing but is slightly easier to analyze.

2. Proof Sketches

Full proof details will be deferred to a subsequent journal
publication; here we provide the basic high-level construc-
tions of Lemma 1 and Lemma 2.

Proof of Lemma 1: Let F;'f denote the value of I'; comput-
ed via (M.12) at any stationary point, and let z* indicate the
associated value of z; computed via (M.13). In the limit as
v — 0, any stationary point of £L(A, W) will produce a
point 27 feasible to x; = X z;." If this were not the case,
it is easily shown that L(A, W) would be driven to infinity
via straightforward extension of the analysis in (Wipf et al.,
2011). Because of the independent subspace assumption
and the left multiplication by I‘; in (M.13), the only way
that 27 can be feasible is if I'; has sufficient nonzero di-
agonal values aligned with points from the same subspace;
additional nonzero values of I‘; may have arbitrary posi-

'Note that (M.13) is still well-defined in the limit » — 0 by
using the appropriate pseudo-inverse.
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tions.2

Now if {A*, W*} is truly a stationary point of L(A, W),
then the remaining values of the corresponding z7 must be
a stationary point of
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where C' is some constant independent of z;, l"j denotes

the nonzero elements of I'}, and z; and X ; are the cor-
responding nonzero elements of z; and columns of X ;
respectively. This occurs because (3), with the appro-
priate choice of C, represents a convex upper bound on
L(A, W), with equality iff z; is given by (M.13).> When
v — 0, (3) reduces to

n%inzj(fj)*lzj st.xj = X,Z;. )

This represents a weighted ¢, norm penalty on z; being
minimized over a restricted feasible set, which includes a
sufficient number of samples within subspace Sy per the
arguments above. It also represents a slightly modified
version of the LSR objective function from (Luetal.,
2012) evaluated over a reduced feasible set. Moreover, the
LSR algorithm has already been shown to produce an ideal
block-sparse solution using a standard ¢5 norm penalty;
however, the proof provided in (Lu etal., 2012) applies
equally well with a generalized weighted norm. ]

Proof of Lemma 2: The basic strategy is to first show that
the cost function in (M.15) satisfies the conditions of the
theorem. Furthermore, we show that the optimal solution
is such that each column of W™ has elements that are either
zero or a constant value, and that columns of A* associated
with these nonzero elements are equal. Next, we note that
the upper bound from (M.16) follows from the determinant
identity

log ¥, = (5)
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and then application of Jensen’s inequality via

2For convenience, if the /-th diagonal element of A; is equal
to zero with associated weight w;; # 0, then we simply define
(T'j)ee = 0. This avoids the singularity of dividing by zero and
satisfies our present purposes.

3The  generic  form  of  this  bound  is
y' (ArAT +1/I)71y < 1|y — Az|3 + ' T 'z
forall

Zwij|Ai| > —log

However, given the stipulated conditions on W™ and A*
from above, the above inequality collapses to a strict equal-
ity. Given that (M.16) is an upper bound, this ensures that
A and W™ also globally optimize (M.16).

We now fill in some of the missing ingredients. The tech-
nical introduction of randomness into the generic subspace
model definition ensures that the maximally sparse feasible
z; will have at most Dy, nonzero elements with probability
one (assuming x; € Sy). This follows from minor adapta-
tion of Theorem 1 in (Baron et al.). Now if 3 = 0 then
(M.15) decouples completely across tasks, and we may
achieve the global optimum by simply setting I'; = A ; for
all 5 without loss of generality, and we may optimize each
task j individually over A;. In the limit v — 0, Theorem
4 in (Wipf et al., 2011) guarantees that a maximally sparse
solution will be found for each A ;, with the cost function
dominated by an O ([D — Dy]logv) factor which is un-
bounded from below. Additionally, the resulting P_ll";-
will be block-sparse an aligned with the proper subspace,
and likewise for z; by virtue of (M.13).

Let Q. C {1,...,N} denote the set of column indeces
associated with X ;. Now consider the optimal solution
to (M.15) in the restricted case where I'; = T; for al-
1 4,7/ € Q. Upon careful inspection however, we can
show that this restriction only alters the objective function
value by an inconsequential O(1) factor independent of v.
Consequently, there is marginal advantage to individually
optimizing each I'; within a subspace block, which ulti-
mately leads to the desired grouping effect.

Now we reintroduce the W penalty factor by allowing
B > 0. The overall objective function is still dominat-
ed by the O ([D — Dy]logv) factor as long as each T';
maintains the proper block-sparsity; however, from above
we know that there is a bounded advantage to optimiz-
ing each I'; individually via A and W. In contrast, as
we make [ large, there is an increasing incentive to min-
imize ||W 2. Within the constraint set, and the additional
block-sparse restriction on each I'; which must be main-
tained at any optimum, ||[W||s will achieve its minimum
W™ when each column w; is populated by either zero or
some C; such that . w;; = 1. To seen this, consider
any other W', To achieve the global optimum of (M.15),
we must have w;; = 0 whenever A; does not match the
proper subspace-aligned block-sparsity. It follows then that
|[W'|l2 > [|[W™||2, and as 3 grows this gap can become ar-
bitrarily wide. However, we know from above that we can-
not compensate for this increase by modulating the magni-
tudes of each individual I';. Hence W’ cannot be optimal.

All of this implies that for sufficiently large /3, a common
I across all j € € optimizes (M.15) and likewise
(M.16). The remainder of the theorem directly follows
from related arguments surrounding the effectiveness



Multi-Task Learning for Subspace Segmentation: Supplementary File

of (M.8). Obviously there are some gaps in the above
derivation, but we prefer to leave a detailed treatment for a
subsequent journal publication along with more extensive
simulation results. n
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