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Abstract
We present a novel class of mixed membership
models for joint distributions of groups of obser-
vations that co-occur with ordinal response vari-
ables for each group for learning statistical asso-
ciations between the ordinal response variables
and the observation groups. The class of pro-
posed models addresses a requirement for pre-
dictive and diagnostic methods in a wide range
of practical contemporary applications. In this
work, by way of illustration, we apply the models
to a collection of consumer-generated reviews of
mobile software applications, where each review
contains unstructured text data accompanied with
an ordinal rating, and demonstrate that the mod-
els infer useful and meaningful recurring patterns
of consumer feedback. We also compare the de-
veloped models to relevant existing works, which
rely on improper statistical assumptions for ordi-
nal variables, showing significant improvements
both in predictive ability and knowledge extrac-
tion.

1. Introduction
There exist large repositories of user-generated assessment,
preference or review data consisting of free-form text data
associated with ordinal variables for quality or preference.
Examples include product reviews, user feedback, recom-
mendation systems, expert assessments, clinical records,
survey questionnaires, economic or health status reports,
to name a few. The ubiquitous need to statistically model
the underlying processes and analyse such data collections
presents significant methodological research challenges ne-
cessitating the development of proper statistical models and
inference approaches.

In this work, our interest focuses on, but is not limited
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to, analysing reviews of mobile software applications pro-
vided by consumers. Such analysis is useful for both soft-
ware developers and consumers, inferring and understand-
ing themes or properties of mobile applications that con-
sumers comment about. These themes may involve con-
sumers’ preferences and experiences on properties they
(dis)appreciate or direct feature requests or problems di-
rected to the software developers.

Our work belongs in the field of mixed membership mod-
elling, which is a powerful and important statistical mod-
elling methodology. Observations are grouped and each
group is modelled with a mixture model; mixture compo-
nents are common to all groups, whereas mixture propor-
tions are group-specific. The components are deemed to
capture recurring patterns of observations and each group
to exhibit a subset of components. The class of models has
been shown to be able to extract interpretable meaningful
themes, also referred to as topics, based on, for example,
text data (Blei et al., 2003). These models, however, are not
able to capture statistical associations between the groups
and co-occurring quantitative information, that is, response
variables, related to each group.

Previous work on joint models utilising both the textual
data and response variables (Blei & McAuliffe, 2007; Dai
& Storkey, 2015; Lacoste-Julien et al., 2009; Nguyen et al.,
2013; Ramage et al., 2009; Wang et al., 2009) has demon-
strated the utility of joint modelling by inferring topics that
are predictive of the response leading to increased inter-
pretability. However, these models lack proper statistical
formulations suitable for ordinal response variables and it
is not at all straightforward to correct this shortcoming. In
this work, we remove this hindrance by presenting a novel
class of joint mixed membership models.

The proposed class of models builds on our new statistical
generative response model for ordinal variables. In more
detail, we introduce a certain stick-breaking formulation to
parameterise underlying data-generating probabilities over
the ordinal variables. The response model contains group-
specific latent scores as well as mean variables that trans-
form the scores into ordinal variables using the developed
construction. We compare the response model with exist-
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ing alternatives for ordinal variables (Albert & Chib, 1993;
Chu & Ghahramani, 2005) and show that our formulation
provides favourable statistical properties.

We present two different novel model formulations that
couple the developed response model with mixed mem-
bership models. Specifically, the formulations hierarchi-
cally couple the latent scores of the response model with
the mixing components of a mixed membership model
either via the mixture proportions or observation assign-
ments capturing associations between the components and
responses. The first construction infers a correlation struc-
ture between (as well as, within) the mixture proportions
and latent scores based on the observed data, not enforcing
a priori any correlation structure or specifying which of
the components are associated with the responses. We de-
rive a scalable variational Bayesian inference algorithm to
approximate the model posterior distribution. The model
is motivated by unsupervised correlated topic models by
Blei & Lafferty (2006) and Paisley et al. (2012). The
second construction assumes the latent scores of the re-
sponse model are given by a weighted linear combination
of the mean assignments over each group, such that the
component-specific combination weights a posteriori pro-
vide a means to inspect components that have predictive
value. We present a Markov Chain Monte Carlo (MCMC)
sampling scheme for posterior inference. The model is re-
lated to supervised LDA (SLDA; Blei & McAuliffe, 2007);
our model can be seen as an extension of SLDA to ordinal
responses.

We demonstrate the developed models on a collection of
reviews of mobile software applications. We compare the
models to the relevant previous work and show that the
proper ordinal response model is valuable for learning sta-
tistical associations between the responses and text data
providing significant improvements in terms of both pre-
dictive ability and knowledge extraction by inferring inter-
pretable and useful themes of consumer feedback.

The paper is structured as follows. Section 2 presents
the methodological contributions of this work: Section 2.1
presents our proposed generative model for ordinal vari-
ables, whereas the next two Sections 2.2 and 2.3 present
model formulations and inference approaches for joint
mixed membership modelling of groups of observations
and group-specific ordinal response variables. Related
work is reviewed in Section 3. Section 4 describes the ex-
periments and contains the results. Section 5 concludes the
paper.

2. Joint Mixed Membership Models
The mth group of observations w(m) is paired with an or-
dinal response variable y(m). The response variables, also

referred to as ratings, take values in R ∈ Z+ > 2 or-
dered categories ranging between poor (1) and excellent
(R). We note that for a simple case, when R = 2,
y(m) is binary and may be modelled by a Bernoulli dis-
tribution. The w(m) contains an unordered sequence
of D(m) words w(m)

d over a V -dimensional vocabulary,
w(m) = {w(m)

1 , w
(m)
2 , . . . , w

(m)

D(m)}.

2.1. Ordinal Response Variables

We assume y(m) is drawn from a categorical distribution
over R categories. The probability that y(m) takes an inte-
ger value r ∈ {1, . . . , R} is denoted by p(y(m) = r). Since
the categories are ordered, we propose a stick-breaking pa-
rameterisation for the probabilities; a unit length stick is
split into R smaller sticks that sum to one. We refer to
these smaller sticks as stick weights v(m)

r for themth group
and rth category. We parameterise the v(m)

r using a func-
tion σ(·) mapping its argument to a value between zero and
one and introducing continuous-valued latent variables or
scores t(m) for each group as well as mean parameters µr
for each category. The generative model for the y(m) is

p(y(m) = r) = v(m)
r

r−1∏
r′=1

(1− v(m)
r′ ), (1)

v(m)
r = σ(t(m) − µr).

Each v(m)
r represents a binary decision boundary, specified

by the mean variables, for the t(m). The mean variables
are ordered, that is, µ1 < µ2 < · · · < µR, represent-
ing boundaries between the ordered categories. For com-
putational simplicity, we use σ(x) = (1 + exp(−x))−1

corresponding to a logit (or sigmoid) function, for which
1− σ(x) = σ(−x). Alternative choices include probit, log
log or Cauchy functions, to name a few. The stick-breaking
formulation guarantees that the probabilities p(y(m) = r),
for r = 1, . . . , R, are positive and sum to one for any value
of the t(m). More importantly, the formulation leads to a
simple posterior inference algorithm; the ordering of the
mean variables is implicitly inferred based on the observed
data without enforcing explicit constraints. For identifia-
bility, we set, without loss generality, v(m)

R = 1. Figure 1
demonstrates the construction of probabilities based on the
t(m) for simulated mean variables µ.

Based on a collection of observed responses y(m), where
m = 1, . . . ,M , the model log likelihood is

L =
∑
m

ln(v
(m)

y(m)) +

y(m)−1∑
r′=1

ln(1− v(m)
r′ ). (2)

Point estimates for the latent scores as well as mean vari-
ables may be inferred by maximising the log likelihood us-
ing unconstrained gradient-based optimisation techniques.
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Figure 1. Visual demonstration of category probabilities. Here,
x-axis denotes a range of values for the latent variable or score
t(m), whereas the vertical lines denote the category cut-off points,
referred to as mean variables µ.

In the following sections, we present two approaches for
parameterising the latent scores constructing statistical as-
sociations between the responses and groups. Main statis-
tical interest focuses on the parameterisation, whereas the
mean variables are relevant mainly for computing predic-
tions. For this reason, in the following, we assign a uniform
prior for the mean variables.

2.2. Joint Correlated Topic Model

In this section, we present a novel joint model (referred to
as, JTM) for the y(m) and w(m), where m = 1, . . . ,M .
At the core of the model are group-specific latent variables
u(m) that are common for y(m) and w(m) capturing statis-
tical associations between them.

For the responses we introduce a linear mapping or projec-
tion ξ and construct the data-generating latent score (Equa-
tion 1) as t(m) = ξTu(m), computing a cross product be-
tween the u(m) and the mapping ξ.

The generative process for the w(m) (groups of observa-
tions), for m = 1, . . . ,M , is given by

w
(m)
d ∼ Categorical(η

c
(m)
d

), (3)

c
(m)
d ∼ Categorical(θ(m)),

where ηk, for k = 1, . . . ,K, denotes mixture components
(topics), c(m)

d , for d = 1, . . . , Dm, denotes observation as-
signments and θ(m) mixture (topic) proportions over theK
topics.

We connect the θ(m) to the latent variables u(m) by intro-
ducing topic-specific mappings vk and gamma-distributed
variables z(m)

k (parameterised suitably) such that a priori

E[θ
(m)
k ] ∝ β̃k exp(vTk u(m)), (4)

where β̃k, for k = 1, . . . ,K, are positive concentration pa-
rameters. The latent mappings capture statistical associa-
tions between any two topics indexed by k and k′. If the vk

and v′k are similar, the topics ηk and ηk′ , respectively, tend
to co-occur, assuming that β̃k and β̃k′ are sufficiently large.
We use (normalised) gamma-distributed variables to con-
struct the topic proportions thus parameterising a mapping
from the continuous latent variables to the discrete topic
proportions. For simplified posterior inference we define

β̃k = β exp(mk). (5)

The process is

θ
(m)
k ∝ z(m)

k ∼ Gamma
(
β, exp(−vTk u(m) −mk)

)
,

where the β denotes the shape parameter and the
exp(−vTk u(m) − mk) denotes the rate parameter of the
gamma distribution, respectively. We see that

E[θ
(m)
k ] ∝ β exp(vTk u(m) +mk),

as desired (4), using equation (5)1. Figure 2 illustrates a
graphical plate diagram of the model.

We complete the model description specifying distributions
for the model hyper-parameters, the root nodes in Figure 2.
We assign

β ∼ Gamma(α0, β0),

u(m) ∼ Normal(0, I)

ξ,vk ∼ Normal(0, l−1I),

where l denotes a precision (inverse variance) parameter of
a (zero-mean) Gaussian distribution,

ηk ∼ Dirichlet(γ1),

where γ is a concentration parameter of a Dirichlet distri-
bution, and a non-informative prior for the mk.

2.2.1. INTERPRETATION

After specifying the model, we highlight the role of the
latent variables and the corresponding mappings for the re-
sponses and topics, ξ and vk, where k = 1, . . . ,K, respec-
tively. We may compute a measure for similarity between
two vectors xi and xj defining a function

l(xi,xj) =
xTi xj√

(xTi xi)(xTj xj)

that outputs a value between 1 and −1 indicating similar-
ity or dissimilarity between the vectors. We may compute
l(ξ,vk), where k = 1, . . . ,K, and use the (dis)similarity

1We note that for a gamma-distributed random variable
x ∼ Gamma(a, b) = ba

Γ(a)
xa−1 exp(−bx), where Γ(·) denotes

the gamma function, E[x] = a/b.
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Figure 2. Graphical plate diagram of the joint correlated topic
model. Unshaded nodes correspond to unobserved variables,
whereas shaded nodes correspond to observed variables. Hyper-
parameters for the root nodes, whose values need to be fixed prior
to posterior inference, are omitted from the visualisation. Plates
indicate replication over topics, groups and words. The hidden
variables may be divided into local group-specific variables and
global variables common to all groups. That is, the unnormalised
topic proportions z(m), topic indicators c(m)

j and latent variables
u(m) are defined for each group, whereas the set of topics ηk,
mappings from latent variables to data domains, ξ and vk, are
common to all groups.

scores to infer whether the topics that are positively or neg-
atively associated with excellent or poor ratings.

Next, we present a theoretical justification for the similar-
ity measure. Marginalisation of the latent variables u is
analytically tractable leading to a joint Gaussian distribu-
tion for the t(m) and auxiliary variables h(m)

k (replacing the
vTk u(m)). The covariance matrix of the Gaussian distribu-
tion is

Σ = WWT + I,

where WT =
(
ξ v1 . . . vK

)
.We see that the simi-

larity values defined above correspond to correlations be-
tween the response and topical mappings, respectively. We
also note that the distribution is able to capture correlations
between any two topics. Hence, we refer to this model as
joint correlated topic model.

2.2.2. REGULARISATION

During posterior inference the model infers statistical as-
sociations between the groups and responses. The inferred
topics summarise recurring word co-occurrences over the
corpus into interpretable themes some of which may have
significant associations with the ratings. However, for fi-
nite sample sizes the correlation structure may be weak.
Accordingly we introduce a user-defined parameter λ > 0,
that balances for the limited sample sizes. Even though, we
expect, when the sample size M increases for fixed vocab-
ulary size V , the role of λ diminishes, since there are more

data to estimate the underlying correlation structure. The
joint likelihood of the model is

p(D,Θ) =

M∏
m=1

D(m)∏
d=1

K∏
k=1

p(w
(m)
d )p(c

(m)
d )p(z

(m)
k )

(
exp(L)p(ξ)

)λ
p(u(m))p(vk)p(β),

where D = {w(m), y(m)}Mm=1, Θ denotes unknown quan-
tities of the model andL is given in Equation (2). For λ < 1
the model focuses more on explaining the text.

2.2.3. VARIATIONAL BAYESIAN INFERENCE

We present a variational Bayesian (VB) (Wainwright & Jor-
dan, 2008) posterior inference algorithm for the model that
scales well for large data collections and can readily be ex-
tended to stochastic online learning (Hoffman et al., 2013).
We approximately marginalise over the topic assignments
and proportions using non-trivial factorised distributions,
whereas we use point distributions (estimates) for several
variables to simplify computations, in essence, adopting an
empirical Bayes approach for these variables. The corre-
sponding inference algorithm is able to prune out irrelevant
topics from the model based on the observed data. Full
variational inference would be possible using techniques
presented by Böhning (1992); Jaakkola & Jordan (1997)
and Wang & Blei (2013), for example, lower bounding
analytically intractable log sigmoid function appearing in
the log likelihood function (2). Alternatively, MCMC sam-
pling strategies may provide appealing approaches for pos-
terior inference. However, it is far from trivial to design
suitable proposal distributions for the latent variables.

We introduce a factorised posterior approximation

q(Θ) =

M∏
m=1

D(m)∏
d=1

K∏
k=1

q(c
(m)
d )q(z

(m)
k ),

omitting the point distributions for clarity, and minimise the
KL-divergence between the factorisation q(Θ) and the pos-
terior p(Θ|D). Alternatively, we maximise a lower bound
of the model evidence with respect to the parameters of the
q(Θ),

ln p(D) ≥ LV B = E[ln p(D,Θ)]− E[p(Θ) ln p(Θ)],

where expectations are taken with respect to the q(Θ).

We choose the following distributions for the topic assign-
ments and unnormalised topic proportions

q(c
(m)
d ) = Categorical(c(m)

d |φ(m)
d ),

q(z
(m)
k ) = Gamma(z

(m)
k |a(m)

k , b
(m)
k ),
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whose parameters are

φ
(m)
w,k ∝ ηk,w exp(E[ln z

(m)
k ]),

a
(m)
k = β +

D(m)∑
j=1

φ
(m)
j,k ,

b
(m)
k = exp(−vTk u(m) −mk) +

D(m)∑K
k=1 E[z

(m)
k ]

.

In the derivations, we applied Jensen’s inequality lower
bounding analytically intractable E[ln

∑K
k=1 z

(m)
k ] needed

for normalisation of z(m)
k , for k = 1, . . . ,K, by introduc-

ing additional auxiliary parameters for each group. The ex-
pectations appearing above with respect to the variational
factorisation are

E[ln z
(m)
k ] = ψ(a

(m)
k )− ln b

(m)
k ,

E[z
(m)
k ] =

a
(m)
k

b
(m)
k

,

where ψ(·) denotes the digamma function.

The lower bound of the model evidence, a cost function to
maximise, with respect to the u(m) is

LV Bu = λL+
∑
m,k

E[ln p(z
(m)
k |u(m),vk,m, β)]+ln p(u(m)),

whereas for v, m and β the cost function is

LV Bv,m,β =
∑
m,k

E[ln p(z
(m)
k |u(m),vk,m, β)]+ln p(vk,m, β).

To infer the mapping ξ we maximise LV Bξ = L+ ln p(ξ).
Unconstrained gradient-based optimisation techniques may
be used to infer point estimates for these unobserved quan-
tities (optimising β in log-domain). Finally, the topics are
updated as

ηk,w ∝
∑
d,m

φ
(m)
d,k + γ − 1.

2.3. Ordinal Supervised Topic Model

In this section, we propose a novel topic model for the or-
dinal responses and groups of observations. The model as-
sumes a generative process for the words similar to that in
Equation 3 introducing topic assignments c(m)

d for words
w

(m)
d , where d = 1, . . . , D(m), and topic proportions θ(m)

for the mth group. Here, the generative model for the rat-
ings depends on the c(m)

d , where d = 1, . . . , D(m). In more
detail, we define

c̃
(m)
k =

1

D(m)

D(m)∑
j=1

I[c(m)
j = k],

where I[·] denotes the indicator function equaling 1 if the
argument is true and zero otherwise, representing an em-
pirical topic distribution for the mth group. We use the
quantity to construct a linear mapping to the ratings. The
model (see Figure 3 for an illustration of a graphical plate
diagram) is

t(m) = ξT c̃(m)

w
(m)
d ∼ Categorical(η

c
(m)
d

),

c
(m)
d ∼ Categorical(θ(m)),

θ(m) ∼ Dirichlet(α),

ηk ∼ Dirichlet(γ1),

ξk ∼ Normal(0, ζ).

Based on the observed data D the model infers a set of
topics that explain not only word co-occurrences but also
the responses.

y(m)

µ

ξ

w
(m)
d

c
(m)
d

θ(m)

ηk

αk

Figure 3. Graphical plate diagram for the ordinal supervised topic
model. The topic proportions θ(m) are group-specific and gener-
ated from an asymmetric Dirichlet distribution. The ordinal gen-
erative model for the ratings depends on topic assignments c(m)

d ,
that specify the topical content (textual themes via topics ηk) of
the mth group.

2.3.1. MCMC SAMPLING SCHEME

We present a MCMC sampling scheme for the model. We
consecutively sample the topic assignments given current
value of ξ using collapsed Gibbs sampling, building on the
work by Griffiths & Steyvers (2004), analytically marginal-
ising out topics as well as topic proportions. Then, given
the newly sampled assignments we update the value for the
ξ as well as the concentration parameters α. The topic as-
signment probabilities are given by

p(c
(m)
d = k) ∝

N
−c(m)

d

w,k + γ

N
−c(m)

d

k + V γ
(N
−c(m)

d

k,d + αk)×

p(y(m)|{c(m)
j }D

(m)

j=1,j 6=d, c
(m)
d = k),
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where Nw,k denotes the counts word w (here, w(m)
d = w)

is assigned to the kth topic, Nk =
∑V
w=1Nw,k and Nk,d

denotes counts tokens in document d are assigned to the
kth topic. Upper index −c(m)

d means excluding the current
count. The parameters of the response distribution are in-
ferred by maximising Lξ = L+ln p(ξ). The concentration
parameters are updated recursively

αk =
αk
∑M
m=1 ψ(Nk,m + αk)−Mψ(αk)∑M

m=1 ln
(∑

j Nj,m + αj − 1
2

)
−Mψ(

∑
j αj)

,

building on Minka’s fixed point iteration (Minka, 2000). In
the denominator, we approximate ψ(x) ≈ ln(x − 1/2),
that is accurate when x > 1. This is the case, since all
w(m), for m = 1, . . . ,M , contain at least one word token.
The asymmetric Dirichlet prior enables pruning irrelevant
topics based on the observed data (Wallach et al., 2009).

We note that due to recursive sampling of the topic assign-
ments computational cost of inference may become con-
siderable for large data sets. The recursive property car-
ries also to a corresponding variational Bayesian treatment,
since the topic assignments are dependent on each other.

3. Related Work
Previous works on statistical models for ordinal data (Al-
bert & Chib, 1993; Chu & Ghahramani, 2005) assume

y(m) = j if µj−1 < z(m) ≤ µj ,
z(m) ∼ Normal(t(m), 1),

where z(m), for m = 1, . . . ,M , denote Gaussian-
distributed auxiliary variables. Marginalisation of the z(m)

leads to an ordinal probit model. The corresponding infer-
ence algorithm relies on truncated Gaussian distributions
and takes into account explicit ordering constraints for the
mean variables leading to a complicated inference algo-
rithm that is sensitive to initialisation thus potentially lead-
ing to local minima.

The original supervised LDA model (SLDA; Blei &
McAuliffe, 2007) uses canonical exponential family dis-
tributions for the response model. Under the canoni-
cal formulations the expectation of a response variable is
E[y(m)] = g(t(m)), where g(·) denotes a link function
specific for each member of the family. Examples of the
most common members of this family include Gaussian,
Bernoulli and Poisson distributions suitable for continuous-
valued, binary or count variables, respectively. However,
more importantly, the formulation does not support ordinal
variables.

Previous applications of SLDA by Blei & McAuliffe
(2007); Dai & Storkey (2015) and Nguyen et al. (2013) for

ordinal responses, such as product or movie reviews, have
made a strong model mis-specification; they treat ordinal
variables as continuous-valued. In this approach, the ordi-
nal variables are represented as distinct values in the real
domain with arbitrary user-defined intervals between them,
enabling use of a Gaussian response model. The model is
y(m) ∼ Normal(t(m)+µ, τ−1),where µ is a mean variable
and τ is a precision (inverse variance) parameter. There
are a number of statistical flaws in this approach under-
mining interpretability. First, we note that the mean pa-
rameter of the Gaussian distribution, in general, may lead
to results that make no sense in terms of the ordinal cate-
gories, especially for non-equidistant between-category in-
tervals. Second, observed ratings still take discrete val-
ues but the predictions will not correspond to these values.
Third, the Gaussian error assumption is not supported by
discrete data.

Wang et al. (2009) present an important and non-trivial ex-
tension of SLDA to unordered, that is, nominal response
variables, motivated by classification tasks. The nominal
variables represent logically separate concepts that do not
permit ordering.

Ramage et al. (2009) and Lacoste-Julien et al. (2009)
present alternative joint topic models, where functions of
the nominal response variables (class information) affect
topic proportions. The response variables are not explicitly
modelled using generative formulations. The approach by
Mimno & McCallum (2008) uses a similar model formu-
lation suitable for a wide range of observed response vari-
ables (or features, in general) performing linear regression
from the responses, which are treated as covariates, to the
concentration parameters of Dirichlet distributions of the
topic proportions. However, it is not obvious how to use
these formulations for ordinal response variables.

4. Experiments and Results
We collect consumer-generated reviews of mobile software
applications (apps) from Apple’s App Store. The review
data for each app contains an ordinal rating taking values
in five categories ranging from poor to excellent as well as
free-flowing text data. We select the vocabulary using tf-
idf scores. After simple pre-processing, the data collection
contains M = 5511 apps with vocabulary size V = 3995
and total number of words

∑M
m=1D

(m) = 1.5× 106. The
relatively small data collection is chosen to keep algorithm
running times reasonable especially for the sampling-based
inference approaches.

4.1. Experimental Setting

We compare the joint correlated topic model (JTM; Sec-
tion 2.2) and ordinal supervised topic model (SLDA) (Sec-
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tion 2.3) to SLDA with a Gaussian response model as
adopted in previous work by Blei & McAuliffe (2007); Dai
& Storkey (2015) and Nguyen et al. (2013) (see Section
3 for more details) as well as to sparse ordinal and Gaus-
sian linear regression models. For Gaussian response mod-
els we represent the ratings as unit-spaced integers starting
from one. The likelihood-specific parameters for the Gaus-
sian model are mean and precision. We adopt the inference
procedure described in Section 2.3 using collapsed Gibbs
sampling also for Gaussian SLDA. For the regression mod-
els we infer a linear combination of the word counts and as-
sign a sparsity-inducing prior distribution for the regression
weights over the vocabulary in order to improve predictive
ability. We maximise the corresponding joint log likelihood
of the model for a fixed prior precision2. For all the mod-
els that use a Gaussian response model, the mean variable
is inferred by computing an empirical response mean. We
initialise the models randomly.

For the joint correlated topic model, referred to as, JTM, we
bound the maximum number of active topics to K = 100,
set dimensionality of the latent variables to L = 30,
α0 = 1, β0 = 10−6 and prior precision to l = L.
The results are shown for λ = 0.001, although, λ ≤ 0.1
provided also good performance with little statistical vari-
ation. We terminated the algorithm (both in training and
testing phase), when the relative difference of the (corre-
sponding) lower bound fell below 10−4. The SLDA mod-
els were also computed for K = 100 and we used ζ = 1.
We used 500 sweeps of sampling for inferring the topics
and response parameters. For testing we used 500 sweeps
of collapsed Gibbs sampling. Although we omit formal
time comparisons due to difficulties in comparing VB to
MCMC approaches, we find that the sampling approach
is roughly one order of magnitude slower. In general,
determining convergence for MCMC approaches remains
an open research problem, whereas VB provides a local
bound for model evidence. For all the topic models we
used γ = 0.01. For JTM, this (effectively) equals a topic
Dirichlet concentration parameter value γ + 1 due to point
estimate shifting the value by minus one. For the regres-
sion models we sidestep proper cross-validation of the prior
precision and show results for the values providing the best
performance, potentially leading to over-optimistic results.

4.2. Rating Prediction

We evaluate the models quantitatively in terms of predic-
tive ability. Even though the developed joint mixed mem-
bership models are formulated primarily for exploring sta-

2We use t(m) = ξTx(m), where x(m) denotes
word counts over the V -dimensional vocabulary, and
p(ξ|ε) ∝

∏V
d=1 exp(−ε ln(cosh(ξd))), where ε denotes a

precision parameter of the prior distribution.

tistical associations between the ratings and text data, they
can readily be used as predictive models. More specifically,
we predict the ordinal rating based on the text. We parti-
tion available data into multiple training and test sets us-
ing 10-fold cross validation. For each model (and fold) we
compute the test-set log likelihood (probability) of ratings
(the higher, the better) and use these values for comparison.
Despite various predictive criteria have been proposed, the
selected measure is well motivated by statistical modelling.
In the test phase, for JTM, we infer the latent variables u,
topic proportions (unnormalised gamma-distributed vari-
ables z(m)

k ) and topic assignments c(m)
d given the values

for the remaining parameters inferred in the training phase.
For SLDA models the test phase corresponds to estimating
the topic assignments using standard LDA model algorithm
(using collapsed Gibbs sampling) with fixed topics inferred
based on the training data. Finally, we compute the corre-
sponding latent scores t(m) for the models, obtaining the
predictions.

Table 1 shows the test-set log likelihoods for the mod-
els. The ordinal linear regression model resulted in sig-
nificantly better predictions than the Gaussian regression
model (paired one-sided Wilcoxon; p < 10−3) showing
that it is important to substitute a statistically poorly moti-
vated Gaussian response distribution with a proper gener-
ative model. For both models the sparsity assumption im-
proves predictive ability. For the ordinal regression model,
the most relevant words predictive of low (poor) ratings
include waste and free and those of high (excellent) rat-
ings include amazing and perfect. The model, however,
falls short in providing in-depth interpretations, necessitat-
ing the use of topic models.

All the topic models perform substantially better than
the regression models. The ordinal SLDA model pro-
vides the best predictive performance, JTM is the second
best and Gaussian SLDA is the worst. All (pair-wise)
comparisons are statistically significant (paired one-sided
Wilcoxon; p < 0.005). We discovered K = 100 is a
sufficiently large threshold value for the number of top-
ics; some of the inferred topics are inactive. This, to-
gether with good predictive accuracy, establish evidence
the developed models have captured the relevant statisti-
cal variation in the observed data. For JTM, we also per-
formed a sensitivity analysis of the dimensionality of the
latent variables L and found little statistical variation for
30 ≤ L ≤ 100 = K. The test log likelihoods range
between a minimum of −669.42(9.68) for L = 80 and a
maximum of −661.98(11.73) for L = 50.

Next, we compared the inferred topics of different mod-
els quantitatively using a measure, referred to as, semantic
coherence proposed by Mimno et al. (2011) for quantify-
ing topic trustworthiness. Table 2 shows the average topic
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Table 1. Rating prediction test set log likelihoods for different
methods. The table shows values for mean and standard devia-
tion computed over 10 folds obtained by cross-validation.

model log likelihood

Ordinal SLDA −638.53(13.38)
JTM −667.79(15.91)

Gaussian SLDA −681.71(17.69)
Ordinal regression −704.30(13.21)

Gaussian regression −735.40(14.70)

coherences (the higher, the better). The topics inferred by
JTM have significantly larger coherence (two sample one-
sided Wilcoxon, p < 0.0002).

Table 2. Average semantic coherence values for the inferred top-
ics of different models.

model coherence

JTM −52.64(19.94)
Oridinal SLDA −66.30(26.43)
Gaussian SLDA −67.84(26.54)

4.3. Inspection of Inferred Topics

Finally, we visualise and interpret the topics inferred by the
JTM model. Figures 4 and 5 visualise nine topics associ-
ated with high (excellent) and low (poor) ratings, respec-
tively. As explained in Section 2.2.1, the associations (both
sign and strength) are given by computing the similarity
scores (that is, correlations).
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Figure 4. Visual illustration of topics associated with high rat-
ings.

One of the topics associated with high ratings (Figure 4)
captures word co-occurrence patterns containing adjectives
with positive semantics. The remaining topics capture
themes customers appreciate, such as games, health mon-
itoring, calculations (for example, for unit conversions),
learning languages, social networking and education. One
of the topics captures positive customer feedback about app
interface and design.
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Figure 5. Visual illustration of topics associated with low ratings.

The topics associated with low ratings (Figure 5) contain
customers’ negative experiences or feature requests such
as removal of adds, software updates and problems with
functionality.

5. Discussion
In this work, we develop a new class of ordinal mixed mem-
bership models suitable for capturing statistical associa-
tions between groups of observations and co-occurring or-
dinal response variables for each group. We depart from the
existing dominant approach that relies on improper model
assumptions for the ordinal response variables. We suc-
cessfully demonstrate the developed models for analysing
reviews of mobile software applications provided by con-
sumers. The proposed class of models as well as inference
approaches are applicable for a wide range of present-day
applications. In the future, we expect to see improvements
in statistical inference including fully Bayesian treatments
and nonparametric Bayesian formulations. Stochastic on-
line learning or model formulations for streaming data may
be applied to scale the statistical inference to cope with cur-
rent data repositories containing review data for a few mil-
lions of groups.
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