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Abstract

Low-rank matrix approximation is an integral
component of tools such as principal component
analysis (PCA), as well as is an important instru-
ment used in applications like web search, text
mining and computer vision, e.g., face recogni-
tion. Recently, randomized algorithms were pro-
posed to effectively construct low rank approxi-
mations of large matrices. In this paper, we show
how matrices from error correcting codes can be
used to find such low rank approximations.

The benefits of using these code matrices are
the following: (i) They are easy to generate and
they reduce randomness significantly. (ii) Code
matrices have low coherence and have a better
chance of preserving the geometry of an entire
subspace of vectors; (iii) Unlike Fourier trans-
forms or Hadamard matrices, which require sam-
pling O(klogk) columns for a rank-k approxi-
mation, the log factor is not necessary in the case
of code matrices. (iv) Under certain conditions,
the approximation errors can be better and the
singular values obtained can be more accurate,
than those obtained using Gaussian random ma-
trices and other structured random matrices.

1. Introduction

Many scientific computations, data analysis and machine
learning applications (Halko et al., 2011; Drineas et al.,
2006) lead to large dimensional matrices which can be well
approximated by a low dimensional basis. It is more effi-
cient to solve such computational problems by first trans-
forming these large matrices into a low dimensional space,
while preserving the invariant subspace that captures the
essential structure of the matrix. Several algorithms have
been proposed in the literature for finding such low rank
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approximations of a matrix (Ye, 2005; Haeffele et al., 2014;
Papailiopoulos et al., 2013). Recently, research focussed on
developing techniques which use randomization for com-
puting low rank approximations and matrix decomposi-
tions of such matrices. It is found that randomness pro-
vides an effective way to construct low dimensional bases
with high reliability and computational efficiency.

The randomization techniques for matrix approximations
(Halko et al., 2011; Martinsson et al., 2006; Liberty et al.,
2007) aim to compute a basis that approximately spans the
input matrix A, by sampling the matrix using Gaussian ran-
dom matrices. This task is accomplished by first forming
the matrix-matrix product Y = A{), where (2 is a random
matrix of smaller dimension, and then computing the or-
thonormal basis of Y = @R that identifies the range of the
reduced matrix Y. It can be shown that A ~ QQ* A with
high probability. Recently, it has been observed that struc-
tured random matrices, like subsampled random Fourier
transform (SRFT) and Hadamard transform (SRHT) matri-
ces can also be used in place of Gaussian random matrices
(Liberty, 2009; Woolfe et al., 2008; Tropp, 2011). This pa-
per demonstrates how error correcting coding matrices can
be a good choice for computing low rank approximations.

The input matrices whose low rank approximation is to be
computed, usually have very large dimensions (e.g., in the
order of 106 — 10%). In order to form a Gaussian random
matrix which samples the input matrix in randomized algo-
rithms, we need to generate a large number of random num-
bers. This could be a serious practical issue, (in terms of
time complexity and storage). This issue can be addressed
by using the structured random matrices, like SRFT and
SRHT matrices. However, for a rank-k approximation,
these matrices require sampling O (k log k) columns. Other
practical issues arise such as: the Fourier Transform matri-
ces require handling complex numbers and the Hadamard
matrices exist only for the sizes which are in powers of 2.
These drawbacks can be overcome if the code matrices pre-
sented in this paper are used for sampling input matrices.

In digital communication, information is encoded by
adding redundancy into (predominantly binary) vectors or
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codewords, that are then transmitted over a noisy chan-
nel (Cover & Thomas, 2012). These codewords are re-
quired to be far apart in terms of some distance metric for
noise-resilience. Coding schemes usually generate code-
words that maintain a fixed minimum Hamming distance
between each other. It can be shown that matrices formed
by stacking up these codewords generated by certain en-
coding schemes have orthonormal columns when an ap-
propriate mapping is used, (see Lemma 2 for details). The
idea is to use subsampled versions of these code matrices as
sampling matrices in the randomized algorithms for matrix
approximations. Section 5.1 shows that subsampled code
matrices have low coherence and have a better chance of
preserving the geometry of an entire subspace of vectors.
In some cases, it is possible to compute the matrix-matrix
product faster with code matrices because of their struc-
ture. Importantly, contrary to SRFT/SRHT matrices, sub-
sampled code matrices do not require the log factor, thus
achieving the order optimal O(k) in the number of samples
with deterministic matrices, see sec. 5.2 for an explanation.

2. Preliminaries

First, we present some of the notation used and give a brief
description of error correcting coding techniques that are
used in communication systems and information theory.

2.1. Notation and Problem Formulation

Throughout the paper, || - || refers to the ¢ norm. We use
|| - || = for the Frobenius norm. The singular value of a ma-
trix is denoted by o (). We use e; for the jth standard basis
vector. Given a random subset T of indices in {1,...,2"}
with size n and r > [log, n], we define a restriction (sam-
pling) operator St : R?" — R” given by

(Sra)(j) =, j €T.

A Rademacher random variable takes values +1 with equal
probability. We write ¢ for a Rademacher variable.

In low rank approximation methods, we compute an or-
thonormal basis which approximately spans the range of
an input matrix A of size m x n. That is, a matrix ) hav-
ing orthonormal columns such that A = QQ* A. The basis
matrix () contains as few columns as possible, but it needs
to be an accurate approximation of the input matrix. So, we
seek a matrix () with k orthonormal columns such that

[A—QQ™A| <, (1

for a positive error tolerance €. The theoretical minimum
that can be achieved with such low rank approximations
in terms of singular values is given by the Eckart-Young
theorem (Eckart & Young, 1936)

i A—X|| = 2
raﬁ}%gk” | = ok, (2)

and the minimizer is X = Ay, the best rank-k approx-
imation to a matrix as computed with the singular value
decomposition. That is, the columns of the matrix @ in (1)
are the k-dominant left singular vectors of A.

2.2. Error Correcting Codes

In communication systems, data are transmitted from a
source (transmitter) to a destination (receiver) through
physical channels. These channels are usually noisy, caus-
ing errors in the data received. In order to facilitate the
ability to detect and correct these errors in the receiver,
error-correcting codes are used (MacWilliams & Sloane,
1977). A block of information (data) symbols are encoded
in to a binary vector!, also called a codeword, by the encod-
ing error-correcting code. Error-correcting coding methods
check the correctness of the codeword received. The set of
codewords corresponding to a set of data-vectors (or sym-
bols) that can possibly be transmitted, is called the code.
Hence, a code C is a subset of F%, ¢ being an integer.

A code is said to be linear when adding two codewords of
the code coordinate-wise using modulo-2 arithmetic results
in a third codeword of the code. Usually a linear code C is
represented by the tuple [¢, ], where £ represents the code-
word length and r = log, |C| is the number of information
bits that can be encoded by the code. There are £ — r re-
dundant bits in the codeword, which are sometimes called
parity check bits, generated from messages using an appro-
priate rule. It is not necessary for a codeword to have the
information bits as r of its coordinates, but the information
must be uniquely recoverable from the codeword.

It is perhaps obvious that a linear code C is a linear sub-
space of dimension r in the vector space F5. The basis of
C can be written as the rows of a matrix, which is known as
the generator matrix of the code. The size of the generator
matrix G is r X £, and for any information vector m € F5,
the corresponding codeword is found by the linear map:

c=mdG.

Note that all the arithmetic operations above are over the
binary field F5. To encode r bits, we must have 2" unique
codewords. Then, we may form a matrix of size 2" x ¢ by
stacking up all codewords that are formed by the generator
matrix of a given linear coding scheme,

C =M G . 3)

~ =~

27 x4 27 Xr x4
For a given tuple [¢,r], different error correcting coding
schemes have different generator matrices and the result-
ing codes have different properties. For example, for any

"Here, and in the rest of the text, we are considering only bi-
nary codes. Codes over larger alphabets are also quite common.
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two integers ¢ and ¢, a BCH code (Bose & Ray-Chaudhuri,
1960) has length ¢ = 29 — 1 and dimension r = 29 —1—tq.
Any two codewords in this BCH code maintain a mini-
mum (Hamming) distance of at least 2¢ + 1 between them.
The pairwise minimum distance is an important param-
eter of a code and is called just the minimum distance
of the code. As a linear code is a subspace of a vector
space, the null-space of the code is another well-defined
subspace. This is called the dual of the code. The dual
of the [29 — 1,27 — 1 — tq]-BCH code is a code with
length 29 — 1, dimension ¢q and minimum distance at least
24=1 — (t—1)29/2. The minimum distance of the dual code
is called the dual distance of the code.

The codeword matrix C' has 2" codewords each of length ¢
(a 2" x £ matrix), i.e., a set of 2" vectors in {0, 1}¢. Given
a codeword ¢ € C, let us map it to a vector ¢ € R’ by
setting 1 — \;217 and 0 — \/127 In this way, a binary
code C gives rise to a code matrix & = (¢1,..., o )"
Such a mapping is called binary phase-shift keying (BPSK)
and appeared in the context of sparse-recovery (e.g., p. 66
(Mazumdar, 2011)). For codes with dual distance > 3, this
code matrix ¢ will have orthonormal columns (see Lemma
2 and its proof). We will use the dual BCH code matrices
for numerical experiments in this paper. As we will see,
rows of such matrices are near-orthogonal and hence pre-
serve the geometry of the space. In the randomized tech-
niques for matrix approximations, we can use a subsampled
and scaled version of this matrix ® to sample a given input
matrix and find the active subspaces of the matrix.

3. Construction of Subsampled Code Matrix

For an input matrix A of size m X n, and a target rank £,
we choose r > [log,n] and £ = k + p, where p is a small
oversampling to ensure that the samples have a much better
chance of spanning the required subspace. The intuition for
oversampling is well documented in (Halko et al., 2011;
Gu, 2014). We consider an [¢, r|-linear coding scheme and
form the sampling matrix as follows: we draw the sampling

test matrix say {2 as
2’!‘

e D is arandom n X n diagonal matrix whose entries
are independent random signs, i.e., random variables
uniformly distributed on {+1}.

where

e S is the uniformly random downsampler, an n x
2"matrix whose n rows are randomly selected from
a 2" x 2" identity matrix.

e & is the 2" x ¢ code matrix, generated using an [¢, r]-
linear coding scheme, with BPSK mapping and scaled

by 27"/2 such that all columns have unit norm.

Intuition The design of a subsampled code matrix is sim-
ilar to the design of SRFT and SRHT matrices. The intu-
ition for using such a design is well established in (Tropp,
2011; Halko et al., 2011). The matrix ® has entries with
magnitude £2~"/2 and has orthonormal columns when a
coding scheme with dual distance of the codes is > 3 is

used. The scaling 4/ QTT is used to make the energy of the

sampling matrix equal to unity, i.e., to make the rows of )
unit vectors. The purpose of multiplying by D is to flat-
ten out input vectors. We refer to (Tropp, 2011) for further
details. For a fixed unit vector x, the first component of
x*DSP is given by (x*DSP); = Z?Zl xj€j¢;5, where
¢4; are components of the code matrix ®, the index ¢ de-
pends on the downsampler .S and ¢; is the Rademacher
variable from D. This sum clearly has zero mean and since
entries of ® have magnitude 2-7/2_ the variance of the sum
is 27". The Hoeffding inequality (Hoeffding, 1963) shows
that

P{|(z*DS®),| > £} < 2e72F/2,

That is, the magnitude of the first component of £*DS® is
about 2-"/2. Similarly, the argument holds for the remain-
ing entries. Therefore, it is unlikely that any one of the ¢
components of *DS® is larger than /2 log(2¢)/27, (the
failure probability is £~ 1).

4. Algorithm

We use the same prototype algorithm as discussed in
(Halko et al., 2011) for the low rank approximation and de-
composition of input matrix A. The subsampled code ma-
trices given in (4), generated from a chosen coding scheme
is used as the sampling test matrix. The algorithm is as
follows:

Algorithm 1 Prototype Algorithm
Input: Anm X n matrix A, a target rank k and an over-
sampling parameter p.
Output: Rank-k factors U, X, and V' in an approximate
SVD A= UXV*™.
1. Form an n x ¢ subsampled code matrix (2, as de-
scribed in Section 3 and (4), using an [¢, r]—linear cod-
ing scheme, where ¢ = k + p and r > [log, n].
2. Form the m x ¢ sample matrix Y = AQ.
3. Form an m x ¢ orthonormal matrix ) such that
Y = QR.
4. Form the ¢ x n matrix B = Q* A.
Here B is the low rank approximation of input matrix A.
5. Compute the SVD of the small matrix B = Usv*.
6. Form the matrix U = QU.
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5. Analysis

This section discusses the performance analysis of the sub-
sampled code matrices as sampling matrices in Algorithm
1. First, we show that these matrices preserve the geome-
try of an entire subspace of vectors. Next, we highlight the
differences between the construction of subsampled code
matrices used here and the construction of SRHT given in
(Halko et al., 2011; Tropp, 2011). Finally, we derive the
bounds for the approximation error and the singular values
obtained from the algorithm.

Setup Let A be an m x n matrix with a singular value
decomposition given by A = UXV™*, whose low rank ap-
proximation is to be evaluated, and partition its SVD as
follows

k n—k n

_ b} vel «
oS ) [ s

Let € be the n x £ test (sampling) matrix, where /¢ is the
number of samples. Consider the matrices

Ql = ‘/Yl*Q and QQ = VYQ*Q (6)

The objective of any low rank approximation algorithm is
to try and approximate the subspace which spans the top
k left singular vectors of A. The test matrix €2 is said to
preserve the geometry of an entire subspace of vectors, if
for any orthonormal matrix V', a matrix of the form V*Q is
well conditioned (Halko et al., 2011).

5.1. Subsampled Code Matrices Preserve Geometry

Recall from section 3 the construction of the ‘tall and thin’
n X ¢ subsampled error correcting code matrices 2. One
of the critical facts to show is that these matrices approxi-
mately preserve the geometry of an entire subspace of vec-
tors. An important property of the code matrices ® is that
the columns are all orthonormal, if the codes satisfy a rather
mild condition. Indeed, if the dual distance of a code is at
least three then this property is satisfied.

Another crucial advantage of the code matrices is that they
have very low coherence. Coherence is defined as the max-
imum inner product between any two rows. This is in par-
ticular true when the minimum distance of the code is close
to half the length. If the minimum distance of the code is
d then the code matrix generated from an [¢, r]-code has
coherence equal to e;?d. For example, if we consider dual
2(t—1)v/I+1—1
27 ‘

BCH code (see sec. 2.2) the coherence is
Low coherence ensures near orthogonality of rows. This
is a desirable property in many applications such as com-
pressed sensing and sparse recovery.

Tropp, in (Tropp, 2011) has given an extensive analysis on
how the subsampled Hadamard matrices preserves the ge-
ometry of an entire subspace of vectors. We use similar
arguments to analyze the subsampled code matrices.

The construction given in (4) ensures that the energy is
uniformly distributed due to the scaling. Multiplying by
D ensures that the input vectors are flattened out and
that no components of the form, *DS® are larger than
v/2log(2¢)/27. The following theorem, similar to Theo-
rem 11.1 in (Halko et al., 2011) and Theorem 1.3 in (Tropp,
2011), shows that code matrices approximately preserve
the geometry of entire subspace of vectors.

Theorem 1 (Code matrices preserve geometry) Fix an
n X k orthonormal matrix V, and draw an n x ¢ subsam-
pled code matrix as in (4), using an [{,r]-linear code that
has dual distance > 3, where r > [log,(n)] and € satisfies

n > allog(l).
Then

(I1-9)n
14

(Lt m)n

< o0p(V*Q) and 01 (V*Q2) < 7

with probability at least 1 — O({~1). The parameters o, §
and ) depend on the inputs n and (.

The theorem can be proved using the following three lem-
mas. The first lemma shows that if a code has dual distance
> 3, the resulting code matrix ® has orthonormal columns.

Lemma 2 (Code matrix with orthonormal columns) A
code matrix ®, generated by a coding scheme which results
in codes that have dual distance between the codewords
> 3, has orthonormal columns.

Proof. If a code has dual distance 3, then the corre-
sponding code matrix (stacked up codewords as rows)
is an orthogonal array of strength 2 (Delsarte & Lev-
enshtein, 1998). This means all the tuples of bits, i.e.,
{0,0},{0,1},{1,0}, {1, 1}, appear with equal frequencies
in any two columns of the codeword matrix C. As a re-
sult the Hamming distance between any two columns of
C is exactly 2"~ (half the length of the column). This
means after the BPSK mapping, the inner product between
any two codewords will be zero. It is easy to see that the
columns are unit norm as well.

This fact helps us use some of the arguments given in
(Tropp, 2011). Given below is a modification of Lemma
3.4 from (Tropp, 2011) which shows that randomly sam-
pling the rows of such a code matrix results in a well-
conditioned matrix.
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Lemma 3 (Row sampling) Let ® be an 2" x (¢ code
matrix (with orthonormal columns), and let M =
2". max;j—1, . or ||e;<I>H2. For a positive parameter «, se-
lect the sample size

n > aM log(?).

Draw a random subset T from {1,...,2"} by sampling n
coordinates without replacement. Then,

1-— 1
d=d)n 2T5)n < 0¢(ST®) and o1 (STP) < (At mn ‘12'r77)n
(7
with failure probability at most
, o0 alog(£) , e alog(¥)
a=0)a® T la T

where § € [0,1) and n > 0.

Since n is fixed and M = /¢ for a code matrix (all the
entries of the matrix are +27"/2), we get the condition
n > allog(?) in Theorem 1. The parameters a,d and
n are chosen based on the inputs ¢ and n and the failure
probability accepted. The bounds on the singular values of
the above lemma are proved in (Tropp, 2011) using Ma-
\/% , the
bounds on the singular values of the subsampled code ma-
trix 2 will be

@ < 50(Q) and 01 (Q) < %

trix Chernoff Bounds. Since we use the scaling

(®)

Lemma 4 (Min-Max Property) Let 2 be an n x £ matrix
whose singular values are bounded as in (8). Let V be an
n X k matrix with orthonormal columns and £ > k, we have

@ <o) <op(V*Q)  and
51 (V*Q) < 0y () < W ©)

Proof. Consider A = QQ* and B = V*Q(V*Q)*
V*AV. By Min-Max theorem (Golub & Van Loan, 2013),
for ¢ > k we have

)\1(3) = )\1(V*AV) S )\1(14) and
Ae(A) < A\ (VFAV) = M (B), (10
)

where A (.) is the largest eigenvalue of a matrix and A\¢(A)
and A\, (B) are the smallest nonzero eigenvalues of A and
B, respectively. This completes the proof for Lemma 4 and
Theorem 1.

Theorem 1 shows that V*Q) is well conditioned. This
proves that the subsampled code matrix approximately pre-
serves the geometry of an entire subspace of vectors.

Differences in the construction An important differ-
ence between the construction of subsampled code matri-
ces given in (4) and the construction of SRHT or SRFT
given in (Halko et al., 2011; Tropp, 2011) is in the way
these matrices are subsampled. In the case of SRHT, a
Hadamard matrix of size n x n is considered and ¢ out
of n columns are sampled at random, (n must be a power
of 2). In contrast, in the case of subsampled code matrices,
a 2" x £ code matrix generated from an [¢, r]-linear coding
scheme is considered, and n out of 2" rows are sampled at
random. The subsampling will not affect the distinctness
of the rows selected in the code matrix (or the coherence).
This need not be true in the case of SRHT. The importance
of the distinctness of rows is discussed next.

5.2. Logarithmic factor

For a rank-k approximation using subsampled Fourier
or Hadamard matrices, we need to sample O(klogk)
columns. This logarithmic factor emerges as a necessary
condition in the theoretical proof (given in (Tropp, 2011))
that shows that these matrices approximately preserve the
geometry of an entire subspace of input vectors. The log
factor is also necessary to tackle the worst case input ma-
trices. The discussions in sec. 11 of (Halko et al., 2011)
and sec. 3.3 of (Tropp, 2011) give more details. In the case
of subsampled code matrices, we saw that the log factor
does not arise in the theoretical analysis given in section
5.1. The code matrices also take care of the worst case in-
put matrices without the log factor. To see why this is true,
let us consider the worst case example for orthonormal ma-
trix V' described in Remark 11.2 of (Halko et al., 2011).

An infinite family of worst case examples of the matrix V/
is as follows. For a fixed integer k, let n = k2. Form an
n X k orthonormal matrix V' by regular decimation of the
n X n identity matrix. That is, V' is a matrix whose jth row
has a unit entry in column (j — 1)/k when j = 1 (mod k)
and is zero otherwise. This type of matrix is troublesome
when DFT or Hadamard matrices are used for sampling.

Suppose that we apply 2 = DFR* to the matrix V'*,
where D is same as in (4), F'is an n x n DFT or Hadamard
matrix and R is £xn matrix that samples ¢ coordinates from
n uniformly at random. We obtain a matrix X = V*() =
W R*, which consists of ¢ random columns sampled from
W = V*DF. Up to scaling and modulation of columns,
W consists of k copies of a k x k DFT or Hadamard matrix
concatenated horizontally. To ensure that X is well con-
ditioned (preserve geometry), we need o (X) > 0. That
is, we must pick at least one copy of each of the k dis-
tinct columns of W. This is the coupon collector’s problem
(Motwani & Raghavan, 1995) in disguise and to obtain a
complete set of k columns with non-negligible probability,
we must draw at least k log(k) columns.
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In the case of code matrices, we apply a subsampled code
matrix @ = DS® to the matrix V*. We obtain X =
V*Q = V*DS®, which consists of k randomly selected
rows of the code matrix ®. That is, X consists of k distinct
codewords of length ¢. The code matrix has low coher-
ence and all rows are distinct. This means X contains k
independent (near orthonormal) rows and o (X) > 0; as a
result Theorem 1 holds and the log factor is not necessary.
Thus, for the worst case scenarios we have an O(log k) fac-
tor improvement over other structured matrices. More im-
portantly, this shows that our construction is order optimal
with the immediate lower bound of O(k) in the number of
samples required with deterministic matrices.

5.3. Error bounds

Algorithm 1 constructs an orthonormal basis @ for the
range of Y, and the goal is to quantify how well this ba-
sis captures the action of the input matrix A. Let QQ* =
Py where Py is the unique orthogonal projector with
range( Py )=range(Y). If Y is full rank, we can express the
projector as : Py = Y(Y*Y)~lY*. We seek to find an
upper bound for the approximation error given by,

1A= QQ™A| = [|(I — Py)A.

The deterministic bounds for the approximation error for
Algorithm 1 is given in (Halko et al., 2011) and the bounds
for the singular values are given in (Gu, 2014). We restate
the theorem 9.1 in (Halko et al., 2011) below:

Theorem 5 (Deterministic error bound) Let A be m xn
matrix with singular value decomposition given by A =
UXV*, and fix k > 0. Choose a test matrix €2 and con-
struct the sample matrix Y = AS). Partition 3 as in (5),
and define Q1 and Qs via (6). Assuming that Q)4 is full row
rank, the approximation error satisfies,

I = P)AI® < ISl + =200l an
where |||.||| denotes either the spectral or Frobenius norm.

An elaborate proof for the above theorem can be found in
(Halko et al., 2011). Equation (11) simplifies to,

14— QR Al < Uzm\/l +l192(21ed2. a2

Recently Ming Gu (Gu, 2014), developed deterministic
lower bounds for the singular values obtained from ran-
domization algorithms, particularly for the power method
(Halko et al., 2011), which is one of the alternatives of ran-
domized algorithms. Given below is the modified version
of Theorem 4.3 in (Gu, 2014) for Algorithm 1.

Theorem 6 (Deterministic singular value bounds) Ler
A = UXV™* be the SVD of A, for a fix k, and let V*$) be

partitioned as in (6). Assuming that 1 is full row rank,
then Algorithm I must satisfy for j = 1,...,k:

95

2
\/1 + Il el (2)

where o are the jth singular value of A and Ay, is the
rank-k approximation obtained by our algorithm.

oj > 0;(Ar) > (13)

The proof for the above theorem can be seen in (Gu, 2014).
Next, we derive the approximation error bounds when the
test matrix €2 is the subsampled code matrix defined by
Lemma 2. The upper and lower bounds for the singular
values obtained are also derived.

Theorem 7 (Error bounds for code matrix) Ler A be
m X n matrix with singular values o1 > 09 > 03 > ...
Generate a subsampled code matrix ) with dual distance
> 3asin(4) and r > [logy(n)] be the length of the mes-
sage vector used to generate the code matrix. Then the
approximation error for the algorithm satisfies

27
A— A < 14—
A - QQ™A|| < opy1y /1 + a=on and
1/2
- Al < (Yo i+

j>k

27‘
(1—-¥8)n

The bounds for the singular values obtained are:

9j

(o) )

with failure probability O(£71).

O'j ZO'J(Ak) Z (14)

Proof. For the approximate error bounds given in the the-
orem, we start from equation (12) in Theorem 5. The terms
that depend on the choice of test matrix € are ||Q2||? and
[[€27]|2. Theorem 1 shows that the code matrix { preserves
the geometry of the entire subspace of vectors and also en-
sures that the spectral norm of QJ{ is under control. From
Lemma 3.6 in (Liberty et al., 2007), we have

1 1
T2
HQ1|| - 0';26(91) < (1—£6)n'

I =

We bound the spectral norm of €25 as follows ||€29
IVzQU? < [[V2]Pl12? = [|2]]* = o1(€), since V is an
orthonormal matrix. The code matrix ® is orthonormal and
has all its singular values equal to one. Thus, the singular

values of |/ 2-® are |/ 2-. We need the following lemma.

Lemma 8 Let @ be a 2" x { code matrix with orthogonal
columns and have singular values equal to 01(®) = ... =
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oo(®) = /2. Let @ = Sr®, a sub-matrix of ® formed
by selecting n out of 2" rows, randomly. Then,
27‘
O'l(Q) S O'l(q)) = 7 (15)

Proof of the above lemma is straightforward from Theo-
rem 3.1 and Remark 3.1 in (Gu, 2014). Also see (Golub &
Van Loan, 2013) for details. Thus, we have
2 2 2"
92 < o3(2) < =
and substituting these values in (12) will complete the
proof. Similarly, for the bounds on singular values we start
from the equation (13) in Theorem 6. We substitute the
above values for [|€2; |2 and ||Q]|2.

Remark 1 (Value of ) The value of § depends upon the
size n, length of the codeword { and the failure proba-
bility needed. We have from Theorem I and Lemma 3,
O = grog@y U @ = 4 then for a failure probability of
O(¢~1) we have § = 5/6. For a = 9, we have § = 3/5
and if « = 14, we have § = 1/2 for a failure probability of
O(£=1Y). A greater value of o implies a smaller value of §,
resulting in better error bounds. In practice, we can expect
a > 10. So, 6 is at most 0.6. For 6 < 0.6, the error bounds
obtained for code matrices are better than those obtained
for Gaussian random matrices and other structured ran-
dom matrices (Halko et al., 2011).

Choice of error-correcting code In the theoretical anal-
ysis above, we could choose any coding schemes with dual
distance > 3, since the corresponding code matrix ® will
be orthogonal. Code matrices generated by any linear cod-
ing scheme can be used in place of Gaussian random ma-
trices. In fact, Hadamard matrices are also a class of Lin-
ear code, with variants known as Hadamard code, Simplex
code or Ist-order Reed-Muller code. The dual distance of
Hadamard code is 3. As there are many available classes
of algebraic and combinatorial codes we have a large pool
of candidate matrices. In this paper we chose dual BCH
codes as they particularly have low coherence, and turn out
to perform quite well.

6. Numerical Experiments

The following experiments will illustrate the performance
of subsampled code matrices as sampling matrices in Algo-
rithm 1. Our first experiment is with a 4770 x 4770 matrix
named Kohonen from the Pajek network (a directed graph’s
matrix representation), available from the UFL Sparse Ma-
trix Collection (Davis & Hu, 2011). Such graph Laplacian
matrices are commonly encountered in machine learning
and image processing applications. The performance of
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Figure 1. The theoretical minimum o1 and approximate error
as a function of the number of random samples ¢ using dual BCH
code, Gaussian, SRFT and SRHT matrices.
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Figure 2. Estimates for top 255 singular values computed by Al-
gorithm 1 using dual BCH code, Gaussian, SRFT and SRHT ma-
trices and the exact singular values by svds function.

the dual BCH code matrix, Gaussian matrix, subsampled
Fourier transform (SRFT) and Hadamard (SRHT) matrices
are compared as sampling matrices 2 in Algorithm 1. For
SRHT, we had to subsample the rows as well (similar to
code matrices), since the input size is not a power of 2. All
experiments were implemented in matlab v8.1.

Figure 1 gives the actual error e, = ||A — Q) (QYW)* A||
for each ¢ number of samples when a subsampled dual
BCH code matrix, a Gaussian matrix, SRFT and SRHT
matrices are used as sampling matrices, respectively. The
minimum rank-¢ approximation error o1 is also given.
Figure 2 plots the singular values obtained from Algorithm
1, for £ = 255 and different sampling matrices {2 used.
The top 255 exact singular values of the matrix (available
in the UFL database) are also plotted. We observe that the
performance of all four sampling matrices are similar.

Table 1 compares the errors e, for ¢ number of samples,
obtained for a variety of input matrices from different ap-
plications when subsampled dual BCH code, Gaussian and
SRFT matrices were used. It also provides the theoretical
minimum o4 value for each input matrices. All matrices
were obtained from the UFL database. Matrices lpi_ceria3d
(4400 x 3576) and deter3 (21777 x 7647) are from lin-
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Table 1. Comparison of errors

Table 2. Comparison of the Number of Incorrect Matches

MATRIX  DUAL BCH GAUSSIAN SRFT Oo+1
LPICERIA3D 15.4865 18.3882 16.3619  6.4625
{ =163
DETER3 9.2602 9.2658 9.2084  5.7499
£ =127
S80PI 3.8148 3.8492 3.7975  1.9996
/=63
DELAUNAY  6.3864 6.3988 6.3829 5.8469
/=163
EPA 5.5518 5.5872 5.4096  2.5655
£ =255
EPA 3.2171 3.2003 3.1752  1.3697
¢ =511
KOHONEN 4.2977 4.2934 4.2610  2.0239
¢ =511
KOHONEN 2.4581 2.4199 2.4718  1.0236
£=1023

ear programming problems. S80PI_nl (4028 x 4028) is
from an eigenvalue/model reduction problem. Delaunay
(4096 x 4096), EPA (4772 x 4772) and Kohonen are graph
Laplacian matrices. We chose r = [logn]| such that
2" /n < 2 and the error will mainly depend on the parame-
ter 9, (i.e., the ratio n/¢, see remark 1). We see in the first
four examples (higher n/¢ ratio), the error performance of
the code matrices is better than that of the Gaussian matri-
ces. As the ratio decreases, the error increases. It however
remains similar to the error for Gaussian matrices.

Eigenfaces: Eigenfaces is a popular method for face
recognition that is based on Principal Component Anal-
ysis (PCA) (Turk & Pentland, 1991; Sirovich & Meytlis,
2009). In this experiment (chosen as a verifiable compar-
ison with results in (Gu, 2014)), we demonstrate the per-
formance of randomized algorithm with different sampling
matrices on face recognition. The face dataset is obtained
from the AT&T Labs Cambridge database of faces (Cam-
bridge, 2002). There are ten different images of each of
40 distinct subjects. The size of each image is 92 x 112
pixels, with 256 gray levels per pixel. 200 of these faces,
5 from each individual are used as training images and the
remaining 200 as test images to classify.

In the first step, we compute the principal components
(dimensionality reduction) of mean shifted training image
dataset using Algorithm 1, with different sampling matrix
) and different p values. Next, we project the mean-shifted
images into the singular vector space using the singular
vectors obtained from the first step. The projections are
called feature vectors and are used to train the classifier. To
classify a new face, we mean-shift the image and project
it onto the singular vector space obtained in the first step,
obtaining a new feature vector. The new feature vector
is classified using a classifier which is trained on the fea-
ture vectors from the training images. We used the in-built
MATLAB function classify for feature training and clas-

RANK DuUALBCH  GAUSSIAN SRFT T-SVD
p p p

k 10 20 10 20 10 20

10 18 13 19 15 21 18 26

20 14 11 14 12 16 12 13

30 10 08 13 08 12 09 10

40 09 08 08 07 08 10 06

sification. We compare the performance of the dual BCH
code matrix, Gaussian matrix and SRFT matrix against ex-
act truncated SVD (T-SVD). The results are summarized in
Table 2. For p = 10 dual BCH code matrices give results
that are similar to those of truncated SVD, and for rank
k < 40, p = 20 our results are superior.

7. Conclusion

This paper advocated the use of matrices generated by error
correcting codes as an alternative to random Gaussian or
subsampled Fourier/Hadamard matrices for computing low
rank matrix approximations. Among the attractive proper-
ties of the proposed approach are the numerous choices of
parameters available, the orthogonality of columns and the
near-orthogonality of rows. We showed that the code ma-
trices lead to an order optimal O(k) in the worst-case guar-
anteed sampling complexity, an improvement by a factor
of O(log k) over other known structured matrices. This is
significant when the expected rank £ is large and/or when
the input matrix is sparse. The cost of QR factorization will
also reduce from O(n(klog k)?) to O(nk?).

It is known that Gaussian matrices perform much better in
practice compared to their theoretical analysis (Halko et al.,
2011). Our code matrices (a) are almost deterministic, and
(b) have +£1 entries. Still, they perform equally well (as
illustrated by experiments) compared to random real Gaus-
sian matrices and complex Fourier matrices. Indeed, for
larger n /¢ ratios the performance of our matrices is in fact
superior as explained in remark 1 and depicted in Table 1.

Because of the availability of different families of classical
codes in the rich literature of coding theory, many possible
choices of code matrices are at hand. One of the contri-
butions of this paper is to open up these options for use as
structured sampling operators in low-rank approximations.
Decoding of many, if not most, structured codes can be
performed by the Fast Fourier Transform (Blahut, 1979).
Hence, it is likely that matrix-matrix products with code
matrices will be substantially faster due to the availability
of these fast transform techniques.
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