
Efficient Training of LDA on a GPU by Mean-for-Mode Estimation

Jean-Baptiste Tristan JEAN.BAPTISTE.TRISTAN@ORACLE.COM

Oracle Labs, USA

Joseph Tassarotti JTASSARO@CS.CMU.EDU

Department of Computer Science, Carnegie Mellon University, USA

Guy L. Steele Jr. GUY.STEELE@ORACLE.COM

Oracle Labs, USA

Abstract
We introduce Mean-for-Mode estimation, a vari-
ant of an uncollapsed Gibbs sampler that we use
to train LDA on a GPU. The algorithm combines
benefits of both uncollapsed and collapsed Gibbs
samplers. Like a collapsed Gibbs sampler — and
unlike an uncollapsed Gibbs sampler — it has
good statistical performance, and can use sam-
pling complexity reduction techniques such as
sparsity. Meanwhile, like an uncollapsed Gibbs
sampler — and unlike a collapsed Gibbs sampler
— it is embarrassingly parallel, and can use ap-
proximate counters.

1. Introduction
The performance of GPUs makes them an appealing choice
for machine learning. However, there are several challenges
in using them efficiently. First, there must be enough paral-
lelism to make use of all the many thousands of GPU cores.
Second, GPUs have small amounts of memory, and with
enough parallelism, memory bandwidth becomes a bottle-
neck. Finally, it is often unclear how to translate techniques
that have been developed for CPUs into improvements for
GPUs.

Topic models, such as LDA (Blei et al., 2003), are a good
example of these challenges of using GPUs. Although there
are several methods that can be used to train LDA (Asun-
cion et al., 2009), earlier work targeting the GPU (Yan et al.,
2009; Lu et al., 2013) has primarily used collapsed Gibbs
sampling (Griffiths & Steyvers, 2004) and adapted tech-
niques from distributed implementations of LDA (Newman
et al., 2009).
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Since collapsed Gibbs sampling is inherently sequential,
this earlier work has tried to adapt collapsed sampling to
recover some parallelism. However, as the number of cores
on GPUs continues to grow, it becomes more and more
difficult to extract enough parallelism to scale effectively.
In addition, the amount of memory required for collapsed
Gibbs sampling and its memory access patterns can limit the
amount of data that can be processed at a time. Furthermore,
techniques that have been developed to reduce sampling
complexity, such as working with sparse matrices (Yao et al.,
2009), are difficult to adapt to GPUs.

In contrast, a standard uncollapsed Gibbs sampler is embar-
rassingly parallel. Tristan et al. (2014) show that a GPU
implementation of uncollapsed Gibbs sampling for LDA
can scale to a large number of GPU cores. However, New-
man et al. (2009) have shown that the statistical perfor-
mance of an uncollapsed Gibbs sampler is not as good as
that of the collapsed Gibbs sampler: it requires more iter-
ations to converge, and it generates estimates that are not
as good. Moreover, as pointed out by Smola & Narayana-
murthy (2010), the standard uncollapsed sampler cannot
use the sparse representations that have been developed for
collapsed samplers.

In this paper, we present Mean-for-Mode estimation, a mod-
ification of the uncollapsed Gibbs sampler that is related to
stochastic expectation maximization as presented by Celeux
et al. (1995). In §2 we describe the algorithm and empir-
ically demonstrate that its convergence rate is similar to
that of the collapsed Gibbs sampler. Next, we describe a
simple GPU implementation in §3 and show that there is
more than enough parallelism to scale effectively. One im-
portant difference between our work and previous work here
is that instead of adapting popular inference methods for
LDA that were implicitly designed for a CPU architecture,
we rethink the inference method in light of the needs of the
GPU architecture.
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A key benefit of Mean-for-Mode estimation is that it enables
the use of several techniques that are key to scaling to larger
datasets and managing memory issues. First, Mean-for-
Mode estimation can use single-precision floating points to
store parameter values, and does not need to store the latent
topic-assignment variables. Since there are as many latent
variables in the model as there are tokens in the corpus, this
is a very significant reduction in memory usage. In addition,
Mean-for-Mode estimation can use approximate counters
(Morris, 1978) to decrease memory use (§4.1). Next, we
show that unlike traditional uncollapsed Gibbs samplers, it
can also make use of sparsity (§5). In comparison to earlier
work that tried to use sparsity with collapsed Gibbs samplers
on GPUs, the implementation is straightforward. We believe
these techniques are applicable to any large mixture models.

2. Mean-for-Mode Estimation for LDA
Before describing Mean-for-Mode estimation, we briefly
review the LDA model. LDA is a categorical mixture model
for text documents with one set of mixing coefficients per
document, with the components shared across the corpus. It
is a Bayesian model in which both the mixing coefficients
and the components are given a Dirichlet prior. The distri-
bution of LDA is described in Figure 1, and the reader can
refer to the introduction written by Blei (2012) for more
details about topic modeling and LDA. Note that we reserve
the word “latent” only for the topic-assignment variables
(zij), not the parameters of the model.

In order to effectively train LDA on the GPU, we need an in-
ference method that is embarrassingly parallel. For example,
to make full use of a modern NVIDIA GPU, it is desirable
to have an application with tens of thousands of threads,
perhaps even millions. Unfortunately, the collapsed Gibbs
sampler is a sequential algorithm. Indeed, what makes it a
good algorithm is that integrating the parameters of LDA
makes the latent variables directly dependent on each other.
An obvious way to devise a highly parallel sampler is to not
integrate the parameters before deriving the Gibbs sampler,
thereby using an uncollapsed Gibbs sampler. In this case,
the algorithm will sample not only the latent variables, but
also the parameters of the model (φ and θ). However, as
noted by others (Newman et al., 2009), using such an uncol-
lapsed Gibbs sampler for LDA requires more iterations to
converge.

To address this problem, Mean-for-Mode estimation uses a
point estimate of the φ and θ parameters instead of sampling
them. The algorithm is shown in Figure 2. First, we draw
the parameters from the prior.1 Inside the main loop that

1For this presentation, we use this simple initialization. There
are other, possibly better, initializations we could use (Wallach
et al., 2009), but this is independent of the key ideas of our algo-
rithm.

generates samples, we first draw all of the latent variables
given the parameters, as we would with an uncollapsed
Gibbs sampler for LDA. Then, we “simulate” the param-
eters by assigning to them the mean of their distribution
conditioned on all other variables of the model.

Why use the mean? A different choice for a point estimate
would be to use the mode of the conditional distribution.
However, these conditional distributions are Dirichlet distri-
butions, which do not necessarily have a mode. In contrast,
the mean of a Dirichlet distribution is always defined, and in
practice it results in good statistical performance. Moreover,
note that if X ∼ dir(α) where X is a random vector of size
K, then E[Xi] =

αi∑
k αi

, which is equal to (αi+1)−1
(
∑

k αi+1)−K
which is the mode of the Dirichlet distribution dir(α + 1).
This means that Mean-for-Mode estimation is an instance of
stochastic expectation maximization (Celeux et al., 1995),
and consequently it has an equilibrium.

A different way to think about the algorithm is with respect
to the collapsed Gibbs sampler. In the collapsed Gibbs
sampler, we draw the latent variables with the parameters
integrated out:

p(z|w) =

∫
θ

∫
φ

p(z|θ,φ,w)p(θ)p(φ)dφdθ

The Mean-for-Mode algorithm corresponds to a plug-in
approximation (Murphy, 2012) of the above equation using
the estimates E[θ] and E[φ] instead of the MAP.

p(z|w) ≈ p(z|E[θ],E[φ],w)

Using the posterior mean as opposed to the MAP is common
to avoid overfitting.

We do not claim that this algorithm is sophisticated or very
original: many inference algorithms are modifications of
expectation-maximization or Gibbs sampling that use both
stochastic simulation and point-estimation (e.g., Monte-
Carlo Expectation maximization, iterated conditional modes,
greedy Gibbs sampling (Bishop, 2006)). Rather, our con-
tribution is in noting that this point in the design space is
a sweet spot for GPU implementations (and possibly dis-
tributed implementations as well): it is embarrassingly par-
allel, while still allowing the use of space-saving optimiza-
tions such as sparsity and approximate counters. Although
our focus in this paper is on LDA, these optimizations could
be used for other mixture models by carefully using point
estimates for the parameters.

We have run a series of experiments which show that in prac-
tice, Mean-for-Mode estimation converges in fewer samples
than standard uncollapsed Gibbs sampling. In these experi-
ments, we observed how the log-likelihood of LDA evolves
with the number of samples. Figure 3 presents the results
of one of our experiments, run on a subset of Wikipedia
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p(w, z,θ,φ) =

 M∏
i=1

Ni∏
j=1

cat(wij |φzij ) cat(zij |θi)

[ M∏
i=1

dir(θi|α)

][
K∏
i=1

dir(φi|β)

]

Figure 1. Mixed density for the LDA model. M is the number of documents, Ni is the size of document i, K is the number of topics,
wij is the jth word in document i, zij is the topic associated to wij , θi is the distribution of topics in document i, φk is the distribution
of vocabulary words in topic k . cat and dir refer respectively to the probability mass function of the Categorical distribution and the
probability density function of the Dirichlet distribution. The variables θ and φ can be integrated analytically; doing so leads to the
collapsed form of LDA, from which we can derive the effective collapsed Gibbs sampler.

1. Initialize

- Sample θ(0) ∼ Dir(α)
- Sample φ(0) ∼ Dir(β)

2. For τ = 1, ..., T

- Sample z(τ+1) ∼ p(z|θ(τ),φ(τ),w)

- Evaluate θ(τ+1) and φ(τ+1) given by

θ
(τ+1)
i = E[θi|z(τ+1)]

φ
(τ+1)
i = E[φi|z(τ+1)]

Figure 2. Mean-for-Mode estimation for LDA producing T + 1
samples. It is similar to an uncollapsed Gibbs sampler, but the
stochastic steps that sample the parameters θ and φ are replaced
with point estimates. If we were to use the mode as a point estimate,
this algorithm would be a stochastic expectation maximization.
However, because the mode of each distribution of interest may
not exist, we use the conditional mean as a point estimate. Note
that for simplicity, the equations are presented modulo conditional
independence.

(50,000 documents, 3,000,000 tokens, 40,000 vocabulary
words) with 20 topics, and both α and β equal to 0.1. Un-
less otherwise noted, this is the dataset and configuration we
use in the remainder of the paper. The experiment was run
10 times with a varying seed for the random number gen-
erator. We drew over 70 samples with each method. Note
that we have also run many more experiments, by varying
the values of the hyperparameters (36 combinations taken
from {0.01, 0.1, 0.25, 0.5, 0.75, 1} for both α and β), and
by varying the number of documents (from 5,000 to 50,000)
and the number of topics (from 20 to 1000), but we present
only one here. The result shown here is consistent with our
other experiments and the conclusions we draw in the next
paragraph.

The graph confirms the experiments presented by Newman
et al. (2009). The uncollapsed Gibbs sampler does indeed
converge significantly more slowly than the collapsed Gibbs
sampler. Also, as they noted, trying to improve the conver-
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Figure 3. Comparison of the statistical performance of four sam-
plers for LDA: collapsed Gibbs sampler, uncollapsed Gibbs sam-
pler, Gibbs sampler with only the θ parameters collapsed, and
the Mean-for-Mode estimation. This graph shows the result of 10
runs on a Wikipedia subset (50,000 documents, 3,000,000 tokens,
40,000 vocabulary words) using 20 topics.

gence while keeping a lot of the parallelism by integrating
only θ does not improve the situation much. However, the
Mean-for-Mode estimation seems to work well, with a con-
vergence rate closer to that of the collapsed Gibbs sampler.
In this specific experiment its log likelihood exceeds that of
the collapsed Gibbs sampler after 20 iterations. Note that
we have consistently examined the quality of the topics, and
the topics seemed to be of the same quality as the ones of
the collapsed Gibbs sampler (and most often, the topics are
very similar).

3. Parallel GPU Implementation
The Mean-for-Mode estimation applied to LDA exposes a
lot of fine-grained parallelism and enables effective GPU
implementations. In this section, we describe a basic imple-
mentation, which is mostly straightforward. We also show
how to refine this with space-saving optimizations such as
approximate counters and sparse representations.

We store the data and state of the algorithm using the fol-
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Algorithm 1 Drawing the latent variables
1: memclear wpt
2: memclear tpd
3: memclear wt
4: for m = 0 to M − 1 in parallel do
5: float p[K]
6: for i = 0 to N − 1 do
7: float sum = 0;
8: int c word = words[m][i]
9: for j = 0 to K − 1 do

10: sum += phis[j][c word] * thetas[m][j]
11: p[j] = sum
12: end for
13: float stop = uniform() * sum;
14: for j = 0 to K − 1 do
15: if stop < p[j] then
16: break
17: end if
18: end for
19: atomic increment wpt[j][c word]
20: atomic increment wt[j]
21: increment tpd[m][j]
22: end for
23: end for

lowing arrays and matrices (where I denotes integers and F
denotes floating-points): words ∈ IM×N ; phis ∈ FK×V ;
thetas ∈ FM×K ; tpd ∈ IM×K (topics per document);
wpt ∈ IK×V (words per topic); wt ∈ IK (total words per
topic).

Algorithm 1 shows how we sample the latent variables. Note
that for each document, we launch a separate thread that
samples topics for every word in that document. For the
corpuses we are interested in, the number of documents
ranges from tens of thousands to millions, so there is more
than enough parallelism.

As the threads select topics for each token in their docu-
ments, they update the wpt, wt, and tpd matrices. These
keep count of how many times each word has been assigned
to a particular topic, how many times each topic has been
assigned throughout the corpus, and how many times each
topic appears in each document. These counts are used to
estimate φ and θ. Algorithm 2 shows how E[φ] is computed
by launching a thread for each entry (E[θ] is computed
similarly).

We implemented this algorithm on an NVIDIA Titan Black,
as well as the uncollapsed Gibbs sampler. We also imple-
mented a collapsed Gibbs sampler for comparison, on an
Intel i7-4820K CPU. We present the resulting benchmarks
in Figures 4 and 5 to show how the gap between the GPU
algorithms’ runtimes and that of a collapsed Gibbs sampler

Algorithm 2 Estimation of the φ variables
1: for v = 0 to V − 1 in parallel do
2: for k = 0 to K − 1 in parallel do
3: phis[k][v] = (wpt[k][v] + β) / (wt[k] + βV )
4: end for
5: end for
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Figure 4. Time to draw 100 samples for 50,000 documents as a
function of the number of topics. The uncollapsed Gibbs sampler
and the Mean-for-Mode estimation benefit from the large number
of parallel units of the GPU when we increase the number of topics.
They have similar runtime performance, with the Mean-for-Mode
estimation being faster.

scales. Moreover, note that the GPU algorithms scale with
increased number of cores. As an example, while switching
from an NVIDIA GeForce 640 (384 cores) to a Titan (2688
cores), we observed a 10× speed-up on the uncollapsed
Gibbs sampler.2 Note that the sequential sampler here is
not the most efficient CPU implementation of collapsed
Gibbs sampling, such as Fast-LDA (Porteous et al., 2008)
or SparseLDA (Yao et al., 2009). However, our point is that
an implementation of Mean-for-Mode estimation for GPUs
that has not been overly tailored to LDA has good complex-
ity and scales well, and the gap in runtime compared with
that of a collapsed Gibbs sampler increases linearly.

4. Improving Memory Usage
As we suggested in the introduction, after exposing enough
parallelism, the next barriers to performance are related to
memory use. Given the degree of parallelism of the algo-
rithm and the hardware, it is best to process as much data as
possible on one GPU. In addition to reducing memory foot-
print, we can improve performance by reducing the amount
of memory accesses, thereby improving memory bandwidth

2Not all of this performance gap is due to number of cores.
The GeForce 640 is based on the earlier Kepler chipset and has
different memory clockrate and bandwdith.
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Figure 5. Time to draw 100 samples for 20 topics as a function
of the number of documents. The uncollapsed Gibbs sampler
and the Mean-for-Mode estimation benefit from the large number
of parallel units of the GPU when we increase the number of
documents.

usage within the GPU.

Unfortunately, the matrices used in Algorithms 1 and 2
are very large. However, note that even the basic version of
Mean-for-Mode estimation described in the previous section
has some advantages in these respects over both uncollapsed
and collapsed Gibbs samplers.

Unlike the uncollapsed Gibbs sampler, Mean-for-Mode es-
timation does not sample the parameters from Dirichlet
distributions. Dirichlet variates are often generated by sam-
pling from Gamma distributions and then normalizing. The
shape parameters of these Gamma distributions are com-
puted by adding the priors to the appropriate count from
wpt or tpd. If α or β are small (for instance, 0.01) and
the current count from wpt or tpd is very small, it is quite
likely that the unnormalized Gamma variate is not repre-
sentable with single-precision floating-points.3 This means
uncollapsed Gibbs samplers must store these samples as
double-precision floating-point values to prevent rounding
off to 0. In contrast, because it doesn’t need to draw from
a Gamma distribution, the Mean-for-Mode estimator can
store these parameters as single-precision floats, which are
smaller and faster to process. Moreover, some GPU archi-
tectures, including the ones used in our experiments, have
many more single-precision cores than double-precision
cores, so using single-precision parameters achieves greater
parallelism on such GPUs.

Although the collapsed Gibbs sampler does not have to store
these parameters at all, the trade-off is that it must store the
latent variables. This requires space on the order of the

3It is common to use β as small as 0.01, and the smallest
positive single precision float is 2−149. The CDF of the Gamma
distribution with shape 0.01 and scale of 1 at 2−149 is ≈ 0.358.
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Figure 6. Evolution of log likelihood over time for the Mean-for-
Mode estimator with exact counters and approximate counters. The
experiment is plotted every 10 iterations for 20 topics and 50,000
documents. The sampler with approximate counters is designed to
handle large data loads, but also happens to have a better runtime.
This runtime advantage increases with larger number of topics.

total number of tokens in the corpus, and is typically much
larger than the parameter matrices when analyzing many
documents.

4.1. Approximating the Counters

In Algorithm 1, note that the matrices wpt and tpd are
cleared to zero at the very beginning of the algorithm, and
that the only updates to their entries are increments. (In
contrast, with the collapsed Gibbs sampler, the correspond-
ing matrices are never cleared to zero, and updates can in-
volve both increments and decrements.) This feature of the
Mean-for-Mode algorithm (and in general of uncollapsed
algorithms) makes it possible to use approximate counters
for the counts in wpt and tpd.

The intuitive idea of approximate counters (Morris, 1978) is
to estimate the order of magnitude of the number of incre-
ments. As a simple example, assume we want to increment
a counter and the current value it stores is X . We increment
X with probability 2−X , and otherwise do nothing. In the
end, a statistically reasonable estimate of the number of
increment attempts is 2X − 1. This idea can be improved
in different ways to allow for different level of precision
(Morris, 1978) or to have a behavior similar to that of a
floating-point representation (Csűrös, 2010).

The benefit of using approximate counters is obvious: we
can greatly reduce the amount of memory required to store
the counts; for instance, we could decide to use only 8 bits
per counter, or even 4. However, this raises two questions.
First, can we use approximate counters while preserving
the statistical performance? Second, what is the impact
on runtime performance? In Figure 6, we show that, for
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8-bit counters, the approximation has no consequence on
the statistical performance. More surprisingly, perhaps, the
approximate counters lead to a gain in runtime performance
(in our experience, this gain increases with the number of
topics) despite the fact that an increment now requires draw-
ing from a uniform distribution. This is likely because we
perform fewer writes to memory when incrementing approx-
imate counters, since each write happens only with some
probability. In addition, the reads from memory for a warp
only need to load 32 bytes instead of 128.

4.2. Coalescing Memory Accesses

Finally, a key point about Algorithm 1 is the memory access
to the φ matrix in the innermost loop. Consider that several
threads, working on distinct documents, are each processing
a distinct word. As they all execute this memory access in a
SIMD fashion, they access non-contiguous chunks of mem-
ory. This is a so-called un-coalesced memory access, and it
is a significant bottleneck. To cope with this performance
issue, we need to have the threads work together to bring the
relevant data from memory to the registers, and indeed we
can entirely redesign the algorithm so that the data is shared
between the threads. This “butterfly” optimization (Steele
& Tristan, 2015) is also applicable to sampling from cate-
gorical distributions in other mixture models. The runtime
effects of this optimization for LDA with Mean-for-Mode
estimation are presented in Figure 7.
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Figure 7. Time to draw 100 samples as a function of topic number
for the Mean-for-Mode estimation with the butterfly optimization
turned on or off. The butterfly optimization is very effective as the
number of topics becomes larger.

5. Sparse Representation of Probability
Matrices

The count matrices wpt and tpd are typically very sparse.
It is possible for collapsed Gibbs samplers to take advantage
of this sparsity (Porteous et al., 2008; Yao et al., 2009) to

significantly improve runtime performance. However, this
sparsity technique is difficult to use with GPUs. As Lu et al.
(2013) note, the problem is that as threads draw new values
for the latent variables and update the count matrices, some
of the entries which were zero will become non-zero. This
is fine on CPUs, where we can use sparse matrix representa-
tions that can easily be resized dynamically. However, these
representations are not efficient on GPUs.

Meanwhile, in an uncollapsed Gibbs sampler, the function
that draws latent variables reads from the probability ma-
trices φ and θ, but updates only the wpt and tpd. Since
the φ and θ matrices are static during latent variable as-
signment, a sparse representation would not need to be dy-
namically resized. Unfortunately, these matrices are drawn
from Dirichlet distributions, so they are not sparse. This
is a considerable drawback, and in fact it makes it difficult
to justify using an uncollapsed Gibbs sampler, despite the
ample parallelism.

Fortunately, Mean-for-Mode estimation overcomes both of
these issues. Since the algorithm uses deterministic point
estimates for the values of the θ and φ matrices, these
matrices can be stored sparsely. In addition, these matrices
are not modified while drawing new values for the latent
variables, so there is no need to resize them dynamically. We
use a dense representation of wpt and tpd so that they can
be updated during latent variable assignment. This makes it
possible to use sparsity to reduce the sampling complexity,
even on GPUs.

The total unnormalized probability mass for the topic assign-
ment of word v appearing in document m is proportional
to ∑

k

[
(tpd[m][k] + α)× wpt[k][v] + β

wt[k] + βV

]
so, as pointed out by Yao et al. (2009), we can decompose
the probability calculation as the sum of three terms (“buck-
ets”) S, Rm, and Qmv where

S =
∑
k

αβ

wt[k] + βV
Rm =

∑
k

tpd[m][k]β

wt[k] + βV

Qmv =
∑
k

tpd[m][k] + α

wt[k] + βV
× wpt[k][v]

where S is the same for every document, Rm is the same for
every word in document m, and Qmv depends on both the
word and the document. To make use of this rewriting when
choosing a topic (cf. Figure 1, lines 13–18) we pre-compute
S, as well asRm for eachm. Then, as the thread processing
document m needs to sample a topic for some word v, it
computes Qmv. It then decides which “bucket” to draw
from based on their relative masses. If it selects buckets Rm
or Qmv , we consider only topics whose counts are non-zero,
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Algorithm 3 LDA sampler using both sparse and dense
matrices

1: estimate phi()
2: estimate theta()
3: for i = 0 to T do
4: float S
5: if i <= D then
6: draw z()
7: else
8: sparse draw z(S)
9: end if

10: if i < D or else i == T then
11: estimate phi()
12: estimate theta()
13: else
14: S = pre compute()
15: estimate phi sparse()
16: estimate theta sparse()
17: segmented reduction thetas

18: end if
19: end for

which greatly reduces the number of multiplications that
must be done.

Algorithm 3 presents the sampler. It corresponds to the
high-level Mean-for-Mode algorithm presented in Figure 2.
For performance reasons, it is best to start out using dense
matrices, then switch to using sparse representation after a
few iterations, once the count matrices become sufficiently
sparse. The number of initial iterations that are done using
dense probability matrices corresponds to the parameter D.

Once the sampler has reached the point where it uses sparse
probability matrices, each iteration works as follows. Start-
ing after the latent variables have been drawn, we first pre-
compute (function “pre compute”) many useful terms, in-
cluding Z = 1/(βV + wt[k]), and αZ−1, αβZ−1, βZ−1

for all k. In the remainder, for simplicity of presentation,
we assume that these values are pre-computed and stored.
We perform a reduction over the terms αβZ−1 to obtain S.

Then the functions “estimate phi sparse” and “esti-
mate theta sparse” take as input the counts and produce
sparse matrices, respectively in Compressed Sparse Column
representation and Compressed Sparse Row representation.
Although we call these matrices phis and thetas, in anal-
ogy with the non-sparse algorithm, they are now really terms
that are used in computing the R and Q buckets described
above:

thetas = m 7→
{(

k,
tpd[m][k]

wt[k] + βV

)
: tpd[m][k] 6= 0

}
phis = v 7→ {(k, wpt[k][v]) : wpt[k][v] 6= 0}

Note that when we refer to tpd and wpt above, we mean
their values at the time that the thetas and phis matrices
are produced. In the remainder, when using these sparse
matrices, we use the following notations (described for phis
but valid for all three matrices). For a given word v, phis[v]
refers to the set {(k, wpt[k][v]) : wpt[k][v] 6= 0}. We write
k ∈ phis[v] if there exists a value a such that (k, a) ∈
phis[v]. If k ∈ phis[v], we use phis[k][v] to refer to
the location in the array phis as well as the value at that
location.

Once thetas has been computed, it is simple to obtain the
Rm term for each document by performing a segmented
reduction over thetas (stored as an array):

Rm =
∑
k

thetas[m][k] · β

The function that draws the topics in the sparse case (func-
tion “sparse draw z”) is different from Algorithm 1. First,
we need to decide which bucket to draw from by calculating
Qmv. Then we need to select from topics with non-null
probabilities. To calculate Qmv , the thread processing doc-
ument m computes:(

α

wt[k] + βV
+ tpd[m][k]

)
× wpt[k][v]

for each k and sums them. Since these terms are zero when-
ever phis[k][v] is, the sum can be computed by iterating
through the sparse representation of the phis[k] row, instead
of all possible values of k.4

In Figure 8 we show how different values of D affect the
sampling complexity. The case whereD = T is the standard
Mean-for-Mode. ChoosingD = 0 (that is, using only sparse
matrices) is initially much slower, but eventually, once the
matrices become sparse, it becomes much quicker to draw a
sample. Finally, by switching from dense to sparse at a good
time, it is possible to benefit from both types of learning.
For example, in the streaming setting, the dense version
could be used to train an initial model quickly, and then the
sparse version could be used to quickly update the model as
subsequent documents become available (Yao et al., 2009).

6. Related Work
Many papers have been written about parallelizing and dis-
tributing Gibbs sampling for LDA. Most follow from the
work on AD-LDA by Newman et al. (2009), which is based
on the collapsed Gibbs sampler of Griffiths & Steyvers

4A careful reader may note that this computation requires ac-
cessing the tpd matrix, which could be costly since it is sparse.
An effective implementation can implement a filter to quickly
test whether tpd[m][k] is in the sparse matrix. One particularly
space-efficient implementation could use a Bloom filter (Bloom,
1970).
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Figure 8. Evolution of log likelihood over time for the Mean-for-
Mode estimator with different number of sparse iterations. The
experiment is plotted every 10 iterations for 20 topics and 50,000
documents. The version of the sampler that uses sparse representa-
tions throughout takes longer to draw initial samples compared to
the dense version, but as it begins to converge, subsequent samples
are drawn much more quickly. Balancing the use of dense and
sparse matrices produces the fastest version overall.

(2004). Distributed implementations include Wang et al.
(2009); Smola & Narayanamurthy (2010); Liu et al. (2011).
Some of these, such as the implementation of Smola &
Narayanamurthy (2010) are very efficient.

Some authors have also implemented parallel versions of
the collapsed Gibbs sampler on GPUs. Yan et al. (2009)
provide an implementation based on AD-LDA. Of course,
they cannot afford to replicate the matrix of counts wpt

as one must do for a distributed implementation, and to
cope with this issue, they make sure that different threads
are in charge of different parts of the vocabulary. This
unfortunately introduces synchronization rounds that are
linear with the number of threads, which will not scale well
with more recent GPU architectures and the ever-increasing
number of cores.

Lu et al. (2013) provide an implementation also based on
AD-LDA, but the counts of wpt are shared between all of the
threads and are accessed concurrently. This implementation
also makes use of sparsity, although the implementation
is fairly complex. However, the use of a collapsed Gibbs
sampler precludes the use of approximate counters which
are critical to fit more data on the graphics card. Also,
their benchmarks show that scalability is limited, and this
is probably due to the much higher number of memory
accesses required to keep track of the counts.

The experiments by Tristan et al. (2014) show that an un-
collapsed Gibbs sampler is a good candidate for a GPU
implementation. However, it suffers from the statistical per-
formance issues described by Newman et al. (2009) and

cannot use the sparsity of the count matrices.

Instead, our algorithm is based on an improved uncollapsed
Gibbs sampler and designed in the first place to scale on
GPUs. Another example that designs a novel inference
method for GPUs is the work of Zhao et al. (2014). Al-
though our algorithm is quite different, we believe it could
benefit from the techniques they describe, and vice-versa.

7. Conclusion
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Figure 9. Evolution of log likelihood over time for a highly-
optimized uncollapsed Gibbs sampler compared to the Mean-for-
Mode estimator presented in this paper. The Mean-for-Mode esti-
mation also has a much smaller memory footprint and can handle
more data, which is useful given the scalability characteristics of
GPU implementation of training for LDA.

We have shown how Mean-for-Mode estimation, a variant of
uncollapsed Gibbs sampling that uses the mean of Dirichlet
distributions to make point estimates, can be implemented
efficiently on GPUs. The algorithm exposes a lot of paral-
lelism and has good statistical performance. It also lends
itself to reducing the total amount of computation by tak-
ing advantage of sparsity. The overall gain in performance
on our running example is presented in Figure 9, and the
gain grows larger with increased number of documents or
topics. In addition to exposing sufficient parallelism, Mean-
for-Mode estimation also enables the use of techniques to
reduce memory footprint and bandwidth use. By combining
sparse representations, approximate counters, and avoiding
the need to store latent variables, we are able to process
larger data sets on a single GPU node.

Although we have focused here on using Mean-for-Mode es-
timation for LDA, we believe similar techniques could be ap-
plied to parameter estimation for other large mixture models.
In addition, the memory-saving optimizations we describe
here may be applicable in the distributed setting, where min-
imizing communication and maximizing the amount of data
processed per node is important.
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