
Generalization error bounds for learning to rank

A. Proof of Proposition 1
Proof. Let ej’s denote standard basis vectors. We have
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mX

j=1

Pj(y)ej +
mX

j=1

exp(sj)Pm
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We also have
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Moreover,
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B. Proof of Proposition 2
Proof. Let 1(condition) denote an indicator variable. We have

[rs�SD(s, y)]j = D(1)

 
mX

i=1

G(ri)

"
1

�

exp(si/�)P
j0 exp(sj0/�)

1(i=j) � 1

�

exp((si + sj)/�)

(

P
j0 exp(sj0/�))

2

#!

Therefore,
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C. RankSVM
The RankSVM surrogate is defined as:

�RS(s, y) =
mX

i=1

mX

j=1

max(0, 1(yi>yj)(1 + sj � si))
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It is easy to see that rs�RS(s, y) =
Pm

i=1

Pm
j=1 max(0, 1(yi>yj)(1 + sj � si))(ej � ei). Thus, the `1 norm of gradient

is O(m2
) .

D. Proof of Theorem 3
Proof. It is straightforward to check that F 0

lin is contained in both Ffull as well as Fperminv. So, we just need to prove that
any f that is in both Ffull and Fperminv has to be in F 0

lin as well.

Let P⇡ denote the m ⇥ m permutation matrix corresponding to a permutation ⇡. Consider the full linear class Ffull. In
matrix notation, the permutation invariance property means that, for any ⇡, X , we have P⇡[hX,W1i , . . . , hX,Wmii]> =

[hP⇡X,W1i , . . . , hP⇡X,Wmi]>.

Let ⇢1 = {P⇡ : ⇡(1) = 1}, where ⇡(i) denotes the index of the element in the ith position according to permutation ⇡.
Fix any P 2 ⇢1. Then, for any X , hX,W1i = hPX,W1i. This implies that, for all X , Tr(W1

>X) = Tr(W1
>PX).

Using the fact that Tr(A>X) = Tr(B>X), 8X implies A = B, we have that W1
>
= W1

>P . Because P>
= P�1, this

means PW1 = W1. This shows that all rows of W1, other than 1st row, are the same but perhaps different from 1st row.
By considering ⇢i = {P⇡ : ⇡(i) = i} for i > 1, the same reasoning shows that, for each i, all rows of Wi, other than ith
row, are the same but possibly different from ith row.

Let ⇢1$2 = {P⇡ : ⇡(1) = 2,⇡(2) = 1}. Fix any P 2 ⇢1$2. Then, for any X , hX,W2i = hPX,W1i and hX,W1i =
hPX,W2i. Thus, we have W>

2 = W>
1 P as well as W>

1 = W>
2 P which means PW2 = W1, PW1 = W2. This shows

that row 1 of W1 and row 2 of W2 are the same. Moreover, row 2 of W1 and row 1 of W2 are the same. Thus, for some
u, u0 2 Rd, W1 is of the form [u|u0|u0| . . . |u0

]

> and W2 is of the form [u0|u|u0| . . . |u0
]

>. Repeating this argument by
considering ⇢1$i for i > 2 shows that Wi is of the same form (u in row i and u0 elsewhere).

Therefore, we have proved that any linear map that is permutation invariant has to be of the form:

X 7!
0

@u>Xi + (u0
)

>X

j 6=i

Xj

1

A
m

i=1

.

We can reparameterize above using w = u� u0 and v = u0 which proves the result.

E. Proof of Lemma 4
Proof. The first equality is true because

kX>k1!p = sup

v 6=0

kX>vkp
kvk1 = sup

v 6=0
sup

u 6=0

⌦
X>v, u

↵

kvk1kukq
= sup

u 6=0
sup

v 6=0

hv,Xui
kvk1kukq = sup

u 6=0

kXuk1
kukq = kXkq!1.

The second is true because

kXkq!1 = sup

u 6=0

kXuk1
kukq = sup

u 6=0

m
max

j=1

| hXj , ui |
kukq

=

m
max

j=1
sup

u 6=0

| hXj , ui |
kukq =

m
max

j=1
kXjkp.

F. Proof of Theorem 6
Our theorem is developed from the “expectation version” of Theorem 6 of Shalev-Shwartz et al. (2009) that was originally
given in probabilistic form. The expected version is as follows.

Let Z be a space endowed with a probability distribution generating iid draws Z1, . . . , Zn. Let W ✓ Rd and f : W⇥Z !
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R be �-strongly convex4 and G-Lipschitz (w.r.t. k · k2) in w for every z. We define F (w) = E [f(w,Z)] and let

w?
= argmin

w2W
F (w),

ŵ = argmin

w2W
1

n

nX

i=1

f(w,Zi).

Then E [F (ŵ)� F (w?
)]  4G2

�n , where the expectation is taken over the sample. The above inequality can be proved by
carefully going through the proof of Theorem 6 proved by Shalev-Shwartz et al. (2009).

We now derive the “expectation version” of Theorem 7 of Shalev-Shwartz et al. (2009). Define the regularized empirical
risk minimizer as follows:

ŵ� = argmin

w2W
�

2

kwk22 +
1

n

nX

i=1

f(w,Zi). (9)

The following result gives optimality guarantees for the regularized empirical risk minimizer.
Theorem 18. Let W = {w : kwk2  W2} and let f(w, z) be convex and G-Lipschitz (w.r.t. k · k2) in w for every z. Let

Z1, ..., Zn be iid samples and let � =

r
4G2
n

W2
2

2 +
4W2

2
n

. Then for ŵ� and w? as defined above, we have

E [F (ŵ�)� F (w?
)]  2GW2

 
8

n
+

r
2

n

!
. (10)

Proof. Let r�(w, z) =

�
2 kwk22 + f(w, z). Then r� is �-strongly convex with Lipschitz constant �W2 + G in k · k2.

Applying “expectation version” of Theorem 6 of Shalev-Shwartz et al. (2009) to r�, we get

E

�

2

kŵ�k22 + F (ŵ�)

�
 min

w2W

⇢
�

2

kwk22 + F (w)

�
+

4(�W2 +G)

2

�n
 �

2

kw?k22 + F (w⇤
) +

4(�W2 +G)

2

�n
.

Thus, we get

E [F (ŵ�)� F (w?
)]  �W 2

2

2

+

4(�W2 +G)

2

�n
.

Minimizing the upper bound w.r.t. �, we get � =

q
4G2

n

r
1

W2
2

2 +
4W2

2
n

. Plugging this choice back in the equation above and

using the fact that
p
a+ b  p

a+

p
b finishes the proof of Theorem 18.

We now have all ingredients to prove Theorem 6.

Proof of Theorem 6. Let Z = X ⇥ Y and f(w, z) = �(Xw, y) and apply Theorem 18. Finally note that if � is G�-
Lipschitz w.r.t. k · k1 and every row of X 2 Rm⇥d has Euclidean norm bounded by RX then f(·, z) is G�RX -Lipschitz
w.r.t. k · k2 in w.

G. Proof of Theorem 12
Proof. Following exactly the same line of reasoning (reducing a sample of size n, where each prediction is Rm-valued, to
an sample of size mn, where each prediction is real valued) as in the beginning of proof of Proposition 7, we have

N1(✏,� � F1, n)  N1(✏/G�,G1,mn). (11)

Plugging in the following bound due to Zhang (2002, Corollary 5):

log2 N1(✏/G�,G1,mn) 
&
288G2

� W
2
1
¯R2
X (2 + ln d)

✏2

'

⇥ log2

�
2d8G�W1

¯RX/✏emn+ 1

�

into (11) respectively proves the result.
4Recall that a function is called �-strongly convex (w.r.t. k · k

2

) iff f � �
2

k · k2
2

is convex.
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H. Calculations involved in deriving Equation (8)
Plugging in the value of ⌘ from (7) into the expression

L�(w?
)

(1� 4⌘H)

+

W 2
2

2⌘(1� 4⌘H)n

yields (using the shorthand L? for L�(w?
))

L?
+

2HW2L?

p
4H2W 2

2 + 2HL?n
+

W2

n

"
4H2W 2

2p
4H2W 2

2 + 2HL?n
+

q
4H2W 2

2 + 2HL?n+ 4HW2

#

Denoting HW 2
2 /n by x, this simplifies to

L?
+

2

p
xL?

+ 4x
p
xp

4x+ 2L?
+

p
x
p
4x+ 2L?

+ 4x.

Using the arithmetic mean-geometric mean inequality to upper bound the middle two terms gives

L?
+ 2

p
2xL?

+ 4x2
+ 4x.

Finally, using
p
a+ b  p

a+

p
b, we get our final upper bound

L?
+ 2

p
2xL?

+ 8x.

I. Calculation of smoothness constant

k(X(i)
)

>r2
s�(X

(i)w, y(i))X(i)k2!2 = sup

v 6=0

k(X(i)
)
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s�(X
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v 6=0
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)
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s�(X

(i)w, y(i))X(i)vk1
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)
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s�(X

(i)w, y(i))k1!1 · kX(i)vk1
kvk2

 sup

v 6=0

k(X(i)
)

>k1!2 · kr2
s�(X

(i)w, y(i))k1!1 · kX(i)k2!1 · kvk2
kvk2


✓

m
max

j=1
kX(i)

j k
◆2

· kr2
s�(X

(i)w, y(i))k1!1

 R2
Xkr2

s�(X
(i)w, y(i))k1!1.

J. Proof of Lemma 14
Proof. Consider the function

f(t) = �((1� t)s1 + ts2).

It is clearly non-negative. Moreover

|f 0
(t1)� f 0

(t2)| = | hrs�(s1 + t1(s2 � s1))�rs�(s1 + t2(s2 � s1)), s2 � s1i |
 |||rs�(s1 + t1(s2 � s1))�rs�(s1 + t2(s2 � s1))|||? · |||s2 � s1|||
 H� |t1 � t2| |||s2 � s1|||2

and therefore it is smooth with constant h = H�|||s2 � s1|||2. Appealing to Lemma 13 now gives

(f(1)� f(0))2  6H�|||s2 � s1|||2(f(1) + f(0))(1� 0)

2

which proves the lemma since f(0) = �(s1) and f(1) = �(s2).
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K. Proof of Proposition 15
Proof. Let w,w0 2 F�,2(r). Using Lemma 14

nX

i=1

1

n

⇣
�(X(i)w, y(i))� �(X(i)w0, y(i))

⌘2

 6H�

nX

i=1

1

n

⇣
�(X(i)w, y(i)) + �(X(i)w0, y(i))

⌘

· kX(i)w �X(i)w0k21
 6H� · n

max

i=1
kX(i)w �X(i)w0k21

·
nX

i=1

1

n

⇣
�(X(i)w, y(i)) + �(X(i)w0, y(i))

⌘

= 6H� · n
max

i=1
kX(i)w �X(i)w0k21 ·

⇣
ˆL�(w) + ˆL�(w

0
)

⌘

 12H�r · n
max

i=1
kX(i)w �X(i)w0k21.

where the last inequality follows because ˆL�(w) + ˆL�(w0
)  2r.

This immediately implies that if we have a cover of the class G2 at scale ✏/
p
12H�r w.r.t. the metric

n
max

i=1

m
max

j=1

���
D
X(i)

j , w
E
�
D
X(i)

j , w0
E���

then it is also a cover of F�,2(r) w.r.t. dZ
(1:n)

2 . Therefore, we have

N2(✏,F�,2(r), Z
(1:n)

)  N1(✏/
p
12H�r,G2,mn). (12)

Appealing once again to a result by Zhang (2002, Corollary 3), we get

log2 N1(✏/
p
12H�r,G2,mn) 

⇠
12H� W 2

2 R2
X r

✏2

⇡

⇥ log2(2mn+ 1)

which finishes the proof.

L. Proof of Corollary 16
Proof. We plug in Proposition 15’s estimate into (5):

bRn (F�,2(r))  inf

↵>0

0

BB@4↵+ 10

Z p
Br

↵

vuut
l
12H� W 2

2 R2
X r

✏2

m
log2(2mn+ 1)

n
d✏

1

CCA

 inf

↵>0

 
4↵+ 20

p
3W2RX

r
rH� log2(3mn)

n

Z p
Br

↵

1

✏
d✏

!
.

Now choosing ↵ = C
p
r where C = 5

p
3W2RX

q
H� log2(3mn)

n gives us the upper bound

bRn (F�,2(r))  4

p
rC

 
1 + log

p
B

C

!
 4

p
rC log

3

p
B

C
.
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M. Proof of Theorem 17
Proof. We appeal to Theorem 6.1 of Bousquet (2002) that assumes there exists an upper bound

bRn (F2,�(r))   n(r)

where  n : [0,1) ! R+ is a non-negative, non-decreasing, non-zero function such that  n(r)/
p
r is non-increasing.

The upper bound in Corollary 16 above satisfies these conditions and therefore we set  n(r) = 4

p
rC log

3
p
B

C with C as
defined in Corollary 16. From Bousquet’s result, we know that, with probability at least 1� �,

8w 2 F2, L�(w)  ˆL�(w) + 45r?n +

q
8r?nL�(w)

+

q
4r0L�(w) + 20r0

where r0 = B(log(1/�) + log log n)/n and r?n is the largest solution to the equation r =  n(r). In our case, r?n =⇣
4C log

3
p
B

C

⌘2
. This proves the first inequality.

Now, using the above inequality with w = ŵ, the empirical risk minimizer and noting that ˆL�(ŵ)  ˆL�(w?
), we get

L�(ŵ)  ˆL�(w
?
) + 45r?n +

q
8r?nL�(ŵ)

+

q
4r0L�(ŵ) + 20r0

The second inequality now follows after some elementary calculations detailed below.

M.1. Details of some calculations in the proof of Theorem 17
Using Bernstein’s inequality, we have, with probability at least 1� �,

ˆL�(w
?
)  L�(w

?
) +

r
4Var[�(Xw?, y)] log(1/�)

n
+

4B log(1/�)

n

 L�(w
?
) +

r
4BL�(w?

) log(1/�)

n
+

4B log(1/�)

n

 L�(w
?
) +

q
4r0L�(w?

) + 4r0.

Set D0 = 45r?n + 20r0. Putting the two bounds together and using some simple upper bounds, we have, with probability
at least 1� 2�,

L�(ŵ) 
q
D0

ˆL�(w?
) +D0,

ˆL�(w
?
) 

q
D0L�(w?

) +D0.

which implies that

L�(ŵ) 
p
D0

rq
D0L�(w?

) +D0 +D0.

Using
p
ab  (a+ b)/2 to simplify the first term on the right gives us

L�(ŵ)  D0

2

+

p
D0L�(w?

) +D0

2

+D0 =

p
D0L�(w?

)

2

+ 2D0 .


