Generalization error bounds for learning to rank

A. Proof of Proposition 1
Proof. Let e;’s denote standard basis vectors. We have
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B. Proof of Proposition 2

Proof. Let 1condition) denote an indicator variable. We have
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C. RankSVM

The RankSVM surrogate is defined as:

Ors(s,y) = ZZ max (0, 1y, 5y,) (1 + 55 — 5i))
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It is easy to see that Vidrs(s,y) = d_im) D7) max(0, Ly, 5y, (1 + 55 — si))(ej — ;). Thus, the £, norm of gradient
is O(m?) .

D. Proof of Theorem 3

Proof. 1Tt is straightforward to check that ]-'{in is contained in both F,y; as well as Fperminy. S0, we just need to prove that

any f that is in both Fp,n and Fperminy has to be in Fj; | as well.
Let P, denote the m x m permutation matrix corresponding to a permutation 7. Consider the full linear class Fe,j. In
matrix notation, the permutation invariance property means that, for any 7, X, we have P, [(X, W1) ..., (X, W, )] =

(Pr X, W1) . (Pr X, W) T

Let p; = {P; : m(1) = 1}, where 7(¢) denotes the index of the element in the ith position according to permutation 7.
Fix any P € p;. Then, for any X, (X, W;) = (PX,W). This implies that, for all X, Tr(WlTX) = Tr(WlTPX).
Using the fact that Tr(AT X) = Tr(BT X),VX implies A = B, we have that W, = W, " P. Because PT = P, this
means PW; = W;. This shows that all rows of W7, other than 1st row, are the same but perhaps different from 1st row.
By considering p; = { Py : m(i) = i} for i > 1, the same reasoning shows that, for each i, all rows of W, other than ith
row, are the same but possibly different from ¢th row.

Let p1y2 = {Pr : (1) = 2,7(2) = 1}. Fix any P € p12. Then, for any X, (X, Ws) = (PX,W;) and (X, W;) =
(PX,Wy). Thus, we have W, = W, P as well as W," = W, P which means PWy = Wy, PW; = W,. This shows
that row 1 of W7 and row 2 of W5 are the same. Moreover, row 2 of W; and row 1 of W5 are the same. Thus, for some
u,u’ € R, Wy is of the form [uu'[v/| ... |u/]T and Wy is of the form [u/|ulv/|. .. |u/]T. Repeating this argument by
considering p1; for i > 2 shows that W is of the same form (u in row ¢ and u’ elsewhere).

Therefore, we have proved that any linear map that is permutation invariant has to be of the form:

m
X [ u' X+ ()T X;
i i=1
We can reparameterize above using w = u — u’ and v = ' which proves the result. O
E. Proof of Lemma 4
Proof. The first equality is true because
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The second is true because
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F. Proof of Theorem 6

Our theorem is developed from the “expectation version” of Theorem 6 of Shalev-Shwartz et al. (2009) that was originally
given in probabilistic form. The expected version is as follows.

Let Z be a space endowed with a probability distribution generating iid draws Z1, ..., Z,. Let W C R%?and f : Wx Z —
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R be A-strongly convex* and G-Lipschitz (w.r.t. || - ||2) in w for every 2. We define F(w) = E [f(w, Z)] and let

w* = argmin F(w),
weWw

= rgmln—waZ

wew N

Then E [F(w) — F(w*)] < 4G , where the expectation is taken over the sample. The above inequality can be proved by
carefully going through the proof of Theorem 6 proved by Shalev-Shwartz et al. (2009).

We now derive the “expectation version” of Theorem 7 of Shalev-Shwartz et al. (2009). Define the regularized empirical
risk minimizer as follows:

iy = argmin 2 Juwll3 + Zf w, ;) ©)

The following result gives optimality guarantees for the regularized empmcal risk minimizer.
Theorem 18. Let W = {w : ||w||2 < Wa} and let f(w, z) be convex and G-Lipschitz (w.rt. || - ||2) in w for every z. Let

4G2
21,y .oy Ly, be iid samples and let N = W Then for wy and w* as defined above, we have
+

n

E[F(iy) — F(w*)] < 2G W, (i + \/Z> . (10)

Proof. Let ry(w,2) = 3||w||3 + f(w,z). Then ry is A-strongly convex with Lipschitz constant AW> + G in | - [|.
Applying “expectation version” of Theorem 6 of Shalev-Shwartz et al. (2009) to ), we get

Ao o A (A AN+ G2 Ay s AW, + G)?
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Thus, we get
)\W22 n 4(AWs + G)2

E [P (i) = F(w)] € =5 =

Minimizing the upper bound w.r.t. A, we get A = 4/ % W Plugging this choice back in the equation above and
-t

using the fact that v/a + b < v/a + /b finishes the proof of Theorem 18. O

We now have all ingredients to prove Theorem 6.

Proof of Theorem 6. Let Z = X x Y and f(w,z) = ¢(Xw,y) and apply Theorem 18. Finally note that if ¢ is G-
Lipschitz w.r.t. || - ||~ and every row of X € R™* has Euclidean norm bounded by Rx then f(-, z) is G Rx-Lipschitz
wrt. || - |2 in w. O

G. Proof of Theorem 12

Proof. Following exactly the same line of reasoning (reducing a sample of size n, where each prediction is R™-valued, to
an sample of size mn, where each prediction is real valued) as in the beginning of proof of Proposition 7, we have

Na(€e, ¢ 0 Fi,n) < Noo(e/Gy, G1, mn). (11)
Plugging in the following bound due to Zhang (2002, Corollary 5):

288 G2 W2 R% (2 + Ind)
1Og2Nw(E/G¢7g1’mn) < L eZX

x logy (2[8GyW1Rx [€]lmn + 1)

into (11) respectively proves the result. O

#Recall that a function is called A-strongly convex (w.r.t. || - [|2) iff f — 3| - ||3 is convex.
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H. Calculations involved in deriving Equation (8)
Plugging in the value of 7 from (7) into the expression

Low)) w2
(1—4nH) 291 —4nH)n

yields (using the shorthand L* for L (w*))

I 2HW,L* Wy AH2W2

+ == - \/ AH2W$ + 2HL*n + 4HW,
VAH2WZ +2HL*n 0 | \/4H?W} +2HL*n

Denoting HW3 /n by x, this simplifies to

9/TL* + 4
L* + % + VaViz + 2L* + 4z

Using the arithmetic mean-geometric mean inequality to upper bound the middle two terms gives

L* 4+ 2/ 2z L* + 422 + 4.
Finally, using v/a + b < \/a + v/b, we get our final upper bound

L* +2V2xL* + 8.

I. Calculation of smoothness constant
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J. Proof of Lemma 14

Proof. Consider the function
f(t) = ¢((1—t)s1 +tsa).

It is clearly non-negative. Moreover

|f/(t1) = ['(t2)| = [(Vsd(s1 + ti(s2 — 51)) — Vs@(s1 +ta(s2 — 51)), 82 — 81) |
< [Vso(s1 +t1(s2 — s1)) = Vo(s1 + ta(s2 — s1))l[[x - |l[s2 — sull|
< Hy [ty — ta| [[|s2 — s1]|?

and therefore it is smooth with constant h = Hy|||s2 — s1]||>. Appealing to Lemma 13 now gives
(f(1) = £(0))* < 6Hy|l[s2 — sl (f(1) + £(0))(1 - 0)?
which proves the lemma since f(0) = ¢(s1) and f(1) = ¢(s2).
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K. Proof of Proposition 15
Proof. Letw,w’ € Fyo(r). Using Lemma 14
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< 12H,r - wda | XD — X O 2.

where the last inequality follows because Lg(w) 4+ Ly (w') < 2r.
This immediately implies that if we have a cover of the class G, at scale €//12H 7 w.r.t. the metric

m%xm%x‘<X§i),w> - <X(i) w’>

=1 j=1 i

then it is also a cover of Fy o(r) w.r.t. dQZ(lm). Therefore, we have

Na(e, Fpa(r), ZEM) < Noo(€/v/12Hyr, Go, mn). (12)
Appealing once again to a result by Zhang (2002, Corollary 3), we get

12Hy W3 R% ﬂ
62

logy Noo(€/v/12H g1, Go,mn) < [
x log,(2mn + 1)

which finishes the proof. O

L. Proof of Corollary 16

Proof. We plug in Proposition 15°s estimate into (5):

R /\/E {%ﬁl)&r—‘ log, (2mn + 1)

R (Foa(r)) < ig% 4o + 10 de

n

Br
Hyl 3 1

< it <4a+mWQRX rHy loga(im) | dg) |
a>0 n a €

Now choosing @ = C'v/r where C' = 5v/3WoRx 1/ M gives us the upper bound

R (Foalr)) < 470 (1 +log ?) < 4y/rClog 3?.
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M. Proof of Theorem 17

Proof. We appeal to Theorem 6.1 of Bousquet (2002) that assumes there exists an upper bound

o~

Ry (F2,6(7)) < n(r)

where 1, : [0,00) — R is a non-negative, non-decreasing, non-zero function such that 1,,(r)//r is non-increasing.

The upper bound in Corollary 16 above satisfies these conditions and therefore we set ¢, (1) = 4,/rC'log % with C' as
defined in Corollary 16. From Bousquet’s result, we know that, with probability at least 1 — §,

Yw € Fa, Ly(w) < Ly(w) + 4517 + /8% Ly (w)
—|— \/47‘0L¢(IU) + 207"0

where g = B(log(1/9) + loglogn)/n and r} is the largest solution to the equation r = 1, (r). In our case, r} =

2
(4C log %) . This proves the first inequality.

Now, using the above inequality with w = w, the empirical risk minimizer and noting that f/¢(1b) < ﬁ¢(w*), we get

Lg() < Lg(w*) 4 4515 + /81 Ly (1)
+ \/ 47"0L¢(’(I)) + 207"0

The second inequality now follows after some elementary calculations detailed below. O

M.1. Details of some calculations in the proof of Theorem 17

Using Bernstein’s inequality, we have, with probability at least 1 — J,

Fo(w) < Lo(w®) + \/4Var[¢(sz yllog(1/9) 43105(1/5)

< Ly(w*) + \/4BL¢,(w2 log(1/0) 4B 1oi(1 /5)

S L¢(w*) + 1/47‘0L¢<’w*) + 47"0.

Set Dy = 457} + 20r(. Putting the two bounds together and using some simple upper bounds, we have, with probability

at least 1 — 26,
Ly (1) < \/ DoLg(w*) + Do,
Ii¢(w*) S \/ DoLd,(’w*) + Do.

Ly(W) < «/DO\/ DoLy(w*) + Dg + D.

Using v/ab < (a + b)/2 to simplify the first term on the right gives us

. D /DoLg(w*) + D v/ Do Ly (w*
Ly(i) < =2 4 Y22 ¢(2 )£ Do | py = VDoLolw) o

=7 - 2

which implies that




