Vector-Space Markov Random Fields via Exponential Families
Appendix

A. Proof of Theorem 1

The proof follows the same lines as the proof in Yang
et al. (2014). Let us denote Q(X) as log (P(X)/P(0)).
Note that X = (X3, Xo,---X,) and each X, belongs
to a vector space. Given any X, let us denote X, as

Xs = (X1, , Xs-1,0, X541, -+, X,). Consider the
following expansion for Q(X):
QX) =
> IX A 0G(X0) +
t€{1,~~~,p}
+ Y I[Xe, #0,... Xy, #00Gh, 0 (X, . X))
t1,tr€
{17"'4)}
(A.1)

where 7 is the indicator function which takes value 1 if its
argument evaluates to true and O otherwise.

Using some simple algebra and the definition Q(X) =
log (P(X)/P(0)) we can show that

- P(Xo| X1, Xe 1, Xe 11,0, X,
exp (Q(X) — Q(X5)) = fg(o&(l?--,Xs_lfxsflf-AuXp))

From (A.1) we have the following:

(Q(X) - Q(Xy)) =

TIX, £ 0] | Ga(X) + D I[X; # 0)Ga1(Xs, Xy)
te{l,-,p}\s
+ D I[Xy, #0,.. Xy, # 01Gatyt, (X, Xy,)
to,tK€
{1, ph\s

(A3)

Since the node conditional distribution follows the expo-
nential family distribution defined in (6) we can show that:

log P(Xo| X1, Xoo1, Xopr, Xp)

PO] X1, , Xs—1,Xs41, Xp)

(Bo(X_4), Bo(X) — By(0)) + (Co(Xs) — Ci(0))
(A4)

Using (A.3) and (A.4) for left and right hand sides of (A.2)
and setting X; = 0 for all £ # s we obtain:
I[Xs # O]GS(XS) = <ES(0)>BS(X ) - BS(O)>
+(Cs(Xs) = Cs(0))

Similarly setting X,. = 0 for all » ¢ {s, ¢} we obtain:

[Xs # 01Gs(Xs) + I[Xs # 0, X # 0]1Gs (X5, Xy) =
<E5(0 s X 70)a BS(XS) - BS(O)> (CS(XS) - CS(O))

Similarly, replacing X with X; in (A.2) and setting X, =
0 for all r ¢ {s,t} we obtain:

TIX, # 0)G, (X)) + T[Xs # 0, X, # 0]Gy4(Xs, X;) =
(B0 Xg--+,0), By(X¢) — B(0)) + (Ce(Xy) — C(0))

From the above three equations we arrive at the following
equality:

(B0 X;---

,0) = E(0), Bs(X;) — Bs(0)) =
(B0~ Xg--- )

10) = Ey(0), Bi(X) — Bi(0))

(A.5)
The above equality should hold for the node conditional
distributions to be consistent with the joint MRF distribu-
tion over X with respect to graph G. So we need to find the
form of E,.() that satisfies the above equation. Omitting
zero vectors for clarity from (A.5), we get the following:

(Be(Xs), Bi(X1)) = (Bo(Xy), Bs(Xs))

(A.6)
Z% DBy(X) = Y Ea(X)Ba(X,)
1
We rewrite the natural parameter functions as
Etj(Xs> = Zesl sty sl +Bt](X )
(A7)
Eg(X:y) = Z Os1:5 B (Xy) + Bo(Xy)

J
where Vj By;(X,) are functions in the Hilbert space H , or-
thogonal to the span of functions Bs(X), and Vj B (X;)
are functions in the Hilbert space H; orthogonal to the span

of functions B;(X;); and 615, 951;15]‘ are scalars. Combin-
ing (A.6) and (A.7), we get

Zzesl ity sl Bt] Xt +ZBt]
J
= Z Z esl ity sl

Xo)Bij(Xy) + Y Ba(Xi)Ba(X,)
l

5)Bij (X:)

(A.8)
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Rearranging terms in the above equation gives us the fol-
lowing equation:

> (Z(Qsl;w‘ = Os1:4j) Ba (X) +Btj(Xs)> Bij(Xt)

j /
= Z le (Xs)Esl (Xt)
l (A9)

However, since VI B (X;) is orthogonal to B;(X;), the
left and right hand sides of the above equation are equal to
0, which leads us to the following equations.

j !

(A.10)
However since we assumed that the sufficient statistics are
minimal we get VI B (X;) = 0 from the first equality and

Vi, 005105 = 951;% By;(X,) = 0 from the second equality.

Hence from (A.7), we obtain Es(X;) = 04 (B:(X:) —
By(0)) and E;(X) = 0%(Bs(Xs) — Bs(0)) where 0, is a
matrix formed by the scalars 0;.;; such that (05;);; = 64115
and:

I[Xé #07Xt§é0]GS,t(XS7Xt) = (All)
(B(X¢) = B1(0))"05,(Bs(Xs) = Bs(0)) '
By extending this argument to higher order factors we can
show that the natural parameters are required to be in the
form specified by (7).

B. Proof of Sparsistency

Before proving the sparsistency result, we will show that
the sufficient statistics B,.(X,.) are well behaved. Re-
call that B,;(X,) indicates i** component of the vector
B,(X,). We set the convention that whenever a variable
has the subscript \r attached we will be referring to the set
of indexes {(t,7,k) : Orjyr € Op.,t # 1}

Proposition 1. Let {X D}, have joint distribution as in
(10), then,

P LY (B (x)) 25 ) < (-0

Jj=1

for § < min {2%“,1% + k:v}.

Proof. Tt is clear from Taylor Series expansion and as-

sumption 4 that

log E [exp (tBM- (XT)QN =
log f®se[ x, XD {tBri (X)) +

> <Bs (Xs), 05+ > 0B (Xt)> +

sEV teN(r)
> Cs (Xs) — A(o*)} v (dz) (B.13)
seV

= Ari (1;0) (£;0%) — Ay i (n;0) (0;67)

A, i (n;0 2 924, i(n;0
< 124000 () 4 £ A (10) ()
2
<thky+ 5 kn

where u € [0, 1]

Z <Z(esl'tj — O4145) Bs1(Xs) 4 B Xs)> By;(X) =0 Therefore, by the standard Chernoff bounding technique,

for ¢t <1, it follows that

P <,1L Z?:1 B, (Xr(‘j)>2 > 5) <

exp ( —ndt + n k,t + %Khn) < (B.14)
exp —n%)
fordgmin{Q%,k‘h—i—kv}. O

Proposition 2. Let X be a random vector with the distribu-
tion specified in (10). Then, for any positive constant § and
some constant ¢ > 0

P(IBa(X,)| > dlog(n)) < en”? (B.15)

Proof. Let v be a unit vector with the same dimen-
sions as 6. and exactly one non-zero entry, correspond-
ing to the sufficient statistic B,;(X,). Then we can write

log (E[exp(Br,;(XT))]) as:

log ( Elexp(Bi(X,))]) = A" + ) — A(6")

By Taylor series expansion, for some u € [0,1], we can
rewrite last equation as
1
A(0* + ) — A(0*) =V A0*).0+ iﬁTva(Q* +uv)o
=E[Bri(X:)][|7]2

19%A(9" + uv)

—112
R

Using Assumption 4 we get the inequality :

A" +7) — A7) < ko + %kh
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Now, by using Chernoff bound, for any positive constant
a, we get P(B,(X,) > a) < exp(—a + ky, + 3kp). By
setting a = dlog(n) it follows that

P(Bri(
where ¢ = exp(ky, + 5kn) O

The proof of Sparsistency is based on the primal dual wit-
ness proof technique. First note that the optimality condi-
tion of (14), can be written as:

Vi(0,.;D) + M Z VUriZigt +XaZa =0 (B.16)

tir#£t
where ZALM € o | 0,4 II2, Zy €0 I é\,,. |l and we de-
note Z = (Zl, Zg), where Z; = {ZAl,Tt}tev\T. And sub-
gradients Z1, Z5 should satisfy the following conditions:

Vi (Z)i = sign((6.):) if (6,); #0
|(Za)i| <1 otherwise
X (B.17)
Vit Z177~t = ||9T’ if 97,5 7é 0
2
‘ZLM , <1 otherwise

Note that we can think of Zl and 22 as dual variables by
appealing to Lagrangian theory. The next lemma shows
that graph structure recovery is guaranteed if the dual is
strictly feasible.

Lemma 1. Suppose that there exists a primal-dual pair
(ér., Z) for (14) such that H21,36 < 1and HZQ,SC

00,2

< 1. Then, any optimal solution 0,. must satisfy (ér>

Sec
= 0. Moreover; if the Hessian sub-matrix [V2{(0,..)]ss is
positive definite then 0\, is the unique optimal solution.

Proof. First, note that by Cauchy—Schwarz’s and Holder’s
inequalities

<ZAl,Tt70~rt> S” é’r‘t H2 and<2270~\r> S” é\r Hl (Blg)

But from (B.16) and the primal optimality of 0,. and 6,.. for
(14),

v

+Zt7£ A1 VT <Z1 Tt70rt> +)\2<ZQ;9\7>

> m9 n/t (6 ) +Zt7$r )\1\/Vr <Z1 rt70Tt> +A2<22a9\7">
=/ é7'~ + Et#r A1 \ V7't<Zl,rt7 9Tt> + >\2<Z2a 9\7‘>
=/ ér' =+ Zt;ﬁr AMA/Vrt ért ) =+ Hé\,

hence, combining with (B.18) with (B.19) it follows that
Zt;ﬁr )\1\/ Urt |0t N + ”9\7" 1 = Zt;ﬁr >\1\/ Urt ||Ort 9 +
Hé\r '1 = i NI Zt, O01) + Aa( 22, B1,.). The re-

1
X,) > dlog(n)) < exp(—&log(n)+km+§kh) < ¢en~9 sult follows.

If the Hessian sub-matrix is positive definite for the re-
stricted problem then the problem is strictly convex and has
a unique solution. O

Based on the above lemma, we prove sparsistency theorem
by constructing a primal-dual witness (6,.., Z) with the fol-
lowing steps:

1. Set (6,)s = argmin((er_)s’o)ﬁ ((6:)g;D)
+A1 2 ies VUt [0rt]y + A2 [ (6) s

2. Fort € S, we define ZALM = H:% and then con-

struct 2275 by the stationary condition.
3. Set (f,.)se =0

4. Set ZAQ)SC such that HZ27SC

<1
o0

5. Set ZAL se such that condition (B.16) is satisfied.

6. The final step consists of showing, that the following
conditions are satisfied:

(a) strict dual feasibility : the condition in Lemma 1
holds with high probability

(b) correct neighbourhood recovery: the primal-dual
pair specifies the neighbourhood of r, with high
probability

We begin by proving some key lemmas that are key to
our main theorem. The sub-gradient optimality condition
(B.16) can be rewritten as:
VU(0,.;D)=VU(0; ;D) = W'\ > \foniZi iDL

tir#£t
(B.20)
where W" = —V/(0 ;D) and 6. is the true model pa-
rameter. By applying mean-value theorem coordinate wise
to (B.20), we get:
VQK(G:) D)[GT - 0:} = W"- )\1 Zt:r#t \/ZTNZLT’:
—)\222 + R™
(B.21)
where R" is the remainder term after applying mean-value
theorem: R} = [V2((0;.; D) — V2((6.; D)]] (0. — 6%)
for some 67. on the line between 6,. and 7, and with []f
denoting the j-th row of matrix. The following lemma con-
trols the score term W™
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Lemma 2. Recall v, yox = Max vyy , Vp pin = MinVpy, p =
t t

max(n,p). Assume that

8(2;(1) Ky (n p) kg L mlog(pm max) <

e Ao (B.22)
1

for some constant k4 < min {2 vk + kv} and suppose

(>, my) then,

n a Vs min (A1+ A
P (HW\THOO,Q > gl Tt

1—cp3 (>>, me) —exp (—can) — exp (—czn)
(B.23)

Proof. Define Wy* = —Vy, £(0;.:D). Let W', be the
element in W/ corresponding to parameter ¢,;,;. Note

Iy oy
that W', = =57 V' ;, where

V;:ng =B, (X,gi)) By (X(i)> _
Vo Ar (9 + 2 sev\r Ors Bs (

sofort’ € R

B [exp (#Vi 1) 1X2,] =
/ . exp{t [Brj (X2) Bu (x17)
6

—Verj th (9 + Esev\r rs (X‘gl))) Bk (Xt(z))

) ()

Next lets define event £; = {maxz- + || B: ( ) || <
410gp} Then, from Proposition 2 we get P(c§) <
cinp'~ 4(Zt my) < ep'” B(Zt my). It < ko ( )’
Assumption 5 implies that

1 ZlogE {exp (t'Vie) |XV\7} <

=1

U LSS Bu (Xéi)) 2

Now, lets define event €9 =
N
{mact S0, (By (X17)) <k} where
J

ky < min{2k,/3,kn + ky}.
2
(1) we obtain that if n > Sk’%h log(D> ey ™) :

Then, by proposition

P (e5) <exp (—n + log <Z mt>> <exp(—nca)
tev
(B.24)
Therefore, for t' < ka(n,p),

k1 (n,p)k #?
- ZlogE [exp (t Vth) ‘XV\J < %

1=1

(B.25)

Hence, by the standard Chernoff bound technique, for ¢’ <
k2 (’I’L7 p )

c (Xﬁl) 0B, (X;_)>+ S B, (Xg>> 0%, B, X&))

seV\r

B. (X@)) }dXT

o:+ By (X(V)+ 3 o,

seV\r
—A, <(9: + > 0

5 (x)
—Vo,,;nA (9* > ‘9:535 (X§Z)>> t' By, (Xt(i)) }

seV\r

\ _An(c 0\ 2
— exp{ erj;tkvegj;tk ( )Btk (Xt( )) t/Q}

where ¢ = 6% + > * By (X;) + vit’ By, (Xt(i)> for

some vy € [0, 1]. Therefore,

—A, <0$ + > 65

seV\r
= exp{A

B, (Xs(i)))

s#T rs

1 Z]ogE {exp (v gk) |XV\T}

i=1
n

1 Lo (1) 2
n ivgrj;tkngrj;tkAT(C)Btk (Xt ) t

i=1

(B.26)

P (;Zl‘ftzﬂc >0 | 517€2> <

i=1
2exp (n (’“(LW - t’5))

Setting ¢’ = for § < ky(n,p) ka(n,p) ks, we ar-

rive to:

0
k1(n,p)ka’

Lo 4 —nd?
(n Z| t7j/€| >0 | 51’€2> = 2eXp (2/61(7%19)]94)

i=1

(B.27)

Supposing that “-y==m 4?/% <ki(n,p) ka(n,p) kq. It
then follows that § = aziv':a“‘“‘ 4:\/1% satisfies

< Zlel

Ve min 0 (A1 +A2)2 )

2exp (2 o¢)2 32 k1(n,p) ka my my
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Form which, we obtain the following using union bound

HWt ||2> o \/VTmm(MJr)\z |€ e <
P (W71 > g B )

> 2—« 4\ /m, my
—a2  Vrmnn (A1+X2)?
= 26Xp ((2—04)2 32 k1 (n,p)ks my my + IOg (Vrt)

(B.29)

and hence,

P (W72 > 5%
Vrmin M ()\1 + >\2)2

/Vrmin (A1+X
v mn511+ 2) ‘81,&2 <

—Q
2 I ' max 1
P ((2 - a)2 32 1{31(717}7)]{74 Vr max * o8 (V ‘ ) + ng>

(B.30)

Finally for Ay + A > 52220 [k (1, p) by Vemslob(Proms)
we obtain

n Vrmm A1+
(HW loo 2 > 5o Yormeth 2)> = (B.31)
P 3(Ztmt)+exp( CQn)+e xp (
O
Lemma 3. Suppose that M+ Ao <
2
o and W [loc.2 <

40 logp’ Diax dr k3 (n,p) V2 00

M +A2) &V
Qutto)avPomn  then,
(2-a)

P (1102)s = (Br)slloca < 22 (0 + M)
> 1= (S mi)
(B.32)

for some constant ¢ > Q.

Proof. We define F'(ug) as

Flus) = £((0}.)s +us; D) = £((67.)5;D)

A1 D> e (167 + trll2 — [167]2)

teEN(r)
+2 ([ (07) g +usll — 11 (0))g 1)
(B.33)

From the construction of 6,. it is clear that i, = (0:)s —
(0%)s minimizes F'. And since F'(0) = 0, we have F' (4 )
< 0. We now show that for some B > 0 with |ug|_ , =
B, we have F(ug) > 0. Using this and the fact that F is
convex we can then show that |is|, , < B.

Let wg an arbitrary vector with |ug|, 5
LCV”““ (A1 + X2). Then, from the Taylor Series ex-

pansion of log likelihood function in F', we have:

Flus) = VL((0;)s:D)" us

+ul V20 ((0;.)s +vus) us

Y Vot (107 + wrllz = 10712)
teN(r)
+2 ([ (67) s +uslly = 11 (67) 5 [11)
(B.34)

for some v € [0, 1]

We now bound each of the terms in the right hand side of
(B.34). From (B.29) and using Cauchy-Schwarz inequality
we obtain:

VE(0;)5:D) s

<|[IVE((07)s: D) [loo lusllx

V(05 )s ;D) |l dr v/ Vr max ||US||OO,2
5o >\1+>\2 (M + A2)

5
2—a dr Vr max 2Cmin
B Vr max
4 Crin d ()\1 + >\2)

(B.35)

I/\ IN

where the last inequality holds because o € (0, 1]. More-
over, from triangle inequality we have:

A Ve (105 + well2 = 1167]]2)
tesS

> =M Y Vrllurdl2 (B.36)
teEN(r)

> =1 dr \/Vrmax [|Us]] 00,2

= —W A1 (A1 + A2)

Also,

Xy ([(07)s +usl = 11(67)s 1)

> =X ||lus|x

> =z |lush (B.37)

= )\Qd vV Vr maxHuS”ooQ
= 55’ max o Ao (Al + )\2)

min

On the other hand, by Taylor’s approximation of V2/, there
exists a;;, € [0,1] and ﬂ;'-k between 6\, and 6\, +vus such
that

Amin (V2 ((07) 5 +UU5))
> ﬂr€n[ n Api (VQE (( ) + ﬂus))
> Api (st)
vré13’§1||glfl<1{ 1 Z o v (VA (),

i=1 j,k,l,t,h,s,m,s/,m/
Urt;lh Bth (XZ) Ys,m,j Bsm (X;) Bs/m’ (X;') Ys' m/,j’

(B.38)
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Consider the event ; as defined in the previous proof. We
know that P(g1) > 1 — ¢1p' ™3 (3, my). Conditioned on
€1 and using Assumption 5 we arrive to the following:

Amin (V2€ ((05)g+v us))
2 C’min - 410gp/||uSH1 Dmax Vrmaxk3 (nap)
Z Cmin - 410gp,dr\/ Vr max HUSHOOQ Dmax Vr maka (nyp)
> G
(B.39)

where the last inequality holds for Ay + Ay <
2

in

401ogp’ Diax dy k3 (n,p) v2

7 max

Finally using the above bounds we arrive at the following:

5 9 1 5
F > dr 7 max )\ )\ -1- - a
(ug) > d,v Cmin(1+ 2) < 4+2 >0
(B.40)
Therefore
A 5\/Vr
1(07)s — (0,.)s]l00,2 < 07“‘ (A1 + A2)
O]
Lemma 4.  Suppose that A+ A <
2
gl ——p e and Wi, w2 <

2— 5
@ 400 1,2,1108D" Dy k3 (n,p) d.
& (M 4+A1) /Vr min then

4(2—a)
||Rn||oo 2 &/ Vr min /—3
P =< >1-—
()\1+>\2 _4(2705) - K ;mt

(B.41)

for some constant ¢ > 0.

Proof. Recall ~ that R} = [V20(6;;D) -
V%(éﬁ.;D)]? (ér - 9;‘) ]jT denotes the
J-th row of a matrix. Let us also refer to Ry, to the
cordinate of R™ corresponding to 6,;.;. Then,

where [ .

VEA | O+ 07 B(XY)
SFET

Ryt = [; > Bu(X)
i=1

T

VoA, (B + 50, 0 B(XD) )

® B
J

(B.42)

with B! the vector of sufficient statistics evluate at the i-
th sample. Intoroducing the notation (0,., B.) =: 6, +
> apr Ors Bs (X?), from the mean value theorem we obtain

(9}. — o

V2 At (07, B1)) = VA (01, B1)) =
i [/p Y pitik i
—vj [0 = 07, B)] (VPA) (<9T‘M’B’"'>)
(B.43)
Therefore, combining (B.42) with (B.43) and using basic
properties of krockner product we ontain that

n
’RZJIC‘ < % Z |Btk(XtZ)| V7-maxk3 (n,p) Dinos ||67 - 9:”%
i=1

< 410gp/ Vr maxks3 (Tl,p) Do ||ér - 9:”%
(B.44)
which implies

[ R [loo,2 < A
4 \/Vr max 10€D" Vp maxk3 (1, p) Dinag |0r. — 0513 <
4 \/mlogp/ Vr max k3 (n,p) Do %{;"m )\% <

2—«

(B.45)
with probbility at least 1 — cp'=2 (3=, my). O

We now prove theorem 2 using lemmas 2-4. Recalling that
Q™ = V2{(0* ;D) and the fact that we have set (0,..)ge =
0 in our primal-dual construction, we can rewrite condition
(B.21) as the following equations:

Qiesl(0r)s — (67)s] = .
Wgc -\ ZtQN(r) \/TMZLM - A222,50 + RTSI'C
(B.46)

Q%s[(0r)s — (67)s] =

& N - . (B.4T)
WS - A1 ZtEN(T) VvV Vrtzl,rt - >\2Z2,S + RS
Since the matrix Q)¢ is invertible, the conditions (B.46)
and (B.47) can be rewritten as :

Ques(Q8s) ' W = MDY Vol — Aalas + RE| =
tGJAV(r) R
Wg(: — A1 Zth(r) \/ﬂzl,rt - )\QZQ,SC + Rgf
(B.48)
Rearranging yields the following condition:

A1 ZtﬁN(r) V VrtZI,rt =

Wi + R — Qies(Qiss) ' [WE + RE]— )

)\QZQ,SL' + Qgcs(QgS)ilp‘l ZtEN(T‘) V V”ZL” + >\2Z2’S]
(B.49)

Strict Dual Feasibility: we now show that for the dual sub-

vector ZALSC, we have HZALSC < 1. We get the follow-
2

o0,

ing equation from B.49, by applying triangle inequality:
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<

>\1\/ Vr min 9
A1 Hztgjv(r) V VrtZI,rt‘ o2 =

(7 o+ 1R o] (14 | Qes(@B6) o V)

+A2\/Vr max
+ ||Qg°S(QgS)_1 ”00’2 [(Al + )\2) \% dr Vy max

VARE:

<

(B.50)

where v, pmin = mtin Vpt s Vpmax = Max vy and d,. = [N (r)]
t

Using mutual incoherence bound 2 on the above equation
gives us:

<

s
00,2

s W7oz + 1R ) 2 - @)

e (1 108s(Q20) e, VA (3 41)]
(B.51)

Using the previous lemmas we obtain the following:

Zise| < g lo (A + M)l
\ ’ \/ﬁQ ! R (B.52)
21/ Vr max Mamin
+ >\1\/Vrmin |:1 + Mmazx (1 - a) (/\7; + 1)i|

If \g <[ ——&~—] Ay, then,

ZALSC < 1

(B.53)

We have shown that the dual is strictly feasible with high
probability and also the solution is unique. And hence
based on Lemma 1 the method correctly excludes all edges
not in the set of edges.

Correct Neighbourhood Recovery: To show that all correct
neighbours are recovered, it suffices to show that

* A 07nin
H(GT)S - (eT-)SHOO,Q < 9

where 0,in = mingey\, |07t 5.

Using Lemma 3 we can show the above inequality holds if
> 10 VVrmaw \él;:]m ()\1 + )\2>

emin =

C. Full MyFitnessPal Graph

Figure 1 shows a high-level view of the entire VS-MRF
learned from the MyFitnessPal food database. The three
macro-nutrients (fat, carbs, and protein) correspond to the
three largest hubs with the remaining nine micro-nutrients
representing smaller hubs.
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Figure 1. Full MRF learned from the MyFitnessPal food database. The hubs correspond to point-inflated gamma nutrient nodes, with
the three largest hubs being the macro-nutrients (fat, carbs, and protein).



