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Abstract

We develop a theoretical and computational
framework to perform guaranteed tensor decom-
position, which also has the potential to accom-
plish other tensor tasks such as tensor comple-
tion and denoising. We formulate tensor de-
composition as a problem of measure estimation
from moments. By constructing a dual poly-
nomial, we demonstrate that measure optimiza-
tion returns the correct CP decomposition under
an incoherence condition on the rank-one fac-
tors. To address the computational challenge,
we present a hierarchy of semidefinite programs
based on sums-of-squares relaxations of the mea-
sure optimization problem. By showing that the
constructed dual polynomial is a sum-of-squares
modulo the sphere, we prove that the smallest
SDP in the relaxation hierarchy is exact and the
decomposition can be extracted from the solution
under the same incoherence condition. One im-
plication is that the tensor nuclear norm can be
computed exactly using the smallest SDP as long
as the rank-one factors of the tensor are incoher-
ent. Numerical experiments are conducted to test
the performance of the moment approach.

1. Introduction

Tensors provide a compact and natural representation
for high-dimensional, multi-view datasets encountered in
fields such as communication, signal processing, large-
scale data analysis, and computational neuroscience, to
name a few. In many data analysis tasks, tensor-based ap-
proaches outperform matrix-based ones due to the ability
to identify non-orthogonal components, a property derived
from having access to higher order moments (Landsberg,
2009). In this work, we investigate the problem of decom-
posing a tensor into a linear combination of a small number
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of rank one tensors, also known as the CP decomposition
or the PARAFAC decomposition. Such low-rank tensor de-
composition extends the idea of singular value decompo-
sition for matrices and finds numerous applications in data
analysis (Papalexakis et al., 2013; Anandkumar et al., 2013;
2012; Cichocki et al., 2014; Comon, 2009; Kolda & Bader,
2009; Lim & Comon, 2010).

We approach tensor decomposition from the point of view
of measure estimation from moments. To illustrate the idea,
consider determining the CP decomposition of a third or-
der symmetric tensor A = E;:1 Ap2P ® P ® xP, which
can be viewed as estimating a discrete measure p* =
Z;Zl Ap0(z — xP) supported on the unit sphere from its
3rd order moments A;j; = fS"—l x;xjrdp*. This formu-
lation offers several advantages. First, it provides a natural
way to enforce a low-rank decomposition by minimizing an
infinite-dimensional generalization of the ¢; norm, the total
variation norm of the measure. Second, the optimal value
of the total variation norm minimization problem, which is
a convex problem in the space of measures, defines a norm
for tensors. This norm, termed as the tensor nuclear norm,
is an instance of atomic norms, which, as argued by the
authors of (Chandrasekaran et al., 2012), is the best possi-
ble convex proxy for recovering simple models. Just like
the matrix nuclear norm, the tensor nuclear norm can be
used to enforce low-rankness in tensor completion, robust
tensor principal component analysis, and stable tensor re-
covery. Finally, finite computational schemes developed
for atomic tensor decomposition can be readily modified to
accomplish these more complex tensor tasks.

The theoretical analysis of atomic tensor decomposition is
fundamental in understanding the regularization and esti-
mation power of the tensor nuclear norm in solving other
tensor problems. For instance, it tells us what types of rank-
one tensor combinations are identifiable given full, noise-
free data. Moreover, the dual polynomial constructed to
certify a particular decomposition is useful in investigat-
ing the performance of tensor nuclear norm minimization
for data corrupted by missing observations, noise, and out-
liers. This work parallels similar measure estimation ideas
as applied to line spectral estimation in signal processing
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to achieve super-resolution, for which the dual polynomial
constructed in (Candés & Fernandez-Granda, 2014) was
later utilized to analyze the ability of frequency estimation
from incomplete, noisy, and grossly corrupted data (Tang
et al., 2014b;a; 2013; Chi & Chen, 2014). We expect that
the tensor decomposition results will find similar uses in
the corresponding tensor tasks.

Our contributions in this work are three-fold. Firstly, we
formulate atomic tensor decomposition as a moment prob-
lem and apply the Lasserre sum-of-squares (SOS) relax-
ation hierarchy to obtain a series semidefinite programs
(SDPs) to approximately solve the moment problem. Sec-
ondly, we explicitly construct a dual polynomial to certify
that a decomposition with incoherent components {z?, p =
1,...,r} is the unique atomic tensor decomposition. The
incoherence condition requires that the matrix formed by
the vectors {zP} is well-conditioned. Lastly, by show-
ing that the constructed dual polynomial is sum-of-squares
modulo the sphere, we establish that the smallest SDP in
the Lasserre hierarchy exactly solves the atomic decompo-
sition under the same incoherent assumption. Such a re-
sult is different from existing approximation results for the
Lasserre hierarchy, where there is no guarantee on the size
of the SDP at which exact relaxation occurs (Nie, 2014).
The effectiveness of the lowest order relaxations is of cru-
cial importance for computation, as the Lasserre hierarchy
is considered impractical due to the rapid increase of the
sizes of SDPs in the hierarchy.

2. Connections to Prior Art

CP tensor decomposition is a classical tensor problem that
has been studied by many authors (cf. (Comon, 2009;
Kolda & Bader, 2009)). Most tensor decomposition ap-
proaches are based on alternating minimization, which typ-
ically do not offer global convergence guarantees (Bro,
1997; Harshman, 1970; Kolda & Bader, 2009; Papalexakis
et al., 2013; Comon et al., 2009). However, recent work
that combines alternating minimization and power iteration
has yielded guaranteed tensor decomposition in a proba-
bilistic setting where the algorithm is randomized (Anand-
kumar et al., 2013; 2014). In contrast, the theoretical guar-
antee of our moment approach is deterministic, which is
more natural since there is no randomness in the problem
formulation. Furthermore, our approach is flexible and ca-
pable of incoporating a variety of sources of uncertainty
in the framework; this includes noise, missing data, partial
measurements, and gross outliers.

Another closely related line of work is matrix comple-
tion and tensor completion. Low-rank matrix completion
and recovery based on the idea of nuclear norm minimiza-
tion has received a great deal of attention in recent years
(Candes & Recht, 2009; Recht et al., 2010; Recht, 2011).

A direct generalization of this approach to tensors would
be using tensor nuclear norm to perform low-rank tensor
completion and recovery. However, this approach was not
pursued due to the NP-hardness of computing the tensor
nuclear norm (Hillar & Lim, 2013). The mainstream ten-
sor completion approaches are based on various forms of
matricization and application of matrix completion to the
flattened tensor (Gandy et al., 2011; Liu et al., 2013; Mu
et al., 2013; Shah et al., 2015). Alternating minimization
can also be applied to tensor completion and recovery with
performance guarantees established in recent work (Huang
et al., 2014). Most matricization nor alternating minimiza-
tion approaches do not yield optimal bounds on the num-
ber of measurements needed for tensor completion. One
exception is (Shah et al., 2015), which uses a sepcial class
of separable sampling schemes.

In contrast, we expect that the atomic norm, when spe-
cialized to tensors, will achieve the information theoreti-
cal limit for tensor completion as it does for compressive
sensing, matrix completion (Recht, 2011), and line spec-
tral estimation with missing data (Tang et al., 2013). Given
a set of atoms, the atomic norm is an abstraction of /-
type regularization that favors simple models. Using the
notion of descent cones, the authors of (Chandrasekaran
et al., 2012) argued that the atomic norm is the best pos-
sible convex proxy for recovering simple models. Particu-
larly, atomic norms were shown in many problems beyond
compressive sensing and matrix completion to be able to
recover simple models from minimal number of linear mea-
surements. For example, when specialized to the atomic
set formed by complex exponentials, the atomic norm can
recover signals having sparse representations in the contin-
uous frequency domain with the number of measurements
approaching the information theoretic limit without noise
(Tang et al., 2013), as well as achieving near minimax de-
noising performance (Tang et al., 2014a). Continuous fre-
quency estimation using the atomic norm is also an instance
of measure estimation from (trigonometric) moments.

The computational foundation of our approach is SOS re-
laxation, particularly the Lasserre hierarchy for moment
problems (Parrilo, 2000; Lasserre, 2001). After more than
a decade’s developments, SOS relaxations have produced
a large body of literature (cf. (Blekherman et al., 2013),
(Lasserre, 2009) and references therein). The Lasserre hi-
erarchy provides a series of SDPs that can approximate mo-
ment problems with increasing tightness (Lasserre, 2001;
Parrilo, 2000; Lasserre, 2008). Indeed, it has been shown
that as one moves up the hierarchy, the solutions of the
SDP relaxations converge to the infinite-dimensional mea-
sure optimization (Nie, 2014). In many cases, finite con-
vergence is also possible, though it is typically hard to de-
termine the sizes of those exact relaxations (Nie, 2014). We
show that for the tensor decomposition problem, exact re-
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laxation occurs for the smallest SDP in the hierarchy under
certain incoherence conditions. Combining with the nec-
essary condition in Theorem 2, we can roughly say that
when the atomic tensor decomposition is solvable by the
total variation norm minimization, it is also solvable by a
small SDP; when the lowest order SDP relaxation does not
work, the original infinite-dimensional measure optimiza-
tion is also unlikely to work. A very recent piece of work
(Barak & Moitra, 2015) utilizes the SOS hierarchy for ten-
sor completion in the presence of noise, and studies both
upper and lower bounds. While related, this work focuses
more on the noisy performance case. We are also able to
avoid the negative results of (Barak & Moitra, 2015) by as-
suming that the target tensor’s factors are incoherent.

3. Model and Algorithm

3.1. Model for tensor decomposition

We focus on third order, symmetric tensors in this work.
Given such a tensor A = [A;;]},,_, € S3(R™), we are
interested in decompositions of the form

A= "Na’ @’ @aP (D
p=1
where ||zP|| = 1 and A, > 0. The decomposition ex-

pressing a tensor as the sum of a finite number of rank-
one tensors is called the CP decomposition (Canonical
Polyadic Decomposition), which also goes by the name
of CANDECOMP (Canonical Decomposition) (Carroll &
Chang, 1970) and PARAFAC (Parallel Factors Decompo-
sition) (Harshman, 1970). The positive coefficient assump-
tion does not reduce the generality of the model since the
sign of A, can be absorbed into the vector 2”. The smallest
r that allows such a decomposition is called the symmetric
rank of A, denoted by srank(A). A decomposition with
srank(A) terms is always possible, though like many other
tensor problems, determining the symmetric rank of a gen-
eral 3rd-order, symmetric tensor is NP-hard (Hillar & Lim,
2013).

Denote the unit sphere of R™ as S”~1, and the set of (non-
negative) Borel measures on S"~! as M (S"71) . We
write the CP decomposition in (1) as

A= rTRrrdu” 2
Snfl

where the decomposition measure p* = Z;Il Apd(z —
xP) € M, (S"71). Hereafter, we use a superscript  to
indicate that the measure is the “true”, unknown decompo-
sition measure to be identified from the tensor A. Since
the entries of A are 3rd order moments of the measure p*,
tensor decomposition is an instance of measure estimation
from moments. Model (2) is more general than (1) in the
sense that it allows decompositions involving infinite num-

ber of rank-one tensors. However, in most cases the de-
compositions of interest involve finite terms. In particular,
we restate the problem of determining srank(A) as

minimize |p|lo subject to A = / r®@x @ xdu (3)
HEM L (Sn—T) gn—1

where ||14]|o is the support size of n. This is a generaliza-
tion of the £y “norm” minimization problem to the infinite-
dimensional measure space.

Following the idea of using the ¢; norm as a convex proxy
for the £y “norm” and recognizing “||||¢, = u(S"71)”, we
formulate symmetric tensor decomposition as the follow-
ing optimization

minimize snt
PEM L (SmT) g )

subject to A = TR TR xdy “4)

Snfl

Note that the total mass p(S™1) is the restriction of the
total variation norm to the set of (non-negative) Borel mea-
sures. For any third order symmetric tensor A, the optimal
value of (4) defines the tensor nuclear norm || A||., which
is a special case of the more general atomic norms. A
consequence of Caratheodory’s theorem concerning con-
vex hulls (Barvinok, 2002) is that there always exists an
optimal solution with finite support. We call a decompo-
sition corresponding to an optimal, finite measure solving
(4) an atomic tensor decomposition.

The optimization (4) is an instance of the problem of mo-
ments (Lasserre, 2008), whose dual is
maximize (@, A
QeS3(R™) Q.4
subject to (Q,z @z ®@x) < 1,V € S""L.  (5)

We have used (A, B) = >, ;; AijiBij to denote the in-
ner product of two 3rd order tensors. The homogeneous
polynomial ¢(z) := (Q,z @z ® z) = >, ; } QijkTiT Tk
corresponding to a dual feasible solution is called a dual
polynomial. We will see that the dual polynomial associ-
ated with the optimal dual solution can be used to certify
the optimality of a particular decomposition.

3.2. Moment Relaxation

The tensor decomposition problem (4) is a special trun-
cated moment problem (Nie, 2012), where we observe only
third order moments of a measure p* supported on the unit
sphere. Therefore, we can apply the Lasserre SDP hier-
archy (Lasserre, 2001) to approximate the infinite dimen-
sional linear program (4). We first introduce a few no-
tations in order to describe the SDP hierarchy. We use

a = (o1,...,0,) € N to denote a multi-integer index.
The notation z® represents the monomial z{*z5? - - - x0.

The size of «, |a| = > «y, is the degree of z®. The set
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» ={a:|a] <k} C N” consists of indices with sizes
less than of equal to k. The notation RV (RN XNk | resp.)
represents the set of real vectors (matrices, resp.) whose
entries are indexed by elements in Nj! (N7} x N}, resp.).

For k = 2,3,4,--- and a vector z € RN2x, we use the
matrix My(z) € RV<*NE to denote the moment matrix as-
sociated with the vector z € RN2x, whose («, 3)th entry is
Za4p for o, f € N}'. The notation L1 (z) € RNk—1xNe
is reserved for the localizing matrix of the polynomial
p(z) := ||z||3 — 1, whose («, 3)th entry is

[Li-1(2)]ap = Z DyZatftqy, @, B € Ni_y (6)

[v1<2

with p., the coefficient for the monomial =7 in p(x).

Each measure p supported on S™~! is associated with an
infinite sequence y € RN", called the moment sequence,
via Jo = [qu1 z%dp, € N". When a = (0,0,...,0),
we use yjg = fSn,l ldu = p(S™ 1) to denote the total
mass of the measure 4. Denote by M(S" 1) ¢ RY" the set
of all such moment sequences. Instead of optimizing with
respect to a measure p in (4), we can equivalently optimize
with respect to a moment sequence:

minimize gy subject to go = Ay if % = xz528  (7)
geEM(Sn—1)

The constraint that j € 9t(S"~!) involves an infinite se-
quence. To obtain a finite optimization problem, we relax
(7) by replacing 7 with its 2k-truncation y € RN2x and
replacing the constraint j € 9U(S"~!) with the following
easy-to-enforce conditions for y to be the finite truncation
of a moment sequence (Lasserre, 2009):

My(y) =0, Lp—1(y) = 0. ®)

The validity of the linear matrix inequality constraint and
equality constraint is standard and uses the fact that p is a
Borel (hence nonnegative) measure on S"~! and p(x) =
|z||3 —1=00onS""1.

Hence, we obtain a finite-dimensional relaxation for (7):

mini@ize Yo subject to yo = Ayj if 2% = zix 3
N
yeR 2k

Mi(y) = 0,Li—1(y) =0. (9)

Denote by || A||x,« the optimal value of (9). One can verify
that || - ||, indeed defines a norm in the space of symmetric
tensors. Clearly || Al| 2 is smaller than || A]|. for all sym-
metric tensors A and increasing k (i.e., using longer trun-
cation) allows us to get better approximatations. In a more
general setting, it has been shown that the optimal value of
(9) converges to that of (4) as £ — oo even in finite steps
(Nie, 2014). Furthermore, if the moment matrix My (g) as-
sociated with the optimal solution g of (9) satisfies the flat
extension condition, i.e., rank (M (§) = rank(My_1(9)),
then we can apply an algebraic procedure to recover the

measure [ from the moment matrix (Curto & Fialkow,
1996; Henrion & Lasserre, 2005). Our goal is to show that
under reasonable conditions on the true decomposition of
the measure p* that generates observations in A, the small-
est relaxation with k = 2 is exact, i.e., [|[A]|2,« = [ 4]+,
and is sufficient for the recovery of p*.

By following a standard procedure of deriving the La-
grange dual, we get the following dual problem of (9):

maximize ,A
QeS3(RM),H,G @4

subject to eg — 1la(vec(Q)) = M;(H) + L;_,(G)
H=0 (10)

Here * represents the adjoint operator; e, € RN2+ denotes
the first canonical basis vector; and the operation vec(Q)
takes the unique entries in the symmetric tensor ) to form
a vector, which is then embedded by 1, into the third order
moment vector space RY3 .

We show that (9) is an SOS relaxation by rewriting its dual
(10) as an SOS optimization. For this purpose, we denote
the vector consisting of all monomials of x of degrees up to
k by vi(x), also known as the Veronese map. For example,
when k = 2, v5(z) has the following form:
vo(x) = [1 T e T, T3 3120 xﬂT (1D
Define two polynomials o(z) := wv(x) Hyg(x) and
s(x) := vg—1(x)'Gri_1(x) for feasible solutions H and
G of (10). Since H = 0, the polynomial o (z) is the Gram
matrix representation of an SOS polynomial and s(x) is an
arbitrary polynomial of degree 2k — 2. We now rewrite the
optimization (10) as an SOS optimization:
maximize (Q, A
BE (@A)
subject to 1 — g(z) = s(x)(||z]|3 — 1) + o(z)
deg(s(z)) <2k —2
o(z) is an SOS with deg(o(z)) < 2k (12)

where ¢(z) = (Q, ®x®x) is the dual polynomial defined
before. Compared with the dual polynomial in (5), the one
here ¢(z) = 1 —o(x) — s(x)(||z]|3 — 1) is more structured.
We call 1 — ¢(x) an SOS modulo the sphere.

4. Main Results

The main theorem of this work relies on the construction of
dual polynomials that certify the optimality of the decom-
position measure p*. Due to space limitation, the detailed
construction of the dual polynomials are deferred to the
supplemental materials. The constructed dual polynomials
are also essential to the development of noise performance
and tensor completion results using the moment approach.
We record the following proposition, which forms the basis
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of the dual polynomial proof technique.

Proposition 1. Suppose supp(p*) = {aP,p = 1,...,1}
is such that {z? ® 2P ® 2P, p =1,...,r} forms a hnearly
independent set.

1. If there exists a Q € S*(R") such that the associated
dual polynomial g(x) satisfies

qz?)=1,p=1,...,r (13)
q(z) <1,z # 2P Vp, (14)

then p* = 37 ) Apd(x — 2P) is the unique solution of the
moment problem (4).

2. If in addition to part 1, the dual polynomial ¢(z) also
has the form 1 — o(z) — s(z)(||z]|3 — 1), where o(z) is
an SOS with deg(o(z)) < 2k, and deg(s(z)) < 2(k — 1),
then the optimization (9) is an exact relaxation of (4), i.e.,
Ak« = ||A]|«. Furthermore, y*, the 2k-truncation of the
moment sequence for p* is an optimal solution to (9).

3. Suppose {aP,p = 1,...,r} are linearly independent.
(So r < n.) In addition to the conditions in parts 1 and
2, if the Gram matrix H for the SOS o(x) in part 2 has
rank |NZ| — r, then y*, the 2k-truncation of the moment
sequence for p*, is the unique solution to (9) and we can
extract the measure p* from the moment matrix My (y*).

A dual polynomial satisfying the interpolation and bound-
edness conditions (13) and (14) is used frequently as
the starting point to derive several atomic decomposition
and super-resolution results (Candes & Fernandez-Granda,
2014; Tang & Recht; Bendory et al., 2014b;a; Heckel et al.,
2014). The second part of Proposition 1, which addition-
ally requires the polynomial be SOS modulo the sphere to
certify the exact relaxation of the SDP (9), is a contribu-
tion of this work. Part 3 is a consequence of the flat ex-
tension condition (Curto & Fialkow, 1998; 1996). We re-
mark that there is a version of part 3 that allows r > n un-
der additional assumptions, which we did not present here.
Constructing a structured dual polynomial satisfying con-
ditions in parts 2 and 3 allows us to identify the class of
polynomial-time solvable instances of the tensor decompo-
sition problem, which are NP hard in the worst case.

We are now ready to state our major theorem:

Theorem 1. For a symmetric tensor A = 37| \pa? ®
P @ P, if the vectors {xP} are incoherent, that is, the

matrix X = [z, 22%,. .., "] satisfies

|IXTX —I,] <0.0016, (15)

then there exists a dual symmetric tensor QQ such that the
dual polynomial q(x) = (Q, x ® x ® x) satisfies the condi-
tions in all three parts of Proposition 1 with k = 2. Thus,
A= 22:1 Ap2? @ 2P @ 2P is the unique decomposition
that achieves both the tensor nuclear norm || A||. and its re-
laxation || A||2,«. Furthermore, this unique decomposition
can be also found by solving (9) with k = 2.

A few remarks follow. The constant 0.0016 in the incoher-
ent condition (15) has not been optimized.

The condition (15) requires < n, which seems weak con-
sidering that the generic rank of a 3rd order symmetric ten-
sor is at least % for all n except n = 5 (Comon
et al., 2008). Furthermore, the Kruskal’s sufficient condi-
tion states that a decomposition A = Z;:1 ApT? @ P @ P
is unique as long as r < ?”“XT” where kx is the Kruskal
rank, or the maximum value of k£ such that any & columns
of the matrix X = [z!,--. 27| are linearly independent
(Landsberg, 2009). Since kx < n, the Kruskal rank condi-
tion is valid for r as large as 3” 2.

There are two reasons for the requirement of » < n. The
first one is technical: we used a perturbation analysis of the
orthogonal symmetric tensor decomposition, which pre-
vents > n in the first place. The second reason is due
to the use of £ = 2 in the relaxation (9) and is more fun-
damental. In order to extract the decomposition, we apply
the flat extension condition M;(y) = Ma2(y) and the pro-
cedure developed in (Henrion & Lasserre, 2005). Since the
size of M (y) is n + 1, there is no way to identify more
than n + 1 components from the moment matrix Mo (y). If
the goal is extract the decomposition from the moment ma-
trix, as addressed in this paper, we will need to increase the
relaxation to k > 3 to recover decompositions with more
than n 4+ 1 components. However, if the goal is denoising
or tensor completion, it is still possible to achieve optimal
noise performance and exact completion using k = 2 even
if » > n + 1. Indeed, numerical experiments in Section 6.2
show that the smallest SDP of (9) can recover all moments
up to order 4 correctly for r as large as 2n.

To complement the sufficient condition in Theorem 1, we
cite a theorem of (Tang, 2015) which demonstrates that a
separation or incoherence condition on {x?} is necessary.

Theorem 2. (Tang, 2015) Consider a set of vectors S =
{zP,p = 1,...,r} C S L. If any signed measure sup-
ported on S is the unique solution to the optimization

mb\l/lll(lnlze |]|Tv subject to A = / 2™®du (16)
S§n—1

then the maximal incoherence of points in S satisfies

max(|(z*,’)]) < cos(2/m). (17)
17]

Here M(S"™1) is the set of all signed measures on S*~*
and || - || rv denotes the total variation norm of a measure.

The incoherence condition (17) is a separation condition on
points on S*! as it is equivalent to that the angle between
any two points z° and 7 is greater than 2/m. The upper
bound in (17) further confirms that knowledge of higher
moments reduces the incoherence requirement. Note that
when m is odd, we can again focus on Borel (non-negative)



Guaranteed Tensor Decomposition: A Moment Approach

measures supported on S = {+2P p =1,...,r}, and the
total variation norm |||ty can be replaced by the total
mass £(S"~1). We also observe that the incoherence con-
dition (15) in Theorem 1 for 3rd order symmetric tensor im-
plies max;; (|(z;, z;)|) < 0.0016 < cos(2/3) ~ 0.7859,
which is stronger than the necessary condition (17).

5. Extensions
5.1. Tensor completion and denoising

Since the optimal value of (4) defines the tensor nuclear
norm || - ||, the results developed for tensor decomposition
will form the foundation for tensor completion and stable
low-rank tensor recovery. Similar to its matrix counterpart,
the tensor nuclear norm favors low-rank solutions when the
observations are corrupted by noise, missing data, and out-
liers. For example, when a low-rank tensor A* is partially
observed on an index set €2, we can fill in the missing en-
tries by solving a tensor nuclear norm minimization prob-
lem (Jain & Oh, 2014; Acar et al., 2011; Yuan & Zhang,
2014; Huang et al., 2014; Gandy et al., 2011):

mingnize ||A]|« subjectto Ag = Ag. (18)

This line of thinking was previously considered infeasible
due to the intractability of the tensor nuclear norm. How-
ever, we can use the relaxed norm || - || . to approximate
(18):

mingnize [|Al|k,« subject to Ag = Ag,. (19)

which is equivalent to the SDP:
m;ggi‘ize Yo
subject to yo = A;j; when % = z;x;2; and (4, 5,1) € Q
My (y) = 0, Li-1(y) = 0. (20

Building on the dual polynomial of Theorem 1, we expect
to show that || - ||2,« can be used to perform completion with
a minimal number of tensor measurements, given that the
tensor factors are incoherent.

Gaussian-type noise, which is unavoidable in practical sce-
narios, can also be handled using the tensor nuclear norm:

1
rninié{nize§||A—B||§+’Y||A||*7 21

where B is the observed noisy entries of the tensor and ~y
is a regularization parameter. Replacing || - ||, with || - ||«
gives rise to a hierarchy of SDP relaxations for (21):
1
minimize §HA — B3 +vyo

yGRNgk

subject to yo = A;; when % = z;z;2,
My (y) =0, Li—1(y) = 0. 22)

We conducted numerical experiments to demonstrate the
performance of tensor completion and denoising using the
smallest SDP relaxations in (20) and (22).

5.2. Non-symmetric and high-order tensors

We briefly discuss extensions to non-symmetric and high-
order tensor problems. Consider decomposing a non-
symmetric tensor A = [A;;;] € R™*"2X"3 into the form
A= 30 ApuP @ 0P @ wh, where [[uP|| = [[oP| =
[lwP| = 1 and A, > 0. Similar to (4), we formulate the
non-symmetric tensor decomposition again as estimating a
measure . supported on K = S x S™2 x S"3:

minimize p(K) subject to A = / u®vQ wdi.
minimize 1(K) subj . 1
(23)

Optimization (23) admits a similar SDP relaxation hierar-
chy fork =2,3,---:
minimize yo
yERNgk

subject to yo = A;j; when % = u;vw;

My(y) = 0, Ly (y), L2 (), Ly, (y) = 0,
(24)

where & = (u,v,w), and {L} |} are localizing matrices
corresponding to the constraints h1(¢) = |lul3 —1 =
0,h3(€) = [[o]3 — 1 = 0 and hy(€) = [lwl3 —1 = 0.
The SDPs in (24) can be modified to solve tensor comple-
tion and denoising problems.

The measure formulation extends easily to higher-order
tensors. For the SDP relaxation hierarchy, we just need
to fill in the moment vector with the observed, high-order
moments, and add more constraints corresponding to the
constraints defining the measure domain K. However, the-
oretical treatment might be more challenging, especially if
we would like to allow the rank r to go beyond the individ-
ual tensor dimensions.

6. Numerical Experiments

We performed a series of experiments to illustrate the per-
formance of the SDP relaxations (9) in solving the tensor
decomposition and other related problems. All the SDPs
are solved using the CVX package.

6.1. Phase transitions with full data

Figure 1 shows the phase transitions for the success rate of
the SDP relaxation (9) with £ = 2 when we vary the rank
r, the incoherence A = max;; |(z*,27)|, and the dimen-
sion n. The purpose is to figure out the critical incoherence
value. In preparing the upper plot in Figure 1, we took n =
10, r € {2,4,...,20}, and A € {0.38,0.39,...,0.52}.
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We choose the maximal incoherence A instead of the quan-
tity in condition (15) because in the experiments the rank
r goes beyond n, in which case condition (15) is always
violated. To compute the success rate, we produced T" =
10 instances for each (r, A) configuration. We used the
acceptance-rejection method to generate an instance with
7 vectors such that max;; |(z%, 27)| < A. This method
becomes inefficient when A < 0.38, forcing us to test As
in the chosen range. After being passed through the SDP
(9), an instance is declared success if the difference be-
tween the recovered moment vector and the true moment
vector has an ¢5 norm less than 10~%. Again, we choose
this success criterion instead of correct identification of the
decomposition because the rank r goes beyond n, in which
case we can not identify the decomposition from the mo-
ment matrix. It is easy to see that when » < n and the
4th order moment matrix is recovered correctly, the flat ex-
tension condition is satisfied and the decomposition can be
extracted from the moment matrix.

038 04 042 044 046 048 05 052

Rank r

1

; 05

24 0.6
04
02
0

4 5 6 7 8 9 10 11 12 13 14 15 16
Dimension n

Rank r

Figure 1. Color coded success rates of the lowest order SDP in
recovering the 4th order moment vector: rank 7 vs incoherence A
(Upper) for n = 10 and rank r vs dimension n for A = 0.38.

We observe from the upper plot of Figure 1 that the inco-
herence condition can be relaxed for smaller tensors with
smaller ranks. For rank » < n = 10, a critical separa-
tion of A = 0.45 is sufficient for exact recovery. Though
the figure does not show the transition for A < 0.38 due
to the difficulty of generating vectors maintaining such a
small incoherence, by extrapolation we expect that when
A < 0.38, the relaxation (9) can recover instances with
3n

rank up to r = 15 = =3*. We comment that the limitation

to the range A < 0.38 is due to the inefficiency of our re-

jection sampling methods to generate vectors with maximal
incoherence smaller than 0.38. There are many vector con-
figurations with a far smaller incoherence (Rankin, 1955),
but we are not aware of an efficient algorithms to generate
them (except for the orthogonal ones).

In the next experiment, we examine the phase transition
when the dimension n and the rank r are varied while the
incoherence A is fixed to 0.38. The purpose is to deter-
mine the critical rank r when the vectors {2} are well-
separated. We observe a clear phase transition, whose
boundary is roughly r = 2.1n — 6.4.

6.2. Phase transition for completion

In this set of experiments, we test the power of the SDP re-
laxation (20) in performing symmetric tensor completion.
In figure 2, we plot the success rates for tensors with or-
thogonal components when the number of observations,
the rank r, and the dimension n are varied. To compute
the success rate, the following procedure was repeated 10
times for each (m, r) or (m,n) configuration, where m is
the number of measurements. A set of r random, orthonor-
mal vectors {«P} together with a vector A € R” following
the uniform distribution on [0, 1] were generated to pro-
duce the tensor A = 37/, A\ya? @ 2 @ xP. A uniform
random subset of the tensor entries were sampled to form
the observations. Since symmetric tensors have duplicated
entries, we made sure only the unique entries were sampled
and counted towards the measurements. The optimization
(20) was then run to complete the tensor as well as esti-
mating all the moments up to order 4. The optimization
was successful if the ¢, norm between the recovered 4th
order moment vector and the true moment vector is less
than 10~*. We applied the same procedure to prepare the
phase transition plots in Figure 3 except that the vectors
{zP} are not orthogonal, but rather maintain an incoher-
ence max;; |[(x*, z7) > 0.38.

For orthogonal tensor completions shown in Figure 2, we
observe clear phase transitions for both the number of mea-
surements versus the rank r, and versus the dimension n.
Even though the degree of freedom for a dimension n, rank
r, third-order symmetric tensor is 7n, which is linear in
both r and n, the boundaries in both plots of Figure 2
are curved. This phenomenon is seen in other completion
tasks such as matrix completion (Candes & Recht, 2009)
and compressed sensing off the grid (Tang et al., 2013).
For non-orthogonal tensor completion, the phase transition
boundaries are more blurred as seen from Figure 3. We be-
lieve this is because our selected value for the incoherence,
0.38, is still too large.
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Figure 2. Color coded success rate of the lowest order SDP for or-
thogonal symmetric tensor completion: the number of measure-
ments vs. rank r for fixed n = 16 (Upper), and the number of
measurements vs. dimension n for fixed » = 4 (Lower).
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Figure 3. Color coded success rate of the lowest order SDP for
non-orthogonal, symmetric tensor completion: the number of
measurements vs. rank r for fixed n = 10 (Upper), and the num-
ber of measurements vs. dimension n for fixed » = 4 (Lower).

6.3. Noise robustness

In the last experiment, we show one example to demon-
strate that the moment approach for tensor recovery is ro-

bust to Gaussian type noise. For n = 5, we generated a
tensor with » = 6 random rank-one factors maintaining an
incoherence less than 0.38. Gaussian noise of standard de-
viation o equal to half the average magnitude of the tensor
elements was added to all the unique entries of the tensor.
We then ran the optimization (22) with £ = 2 to perform
denoising. The penalization parameter y is set to equal
o. The noise-free and recovered 4th order moment vec-
tors (except for the Oth order moments), and the observa-
tions are plotted in Figure 4. Note only 3rd order moments
are observed while the algorithm returns all moments up to
order 4. We chose to remove the Oth order moments be-
cause they are large and including them makes the plot less
discernible. We see from Figure 4 that in addition to de-
noise the observed 3rd moments, which are entries of the
tensor, the algorithm can also interpolates Oth to 2nd order
moments and extrapolates the 4th order moments.

True
Denoised
——Observed

Yo
<

Figure 4. Tensor denoising using (22). Best viewed in color.

7. Conclusions

In this work, we formulated tensor decomposition as a
measure estimation problem from observed moments, and
used the total mass minimization to seek for a low-rank CP
decomposition. We approximate this infinite-dimensional
measure optimization using a hierarchy of SDPs. For third
order symmetric tensors, by explicitly constructing an in-
terpolation dual polynomial, we established that tensor de-
composition is possible using the moment approach under
an incoherence condition. Furthermore, by showing that
the constructed dual polynomial is a sum-of-square modulo
the sphere, we demonstrated that the smallest SDP in the
relaxation hierarchy is exact, and the CP tensor decompo-
sition can be identified from the recovered, truncated mo-
ment matrix. A complimentary resolution limit result was
cited to show that certain incoherent condition was neces-
sary. We discussed possible extensions to non-symmetric,
and higher-order tenors, as well as generalizations to tensor
completion and denoising. Numerical experiments were
performed to test the power of the moment approach in ten-
sor decomposition, completion, and denoising.
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