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Abstract
We consider LSTD(λ), the least-squares
temporal-difference algorithm with eligibility
traces algorithm proposed by Boyan (2002). It
computes a linear approximation of the value
function of a fixed policy in a large Markov
Decision Process. Under a β-mixing assump-
tion, we derive, for any value of λ ∈ (0, 1), a
high-probability bound on the rate of conver-
gence of this algorithm to its limit. We deduce
a high-probability bound on the error of this
algorithm, that extends (and slightly improves)
that derived by Lazaric et al. (2012) in the
specific case where λ = 0. In the context
of temporal-difference algorithms with value
function approximation, this analysis is to our
knowledge the first to provide insight on the
choice of the eligibility-trace parameter λ with
respect to the approximation quality of the space
and the number of samples.

1. Introduction
In a large Markov Decision Process context, we consider
LSTD(λ), the least-squares temporal-difference algorithm
with eligibility traces proposed by Boyan (2002). It is a
popular algorithm for performing a projection onto a lin-
ear space of the value function of a fixed policy. Such a
value estimation procedure can for instance be useful in a
policy iteration context to eventually estimate an approx-
imately optimal controller (Bertsekas & Tsitsiklis, 1996;
Szepesvári, 2010).

The asymptotic almost sure convergence of LSTD(λ) was
proved by Nedic & Bertsekas (2002). Under a β-mixing as-
sumption, and given a finite number of samples n, Lazaric
et al. (2012) derived a high-probability error bound with a
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Õ( 1√
n

) rate1 in the restricted situation where λ = 0. Pires
& Szepesvári (2012) also sketch an analysis of variations
of LSTD(0) with several sorts of regularizations. To our
knowledge, however, similar finite-sample error bounds are
not known in the literature for λ > 0. The main goal of
this paper is to fill this gap. This is all the more impor-
tant that it is known that the parameter λ allows to con-
trol the quality of the asymptotic solution of the value: by
moving λ from 0 to 1, one can continuously move from
an oblique projection of the value (Scherrer, 2010) to its
orthogonal projection and consequently improve the cor-
responding guarantee (Tsitsiklis & Roy, 1997) (restated in
Theorem 2, Section 3).

The paper is organized as follows. Section 2 starts by de-
scribing the necessary background. Section 3 then con-
tains our main results. Theorem 1 shows that unpenalized
LSTD(λ) converges to its limit at the rate Õ( 1√

n
). We then

deduce a global error (Corollary 1) that sheds some light on
the role of the parameter λ, and discuss some of its prac-
tical consequences. Theorem 3 then extends this result to
the case of penalized LSTD(λ). Section 4 will go on by
providing a detailed proof of our claims. Finally, Section 5
concludes by describing related and potential future work.

2. LSTD(λ) and Related Background
We consider a Markov chain taking its values on a finite or
countable state space X , with transition kernel P , and that
is ergodic2; consequently, it admits a unique stationary dis-
tribution µ. For any K ∈ R+, we denote B(X ,K) the set
of functions defined on X and bounded by K. We consider
a reward function r ∈ B(X , Rmax) for someRmax ∈ R, that
provides the quality of being in some state. The value func-
tion v related to the Markov chain is defined, for any state
i, as the average discounted sum of rewards along infinitely

1Throughout the paper, we shall write f(n) = Õ(g(n)) as a
shorthand for f(n) = O(g(n) logk g(n)) for some k ≥ 0.

2We focus on finite/countable state spaces essentially because
it eases the presentation. We believe that extensions to more gen-
eral state spaces is straight-forward.
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long trajectories starting from i:

∀i ∈ X , v(i) = E

 ∞∑
j=0

γjr(Xj)
∣∣X0 = i

 ,
where γ ∈ (0, 1) is a discount factor. It is well-known
that the value function v is the unique fixed point of
the linear Bellman operator T : ∀i ∈ X , T v(i) =
r(i) + γE [v(X1)|X0 = i] . It can easily be seen that v ∈
B(X , Vmax) with Vmax = Rmax

1−γ .

When the size |X | of the state space is very large, one may
consider approximating v by using a linear architecture.
Given some d (typically d � |X |), we consider a feature
matrix Φ = (φ(x))x∈X = (φ1 . . . φd) of dimension |X | ×
d. For any x ∈ X , φ(x) = (φ1(x), ..., φd(x))T is the
feature vector in state x. For any j ∈ {1, ..., d}, we assume
that the feature function φj : X 7→ R belongs to B(X , L)
for some finite L. Throughout the paper, we will make the
following assumption.

Assumption 1. The feature vectors (φj)j∈{1,...,d} are lin-
early independent.

Let S be the subspace generated by the vectors (φj)1≤j≤d.
We consider the orthogonal projection Π onto S with
respect to the µ-weighed quadratic norm ‖f‖µ =√∑

x∈X f(x)2µ(x). It is well known that this projection
has the following closed form

Π = Φ(ΦTDµΦ)−1ΦTDµ, (1)

where Dµ is the diagonal matrix with elements of µ on the
diagonal, and for all u, uT denotes the transpose of u.

The goal of LSTD(λ) is to estimate a solution of the equa-
tion v = ΠTλv, where the operator Tλ is defined as a
geometric average of the applications of the powers T i of
the Bellman operator T for all i > 1:

∀λ ∈ (0, 1), ∀v, Tλv = (1− λ)
∞∑
i=0

λiT i+1v. (2)

Note in particular that when λ = 0, one has Tλ = T .
By using the facts that T i is affine and ‖P‖µ = 1 (Tsit-
siklis & Roy, 1997), it has been shown that the opera-
tor Tλ is a contraction mapping of modulus (1−λ)γ

1−λγ ≤ γ
(Nedic & Bertsekas, 2002). Since the orthogonal projec-
tor Π is non-expansive with respect to µ (Tsitsiklis & Roy,
1997), the operator ΠTλ is contracting and thus the equa-
tion v = ΠTλv has one and only one solution, which
we shall denote vLSTD(λ) since it is what the LSTD(λ)
algorithm converges to (Nedic & Bertsekas, 2002). As
vLSTD(λ) belongs to the subspace S, there exists a θ ∈ Rd
such that vLSTD(λ) = Φθ = ΠTλΦθ. If we replace Π and
Tλ with their expressions (Equations 1 and 2), it can be

seen that θ is a solution of the equation Aθ = b (Tsitsiklis
& Roy, 1997; Nedic & Bertsekas, 2002) where for any i,

A = ΦTDµ(I − γP )(I − λγP )−1Φ (3)

= E

[
i∑

k=−∞

(γλ)i−kφ(Xk)(φ(Xi)− γφ(Xi+1))T

]
(4)

and b = ΦTDµ(I − γλP )−1r

= E

[
i∑

k=−∞

(γλ)i−kφ(Xk)r(Xi)

]
, (5)

where the sum starts from −∞ to ensure that the process
(Xk) is in stationary regime. Since for all x, φ(x) is of
dimension d, we see that A is a d × d matrix and b is a
vector of size d. Under Assumption 1, it can be shown
(Nedic & Bertsekas, 2002) that the matrix A is invertible,
and thus vLSTD(λ) = ΦA−1b is well defined.

The LSTD(λ) algorithm that is the focus of this article is
now precisely described. Given one trajectory X1, ...., Xn

generated by the Markov chain, the expectation-based ex-
pressions of A and b in Equations (4)-(5) suggest to com-
pute the following estimates:

Â =
1

n− 1

n−1∑
i=1

zi(φ(Xi)− γφ(Xi+1))T

and b̂ =
1

n− 1

n−1∑
i=1

zir(Xi)

where zi =

i∑
k=1

(λγ)i−kφ(Xk) (6)

is the so-called eligibility trace. The algorithm then returns
v̂LSTD(λ) = Φθ̂ with3 θ̂ = Â−1b̂, which is a (finite sample)
approximation of vLSTD(λ). Using a variation of the law
of large numbers, Nedic & Bertsekas (2002) showed that
both Â and b̂ converge almost surely respectively to A and
b, which implies that v̂LSTD(λ) tends to vLSTD(λ). The
main goal of this paper is to deepen this analysis: we shall
estimate a bound on the rate of convergence of v̂LSTD(λ)

to vLSTD(λ), and bound the error ‖v̂LSTD(λ) − v‖µ of the
overall algorithm.

3. Main result
This section contains our main results. Our key assump-
tion for the analysis is that the Markov chain process that
generates the states has some mixing property4.

3We will see in Theorem 1 that Â is invertible with high prob-
ability for a sufficiently big n.

4A Markov chain that is ergodic and stationary is always β-
mixing (Bradley, 2005).
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Assumption 2. The process (Xn)n≥1 is β-
mixing, in the sense that its ith coefficient βi =

supt≥1 E
[
supB∈σ(X∞t+i)

|P (B|σ(Xt
1))− P (B)|

]
tends to

0 when i tends to infinity, where Xj
l = {Xl, ..., Xj} for

j ≥ l and σ(Xj
l ) is the sigma algebra generated by Xj

l .
Furthermore, (Xn)n≥1 mixes at an exponential decay rate
with parameters β > 0, b > 0, and κ > 0 in the sense that
βi ≤ βe−bi

κ

.

Intuitively the βi coefficients measure the degree of depen-
dence of samples separated by i time steps (the smaller the
coefficient the more independence). We are now ready to
state the main results of the paper, which provides a rate of
convergence of LSTD(λ).
Theorem 1. Let Assumptions 1 and 2 hold and let
X1 ∼ µ, where µ is the stationary distribution of
the chain. For any n ≥ 1 and δ ∈ (0, 1), define

I(n, δ) = 32Λ(n, δ) max
{

Λ(n,δ)
b , 1

} 1
κ

, where Λ(n, δ) =

log
(

8n2

δ

)
+ log(max{4e2, nβ}). Also define the positive

integer mλ
n =

⌈
log(n−1)

log 1
λγ

⌉
. Let n0(δ) be the smallest inte-

ger such that for all n ≥ n0(δ),

2dL2

(1− γ)ν

[
2√
n− 1

√
(mλ

n + 1)I(n− 1, δ)+

1

(n− 1)(1− λγ)
+

2

(n− 1)
mλ
n

]
< 1 (7)

where ν is the smallest eigenvalue of the Gram ma-
trix ΦTDµΦ. Then, for all δ, with probability at least
1 − δ, for all n ≥ n0(δ), Â is invertible and the distance
‖vLSTD(λ) − v̂LSTD(λ)‖µ is upper bounded by

4VmaxdL
2

√
n− 1(1− γ)ν

√
(mλ

n + 1) I(n− 1, δ) + h(n, δ)

with h(n, δ) = Õ( 1
n log 1

δ ).

The constant ν is positive under Assumption 1. For all δ, it
is clear that the finite constant n0(δ) exists since the l.h.s.
of Equation (7) tends to 0 when n tends to infinity. As
mλ
n and I(n − 1, δ) are of order Õ(1), we can see that

LSTD(λ) estimates vLSTD(λ) at a rate Õ
(

1√
n

)
. Finally,

we can observe that since λ 7→ mλ
n is increasing, the rate of

convergence deteriorates when λ increases. This negative
effect can be balanced by the fact that, as shown by the
following result from the literature, the quality of vLSTD(λ)

improves when λ increases.

Theorem 2 (Tsitsiklis & Roy (1997)). The approximation
error satisfies

‖v − vLSTD(λ)‖µ ≤
1− λγ
1− γ

‖v −Πv‖µ.

Since the constant equals 1 when λ = 1, one recovers
the well-known fact that LSTD(1) computes the orthogo-
nal projection Πv of v. By using the triangle inequality,
one deduces from Theorems 1 and 2 the following global
error bound.

Corollary 1. Let the assumptions and notations of Theo-
rem 1 hold. For all δ, with probability at least 1− δ, for all
n ≥ n0(δ), the global error of LSTD(λ) satisfies:

‖v − v̂LSTD(λ)‖µ ≤
1− λγ
1− γ

‖v −Πv‖µ

+
4VmaxdL

2

√
n− 1(1− γ)ν

√
(mλ

n + 1) I(n− 1, δ) + h(n, δ).

The bound requires a sufficiently large number of sam-
ples n (n ≥ n0(δ)). For a fixed δ, this number increases
when λ increases. The existence of such a condition is not
surprising since we focus on an unregularized version of
LSTD(λ), and thus the estimated matrix Â may not be in-
vertible when n is too small.

As we have already mentioned, λ = 1 minimizes the bound
on the approximation error ‖v−vLSTD(λ)‖µ (the first term
in the r.h.s. in Corollary 1) while λ = 0 minimizes the
bound on the estimation error ‖vLSTD(λ) − v̂LSTD(λ)‖µ
(the second term). For any δ and n ≥ n0(δ), there ex-
ists a value λ∗ that minimizes the global error bound by
making an optimal compromise between the approximation
and estimation errors upper-bounds. When the number of
samples n tend to infinity, the optimal value λ∗ tends to
1. Previous studies on the role of the parameter λ were to
our knowledge empirical (Sutton & Barto, 1998; Downey
& Sanner, 2010) or dedicated to an exact representation of
the value function (Kearns & Singh, 2000). This is the first
time a bound on a temporal-difference learning algorithm
with value function approximation shows this trade-off ex-
plicitely.

The form of the result stated in Corollary 1 is slightly
stronger than the one of Lazaric et al. (2012). It has the
advantage to make clear the connection with the previous
analysis of Nedic & Bertsekas (2002) since our formula-
tion implies the almost sure convergence of v̂LSTD(λ) to
vLSTD(λ): for some property P (n), our result is of the
form “∀δ, ∃n0(δ), such that with probability at least 1 −
δ, ∀n ≥ n0(δ), P (n) holds” while the result
stated by (Lazaric et al., 2012) is of the form
“∀n, ∃δ(n), such that with probability at least 1 −
δ(n), P (n) holds.” In other words, we can fix a real δ such
that the property is true for all n ≥ n0(δ) with probability
at least 1− δ, while in (Lazaric et al., 2012), δ depends on
the number of samples.

Pires & Szepesvári (2012) studied penalized versions of
linear systems estimated with noise, and explained how
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to apply their approach to LSTD(0). Such a penalization
allows to control the magnitude of θ̂ in situations where
the matrix Â is (close to) singular. This has the advan-
tage of removing the need for a condition on the number
of samples to ensure the invertibility of Â, and as a side
effect this allows to derive bounds that are valid for any
value of the probability threshold δ and number of sam-
ples n (while in the above mentionned result without pe-
nalization, the minimum number of samples n0(δ) grows
to infinity when δ approaches 0). The most natural penal-
ization that one would like to consider for LSTD(λ) is the
one where we add a term ρI to the estimate Â (Nedic &
Bertsekas, 2002). This amounts to solve the following pe-
nalized problem: θ̂ρ = arg minθ

{
‖Âθ − b̂‖22 + ρ‖θ‖22

}
.

Unfortunately, this very form of regularization—squared
error with squared penalty—is not considered by Pires &
Szepesvári (2012). It turns out that it is rather straight-
forward to bound the residual ‖Aθ̂ρ−b‖2 in this case by fol-
lowing an approach very similar to that described in Pires &
Szepesvári (2012). Combined with the analyisis performed
for Theorem 1, we can derive the following result.
Theorem 3. Under Assumptions 1 and 2, for any δ ∈ (0, 1)

and n consider the estimate v̂ρn,δLSTD(λ) = Φθ̂ρ obtained
with penalization parameter ρn,δ = 2Ξ2(n, δ) s.t.

Ξ(n, δ) =
4dL2

(1− λγ)
√
n− 1

√
(mn

λ + 1)I

(
n− 1,

2n2δ

3

)
+

2dL2

(n− 1)(1− λγ)2
+

4dL2mλ
n

(n− 1)(1− λγ)
.

Then, with probability at least 1−δ, for all n, ‖v̂ρn,δLSTD(λ)−
vLSTD(λ)‖µ is bounded by

4Vmax
√
dL(3 +

√
dL)√

n− 1(1− γ)
√
ν

√
(mλ

n + 1) I(n− 1, δ) + g(n, δ),

where g(n, δ) and I(n, δ) and mλ
n are defined as in Theo-

rem 1.

We defer the proof to Appendix B of the supplementary
material.

4. Proof of Theorem 1
This section provides a detailed proof of Theorem 1. The
proof is organized in four steps. In the first step, we study
the sensitivity of the solution vLSTD(λ) to a potential de-
terministic deviation of the estimates Â and b̂ from their
limits A and b. In the second step, we shall derive a gen-
eral concentration analysis to control with high probability
the deviations of processes defined through infinitely-long
eligibility traces. Then, in the third step, we will apply this
concentration analysis to Â and b̂. Finally, we will gather
all elements to deduce the high-probability bound on the
distance between v̂LSTD(λ) and vLSTD(λ).

4.1. Deterministic sensivity of LSTD(λ)

We begin by showing the following lemma on the sensitiv-
ity of LSTD(λ).
Lemma 1. Write εA = Â−A, εb = b̂−b and ν the smallest
eigenvalue of the matrix ΦTDµΦ. For all λ ∈ (0, 1), the
error ‖vLSTD(λ) − v̂LSTD(λ)‖µ is upper bounded by5:

1− λγ
(1− γ)

√
ν
‖(I + εAA

−1)−1‖2‖εAθ − εb‖2,

where θ = A−1b. Furthermore, if for some ε and C,
‖εA‖2 ≤ ε < C ≤ 1

‖A−1‖2 , then Â is invertible and

‖(I + εAA
−1)−1‖2 ≤

1

1− ε
C

.

Proof. The definitions of vLSTD(λ) and v̂LSTD(λ) lead to

v̂LSTD(λ) − vLSTD(λ) = ΦA−1(Aθ̂ − b). (8)

On the one hand, with the expression of A in Equation (3),
writingM = (1−λ)γP (I−λγP )−1 andMµ = ΦTDµΦ,
we can see that

ΦA−1 = Φ
[
ΦTDµ(I − γP )(I − λγP )−1Φ

]−1

= Φ
[
ΦTDµ(I − λγP − (1− λ)γP )(I − λγP )−1Φ

]−1

= Φ(Mµ − ΦTDµMΦ)−1.

Since the matricesA andMµ are invertible, the matrix (I−
M−1
µ ΦTDµMΦ) is also invertible and

ΦA−1 = Φ(I −M−1
µ ΦTDµMΦ)−1M−1

µ .

By definition, the projection matrix Π defined in Equa-
tion (1) satisfies ‖Π‖µ = 1 and we know from Tsitsiklis &
Roy (1997) that the stochastic matrix P of the process also
satisfies ‖P‖µ = 1. Hence, we have ‖ΠM‖µ = (1−λ)γ

1−λγ <

1 and the matrix (I − ΠM) is invertible. We can use the
identityX(I−Y X)−1 = (I−XY )−1X withX = Φ and
Y = M−1

µ ΦTDµM , and obtain

ΦA−1 = (I −ΠM)−1ΦM−1
µ . (9)

On the other hand, using the facts that Aθ = b and Âθ̂ = b̂,
we can see that

Aθ̂ − b = Aθ̂ − b− (Âθ̂ − b̂)

= b̂− b− (Â−A)(θ̂ − θ)− (Â−A)θ

= b̂− Âθ − (b−Aθ) + εAA
−1(Aθ −Aθ̂)

= b̂− Âθ − εAA−1(Aθ̂ − b)

= (I + εAA
−1)−1(b̂− Âθ)

= (I + εAA
−1)−1(εb − εAθ). (10)

5When Â is not invertible, we have v̂LSTD(λ) = ∞ and the
inequality is always satisfied since, as we will see shortly, the
invertiblity of Â is equivalent to that of (I + εAA

−1).
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Using Equations (9) and (10), Equation (8) can be rewritten
as follows:

v̂LSTD(λ) − vLSTD(λ)

= (I −ΠM)−1ΦM−1
µ (I + εAA

−1)−1(εb − εAθ). (11)

We shall now bound ‖ΦM−1
µ (I+ εAA

−1)−1(εb− εAθ)‖µ.
Notice that for all x,

‖ΦM−1
µ x‖µ =

√
xTM−1

µ ΦTDµΦM−1
µ x

=

√
xTM−1

µ x ≤ 1√
ν
‖x‖2 (12)

where ν is the smallest (real) eigenvalue of the Gram matrix
Mµ. By taking the norm in Equation (11) and using the
above relation, we get

‖v̂LSTD(λ) − vLSTD(λ)‖µ
≤ ‖(I −ΠM)−1‖µ‖ΦM−1

µ (I + εAA
−1)−1(εb − εAθ)‖µ

≤ ‖(I −ΠM)−1‖µ
1√
ν
‖(I + εAA

−1)−1‖2‖εAθ − εb‖2.

The first part of the lemma is obtained by using the fact that
‖ΠM‖µ = (1−λ)γ

1−λγ < 1, which implies that

‖(I −ΠM)−1‖µ =

∥∥∥∥∥
∞∑
i=0

(ΠM)i

∥∥∥∥∥
µ

≤
∞∑
i=0

‖ΠM‖iµ

≤ 1

1− (1−λ)γ
1−λγ

=
1− λγ
1− γ

. (13)

We are going now to prove the second part of the lemma.
Since A is invertible, the matrix Â is invertible if and only
if the matrix ÂA−1 = (A + εA)A−1 = I + εAA

−1 is in-
vertible. Let us denote ρ(εAA

−1) the spectral radius of
the matrix εAA

−1. A sufficient condition for ÂA−1 to
be invertible is that ρ(εAA

−1) < 1. From the inequality
ρ(M) ≤ ‖M‖2 for any square matrix M , we can see that
for any C and ε that satisfy ‖εA‖2 ≤ ε < C < 1

‖A−1‖2 ,

ρ(εAA
−1) ≤ ‖εAA−1‖2 ≤ ‖εA‖2‖A−1‖2 ≤

ε

C
< 1.

It follows that the matrix Â is invertible and

‖(I + εAA
−1)−1‖2 =

∥∥∥∥∥
∞∑
i=0

(εAA
−1)i

∥∥∥∥∥
2

≤
∞∑
i=0

( ε
C

)i
This concludes the proof of Lemma 1.

Lemma 1 suggests that we control both terms ‖εA‖2 =

‖Â − A‖2 and ‖εb‖2 = ‖b̂ − b‖2. The next subsection
shows how to do so with high probability.

4.2. Concentration inequality for infinitely-long
trace-based estimates

As both terms Â and b̂ have the same structure, we will
consider here a matrix that has the following general form:

Ĝ =
1

n− 1

n−1∑
i=1

Gi with Gi = zi(τ(Xi, Xi+1))T

where zi is the trace defined in Equation (6) and τ : X 2 →
Rk. Let ‖.‖F denote the Frobenius norm satisfying: for
M ∈ Rd×k, ‖M‖2F =

∑d
l=1

∑k
j=1(Ml,j)

2. The sec-
ond important element of our analysis is the following con-
centration inequality for the infinitely-long-trace β-mixing
process Ĝ.

Lemma 2. Let Assumptions 1 and 2 hold and let X1 ∼ µ.
Define the d× k matrix Gi such that

Gi =

i∑
l=1

(λγ)i−lφ(Xl)(τ(Xi, Xi+1))T . (14)

Recall that φ = (φ1, . . . , φd) is such that for all j, φj ∈
B(X , L). Assume that for all 1 ≤ j ≤ d, τj ∈ B(X 2, L′).
Let mλ

n and I(n, δ) be defined as in Theorem 1. Let
J(n, δ) = I(n, 4n2δ). Then, for all δ in (0, 1), with proba-
bility at least 1− δ,∥∥∥∥∥ 1

n− 1

n−1∑
i=1

Gi −
1

n− 1

n−1∑
i=1

E[Gi]

∥∥∥∥∥
2

≤ 2
√
d× kLL′

(1− λγ)
√
n− 1

√
(mλ

n + 1) J(n− 1, δ) + ε(n),

where ε(n) = 2mλ
n

√
d×kLL′

(n−1)(1−λγ) .

Proof. The proof of this result is tedious, so we only give
a sketch and defer the details to Appendix A in the Sup-
plementary material. There are two main difficulties re-
garding the estimates Gi used to compute Ĝ: 1) Gi is a
σ(X i+1) measurable function of the non-stationary vector
(X1, . . . , Xi+1), and is consequently not stationary; 2) For
all i, Gi are computed from one single trajectory of the
Markov chain and are consequently mutually dependent.

To deal with the first issue (non-stationarity), we shall con-
sider the m-truncated trace,

zmi =

i∑
k=max(i−m+1,1)

(λγ)i−kφ(Xk),

and approximate Ĝ with the process Ĝm defined as:

Ĝm =
1

n− 1

n−1∑
i=1

Gmi , with Gmi = zmi (τ(Xi, Xi+1))T .
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Indeed, Gmi is now a σ(Xm+1) measurable function of the
stationary vector Zi = (Xi−m+1, Xi−m+2 , . . . , Xi+1),
the vector Zi being stationary since we assumed X1 ∼ µ.

To deal with the second issue (dependence of samples), for
any possible value of the truncation depth m, we shall use
the β-mixing assumption (Assumption 2) to transform the
dependent samples Gmi into blocks of independent sam-
ples, by using the “blocking technique” of Yu (1994) in a
way somewhat similar to—but technically slightly more in-
volved than—what Lazaric et al. (2012) did for LSTD(0).
This being done, we will be able to use a concentration in-
equality for i.i.d. processes from the literature (Lemma 7
in Appendix A in the Supplementary material). In ad-
dition to the use of a truncation depth m, a specific in-
gredient of the analysis of LSTD(λ) with respect to that
of LSTD(0) is that we need to prove that the stationary
process (Zi)i≥1 = (Xi−m+1, Xi−m+2 , . . . , Xi+1)i≥1 on
which the m-truncated process Gmi is defined, inherits the
β-mixing property of the original process (Xi)i≥1. This is
the purpose of the following technical lemma.

Lemma 3. Let (Xn)n≥1 be a β-mixing process, then
(Zn)n≥m = (Xn−m+1, Xn−m+2 , . . . , Xn+1)n≥m is a β-
mixing process such that its ith β mixing coefficient βZi
satisfies βZi ≤ βXi−m.

Finally, setting m to mλ
n will ensure that the distance

between Ĝ and Ĝm is bounded by ε(n) (as defined in
Lemma 2), and is therefore neglibible with respect to the
result of the deviation analysis obtained by the “blocking
techinque” of (Yu, 1994).

Using a very similar proof, we may derive a (simpler and)
general-purpose concentration inequality for β-mixing pro-
cesses:
Lemma 4. Let Y = (Y1, . . . , Yn) be random variables
taking their values in the space Rd, generated from a sta-
tionary exponentially β-mixing process with parameters β,
b and κ, and such that for all i, ‖Yi−E[Yi]‖2 ≤ B2 almost
surely. Then for all δ > 0, with probability at least 1− δ,∥∥∥∥∥ 1

n

n∑
i=1

Yi −
1

n

n∑
i=1

E[Yi]

∥∥∥∥∥
2

≤ B2√
n

√
J(n, δ)

where J(n, δ) is defined as in Lemma 2.

If the variables Yi were independent, we would have βi = 0
for all i, that is we could choose β = 0 and b =∞, so that
J(n, δ) reduces to 32 log 8e2

δ = O(1) and we recover stan-
dard concentration results for i.i.d. processes (such as the
one we describe in Lemma 7 in Appendix A in the Supple-
mentary material). The price to pay for making a β-mixing
assumption (instead of simple independence) lies in the ex-
tra coefficient J(n, δ) which is Õ(1); in other words, it is
rather mild.

4.3. Bounding the deviations of Â and b̂

We shall now apply the concentration inequality of
Lemma 2 on the quantities of interest of Lemma 1, i.e. on
‖εA‖2 and ‖εAθ − εb‖2.

Bounding ‖εA‖2. By the triangle inequality, we have

‖εA‖2 ≤ ‖E[εA]‖2 + ‖εA − E[εA]‖2. (15)

Write Ân,k = φ(Xk)(φ(Xn) − γφ(Xn+1))T . For all n
and k, we have: ‖Ân,k‖2 ≤ 2dL2. We can bound the first
term of the r.h.s. of Equation (15) by replacing A with its
expression in Equation (4):

‖E[εA]‖2 =

∥∥∥∥∥A− E

[
1

n− 1

n−1∑
i=1

i∑
k=1

(λγ)i−kÂi,k

]∥∥∥∥∥
2

=

∥∥∥∥∥E
[

1

n− 1

n−1∑
i=1

(
i∑

k=−∞

(λγ)i−kÂi,k −
i∑

k=1

(λγ)i−kÂi,k

)]∥∥∥∥∥
2

=

∥∥∥∥∥E
[

1

n− 1

n−1∑
i=1

(λγ)i
0∑

k=−∞

(λγ)−kÂi,k

]∥∥∥∥∥
2

≤ 1

n− 1

n−1∑
i=1

(λγ)i
2dL2

1− λγ ≤
1

n− 1

2dL2

(1− λγ)2
def
= ε0(n).

(16)

Let (δn)n≥1 be a sequence in (0, 1) that we will set later.
With ε(n) = 4dL2

(n−1)(1−λγ)m
λ
n (defined in Lemma 2) and

ε0(n) defined in Equation (16), define:

ε1(n, δn) =
4dL2

(1− λγ)
√
n− 1

√
(mλ

n + 1) J(n− 1, δn)

+ ε(n) + ε0(n). (17)

By using Equation (15), the bound of Equation (16) and
Lemma 2 applied to εA, we get

P {‖εA‖2 ≥ ε1(n, δn)}
≤ P{‖εA − E[εA]‖2 ≥ ε1(n, δn)− ε0(n)}
≤ δn. (18)

Bounding ‖εAθ−εb‖2. By using the fact thatAθ = b, the
definitions of Â and b̂, and the fact that φ(x)T θ = [φθ](x),
we have

εAθ − εb = Âθ − b̂

=
1

n− 1

n−1∑
i=1

zi(φ(Xi)− γφ(Xi+1)T )θ − 1

n− 1

n−1∑
i=1

zir(Xi)

=
1

n− 1

n−1∑
i=1

zi([φθ](Xi)− γ[φθ](Xi+1)− r(Xi))

=
1

n− 1

n−1∑
i=1

zi∆i
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where, since vLSTD(λ) = Φθ, ∆i is the following number:

∆i = vLSTD(λ)(Xi)− γvLSTD(λ)(Xi+1)− r(Xi).

Let L′ be a bound on max1≤i≤n−1 |∆i| (we shall compute
L′ below). We can control ‖εAθ − εb‖2 by following the
same proof steps as above. In fact we can see that

‖εAθ − εb‖2 ≤ ‖εAθ − εb − E[εAθ − εb]‖2
+ ‖E[εAθ − εb]‖2, (19)

with ‖E[εAθ − εb]‖2 ≤ ‖E[εA]‖2‖θ‖2 + ‖E[εb]‖2.

From what has been developed before we can see that
‖E[εA]‖2 ≤ ε0(n) = 1

n−1
2dL2

(1−λγ)2 . Similarly we can show

that ‖E[εb]‖2 ≤ 1
n−1

√
dLRmax

(1−λγ)2 . We can hence conclude that

‖E[εAθ − εb]‖2

≤ 1

n− 1

2dL2

(1− λγ)2
‖θ‖2 +

1

n− 1

√
dLRmax

(1− λγ)2

def
= ε′0(n).

(20)

With ε(n) = 4dL2

(n−1)(1−λγ)m
λ
n (defined in Lemma 2) and

ε′0(n) defined in Equation (20), define:

ε2(n, δn) =
2
√
dLL′

(1− λγ)
√
n− 1

√
(mλ

n + 1) J(n− 1, δn)

+ ε(n) + ε′0(n). (21)

By using Equation (19), Equation (21) and Lemma 2 ap-
plied to εaθ − b, we get

P(‖εAθ − εb‖2 ≥ ε2(n, δn))

≤ P(‖εAθ − εb − E[εAθ − εb]‖2 ≥ ε2(n, δn)− ε′0(n))

≤ δn. (22)

To finish this third part of the proof, it remains to compute
the bound L′ on max1≤i≤n−1 |∆i|. To do so, it suffices to
bound vLSTD(λ)(x) for all x. For all x ∈ X , we have

|vLSTD(λ)(x)| = |φT (x)θ| ≤ ‖φT (x)‖2‖θ‖2 ≤
√
dL‖θ‖2,

where the first inequality is obtained from the Cauchy-
Schwarz inequality. It remains to bound ‖θ‖2. On the one
hand, we have: ‖vLSTD(λ)‖µ = ‖Φθ‖µ =

√
θTMµθ ≥√

ν‖θ‖2, and on the other hand, we have: ‖vLSTD(λ)‖µ =

‖(I − ΠM)−1Π(I − λγP )−1r‖µ ≤ Rmax
1−γ = Vmax. There-

fore ‖θ‖2 ≤ Vmax√
ν
, and we can deduce that: ∀x ∈

X , |vLSTD(λ)(x)| ≤
√
dLVmax√
ν

. Then, for all i we have

|∆i| = |vLSTD(λ)(Xi)− γvLSTD(λ)(Xi+1)− r(Xi)|

≤
√
dLVmax√
ν

+ γ

√
dLVmax√
ν

+ (1− γ)Vmax.

Since ΦTDµΦ is a symmetric matrix, we have ν ≤
‖ΦTDµΦ‖2. We can see that ‖ΦTDµΦ‖2 ≤
dmaxj,k |φTkDµφj | = dmaxj,k |φTkD

1
2
µD

1
2
µφj | ≤

dmaxj,k ‖φTk ‖µ‖φj‖µ ≤ dL2, so that ν ≤ dL2. It fol-
lows that, for all i

|∆i| ≤
√
dLVmax√
ν

+ γ

√
dLVmax√
ν

+

√
dL√
ν

(1− γ)Vmax,

and therefore we can take L′ = 2
√
dL√
ν
Vmax.

4.4. Conclusion of the proof

Now that we know how to control both terms ‖εA‖2 and
‖εAθ− εb‖2, we are ready to conclude the proof. Consider
the event

E =
{
∃n ≥ 1, {‖εA‖2 ≥ ε1(n, δn)}

∪ {‖εAθ − εb)‖2 ≥ ε2(n, δn)}
}
.

Using the analysis of Section 4.3 and in particular Equa-
tions (18) and 22, we deduce that

P(E) ≤
∞∑
n=1

P {‖εA‖2 ≥ ε1(n, δn)}

+ P {‖εAθ − εb)‖2 ≥ ε2(n, δn)}

≤ 2

∞∑
n=1

δn =
1

2

∞∑
n=1

1

n2
δ =

1

2

π2

6
δ < δ

if on the last line we set δn = 1
4n2 δ. By the second part

of Lemma 1, for all δ, with probability at least 1 − δ, for
all n such that ε1(n, δn) < C, where C is chosen such that
C ≤ 1

‖A−1‖2 , then Â is invertible and

‖vLSTD(λ) − v̂LSTD(λ)‖µ ≤
1− λγ

(1− γ)
√
ν

ε2 (n, δn)

1− ε1(n,δn)
C

=
1− λγ

(1− γ)
√
ν

[
ε2 (n, δn) +

ε1 (n, δn) ε2 (n, δn)

C − ε1 (n, δn)

]
.

The bound of the Theorem 1 is obtained by replacing
ε1(n, δn) and ε2(n, δn) with their definitions in Equa-
tions (17) and (21), in particularly noticing that ε(n), ε0(n)
and ε′0(n) are Õ( 1

n ).

To fully complete the proof of Theorem 1, we finally need
to show how to pick C ≤ 1

‖A−1‖2 . We have ∀v ∈
Rd, ‖ΦA−1v‖µ =

√
(A−1v)TMµA−1v ≥

√
ν‖A−1v‖2.

We know that ‖ΦA−1v‖µ = ‖(I − ΠM)−1ΦM−1
µ v‖µ ≤

1−λγ
(1−γ)

√
ν
‖v‖2 where the inequalities are respectively ob-

tained from Equations (12) and (13). Therefore ‖A−1‖2 ≤
1−λγ

(1−γ)ν , and consequently we can take C = (1−γ)ν
1−λγ . Note

that the condition ε1(n, δn) < C for this choice of C is
equivalent to the one that characterizes the index n0(δ) in
the theorem. This concludes the proof of Theorem 1.
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5. Summary, Related and Future Work
This paper provides high-probability bound on the conver-
gence rate for the standard LSTD(λ) and a penalized vari-
ation, in terms of the number of samples n and the param-
eter λ. Theorems 1 and 3 show that this convergence is
at the rate of Õ( 1√

n
), in the case where the samples are

generated from a stationary β-mixing process. Our result
is based on two original technical contributions: a) a de-
terministic sensitivity analysis of LSTD(λ) (Lemma 1) and
b) an original vector concentration inequality (Lemma 2)
for estimates that are based on eligibility traces. A simpli-
fied version of the latter (Lemma 4) is a general-purpose
concentration inequality that may apply to general station-
ary beta-mixing processes, which may be useful in many
other contexts where we want to relax the i.i.d. hypothesis
on the samples. Corollary 1, which is an immediate con-
sequence of Theorem 1, is to our knowledge the very first
analytical result that provides insight on the choice of the
eligibility-trace parameter λ of temporal-difference learn-
ing algorithm with respect to the approximation quality of
the space and the number of samples. Validating empiri-
cally the lessons that we can take from this result consti-
tutes immediate interesting future work.

Under the same assumptions, the global error bound ob-
tained by Lazaric et al. (2012) in the restricted case where
λ = 0 has the following form:

‖ṽLSTD(0) − v‖µ ≤
4
√

2

1− γ
‖v −Πv‖µ +O

(√
d log d

νn

)
,

where ṽLSTD(0) is the truncation with thresholds
{−Vmax, Vmax} of the estimate v̂LSTD(0). In our analysis,
we get for λ = 0:

‖v̂LSTD(0) − v‖µ ≤
1

1− γ
‖v −Πv‖µ + Õ

(
d

ν
√
n

)
.

On the one hand, the term corresponding to the approx-
imation error is a factor 4

√
2 better with our analysis;

our bound is thus asymptotically better. Note that, con-
trary to our approach, the analysis of Lazaric et al. (2012)
does not imply a rate of convergence for LSTD(0) (a
bound on ‖vLSTD(0) − v̂LSTD(0)‖µ); their arguments,
based on a model of regression with Markov design, con-
sists in directly bounding the global error. On the other
hand, our bound on the estimation error depends linearly
on the features space dimension d and on 1

ν while the
one obtained by Lazaric et al. (2012) takes the form of
O
(√

d log d/(nν)
)

. Thus our bound seems suboptimal
on d and ν. A technical element for explaining such a dif-
ference is the fact, mentionned above, that Lazaric et al.
(2012) consider the truncated version of vLSTD(0). In-
deed, a close examination shows that the extra term

√
d/ν

in our bound results from a bound (uniform on x) on
vLSTD(λ)(x).

A critical condition in the analysis of LSTD(0) previously
done by Lazaric et al. (2012) is that the noise term in
the Markov Regression model is a Martingale difference
sequence with respect to the filtration generated by the
Markov chain. As soon as λ > 0, this property stops to
hold and it has not been clear how one may fix this issue.
We believe that the techniques we used for the proof of our
concentration inequality (Lemma 2)—the truncation of the
trace at some depth m and the focus on the “block” chain
(Zn) = (Xi−m+1, Xi−m, . . . , Xi+1)—constitutes a po-
tential track for addressing these issues. If successful, note
however that an extension to λ > 0 of the work of Lazaric
et al. (2012) would still contain a suboptimal 4

√
2 extra

factor in the final bound.

Regarding the dependence with respect to the parameters
d and ν, it is worth mentionning that the bound obtained
by Pires & Szepesvári (2012) for a regularized version
of LSTD(0) depends also linearly on d and ‖θ‖2 (which
in turn can be bounded by Vmax/

√
ν). In (Antos et al.,

2006) the bound does not depend on ν but the convergence
rate is of order Õ

(
1/n

1
4

)
which is a slower rate than the

one we get. In the deterministic design and pure regres-
sion setting—pure regression corresponds to value function
learning with γ = 0—, the corresponding bound does not
also involve the parameter ν (Györfi et al., 2002). We do
not know whether one could have the best of all worlds: the
best asymptotic bound without the 4

√
2 coefficient, and the

best rate with respect to n, d and ν. This constitutes inter-
esting future work.

More generally, in the future, we plan to instantiate our new
bound in a Policy Iteration context like Lazaric et al. (2012)
did for LSTD(0). An interesting follow-up work would
also be to extend our analysis of LSTD(λ) to the situation
where one considers non-stationary policies, as Scherrer &
Lesner (2012) showed that it allows to improve the over-
all performance of the Policy Iteration Scheme. Finally, a
challenging problem would be to consider convergence rate
LSTD(λ) in the off-policy case, for which the convergence
has recently been proved by Yu (2010).
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