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Supplementary Material

A. Proof of Lemma 2
We begin by bounding, for any value of m, the distance between Ĝ and Ĝm. Set m to any integer greater or equal to 1.
Writing

ε1 =
1

n− 1

m−1∑
i=1

Gi − E[Gi]

and ε2 =
1

n− 1

n−1∑
i=m

(zi − zmi )τ(Xi, Xi+1)T − E[(zi − zmi )τ(Xi, Xi+1)T ],

we have

1

n− 1

n−1∑
i=1

Gi − E[Gi] =
1

n− 1

n−1∑
i=m

Gi − E[Gi] + ε1

=
1

n− 1

n−1∑
i=m

ziτ(Xi, Xi+1)T − E[ziτ(Xi, Xi+1)T ] + ε1

=
1

n− 1

n−1∑
i=m

zmi τ(Xi, Xi+1)T − E[zmi τ(Xi, Xi+1)T ] + (ε1 + ε2)

=
1

n− 1

n−1∑
i=m

(Gmi − E[Gmi ]) + (ε1 + ε2). (23)

For all i, we have ‖zi‖∞ ≤ L
1−λγ , ‖Gi‖∞ ≤ LL′

1−λγ , and ‖zi − zmi ‖∞ ≤
(λγ)mL
1−λγ . As a consequence—using ‖M‖2 ≤

‖M‖F =
√
d× k‖x‖∞ for M ∈ Rd×k with x the vector obtained by concatenating all M columns—, we can see that

‖ε1 + ε2‖2 ≤
2(m− 1)

√
d× kLL′

(n− 1)(1− λγ)
+

2(λγ)m
√
d× kLL′

(1− λγ)
(24)

By concatenating all its columns, the d× k matrix Gmi may be seen a single vector Umi of size dk. Then, for all ε > 0,

P

(∥∥∥∥∥ 1

n−m

n−1∑
i=m

(Gmi − E[Gmi ])

∥∥∥∥∥
2

≥ ε

)
≤ P

(∥∥∥∥∥ 1

n−m

n−1∑
i=m

(Gmi − E[Gmi ])

∥∥∥∥∥
F

≥ ε

)

= P

(∥∥∥∥∥ 1

n−m

n−1∑
i=m

(Umi − E[Umi ])

∥∥∥∥∥
2

≥ ε

)
. (25)

The process (Umn )n≥m, defined as a function of the process (Zn)n≥m = (Xn−m+1, Xn−m+2 , . . . , Xn+1)n≥m, is sta-
tionary. By using the next lemma, we can see that it inherits in some sense the β-mixing property of the process (Xi)i≥1

(Assumption 2).

Lemma 5 (originally stated as Lemma 3). Let (Xn)n≥1 be a β-mixing process, then (Zn)n≥m = (Xn−m+1, Xn−m+2

, . . . , Xn+1)n≥m is a β-mixing process such that its ith β mixing coefficient βZi satisfies βZi ≤ βXi−m.

Proof. Let Γ = σ(Zm, ..., Zt), by definition we have

Γ = σ(Z−1
j (B) : j ∈ {m, ..., t}, B ∈ σ(Xm+1)).

For all j ∈ {m, ..., t} we have

Z−1
j (B) = {ω ∈ Ω, Zj(ω) ∈ B} .
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For B = B0 × ...×Bm, we observe that

Z−1
j (B) = {ω ∈ Ω, Xj−m+1(ω) ∈ B0, ..., Xj+1(ω) ∈ Bm}.

Then we have

Γ = σ(X−1
j (B) : j ∈ {m, ..., t}, B ∈ σ(X )) = σ(X1, ..., Xt+1).

Similarly we can prove that σ(Z∞t+i) = σ(X∞t+i−m+1). Then let βXi be the ith β-mixing coefficient of the process
(Xn)n≥1, we have

βXi = sup
t≥1

E

[
sup

B∈σ(X∞t+i)

|P (B|σ(X1, ..., Xt))− P (B)|

]
.

Similarly for the process (Zn)n≥m we can see that

βZi = sup
t≥m

E

[
sup

B∈σ(Z∞t+i)

|P (B|σ(Zm, ..., Zt))− P (B)|

]
.

By applying what we developed above we obtain

βZi = sup
t≥m

E

[
sup

B∈σ(X∞t+i−m+1)

|P (B|σ(X1, ..., Xt+1))− P (B)|

]
.

Denote u = t+ 1 we have

βZi = sup
u≥m+1

E

[
sup

B∈σ(X∞u+i−m)

|P (B|σ(X1, ..., Xu))− P (B)|

]

Then for i > m

βZi ≤ βXi−m.

Now that we know that (Umn )n≥m is a β-mixing stationary process, we shall use the decomposition technique proposed by
Yu (1994) that consists in dividing the sequence Umm , . . . , U

m
n−1 into 2µn−m blocks of length an−m (we assume here that

n −m = 2an−mµn−m). The blocks are of two kinds: those which contains the even indexes E = ∪µn−ml=1 El and those
with odd indexes H = ∪µn−ml=1 Hl. Thus, by grouping the variables into blocks we get

P

(∥∥∥∥∥ 1

n−m

n−1∑
i=m

Umi − E[Umi ]

∥∥∥∥∥
2

≥ ε

)

≤P

(∥∥∥∥∥∑
i∈H

Umi − E[Umi ]

∥∥∥∥∥
2

+

∥∥∥∥∥∑
i∈E

Umi − E[Umi ]

∥∥∥∥∥
2

≥ (n−m)
ε

2

)
(26)

≤P

(∥∥∥∥∥∑
i∈H

Umi − E[Umi ]

∥∥∥∥∥
2

≥ (n−m)ε

4

)
+ P

(∥∥∥∥∥∑
i∈E

Umi − E[Umi ]

∥∥∥∥∥
2

≥ (n−m)ε

4

)
(27)

=2P

(∥∥∥∥∥∑
i∈H

Umi − E[Umi ]

∥∥∥∥∥
2

≥ (n−m)ε

4

)
(28)
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where Equation (26) follows from the triangle inequality, Equation (27) from the fact that the event {X + Y ≥ a} implies
{X ≥ a

2} or {Y ≥ a
2}, and Equation (28) from the assumption that the process is stationary. Since H = ∪µn−ml=1 Hl we

have

P

(∥∥∥∥∥ 1

n−m

n−1∑
i=m

Umi − E[Umi ]

∥∥∥∥∥
2

≥ ε

)
≤ 2P

∥∥∥∥∥
µn−m∑
l=1

∑
i∈Hl

Umi − E[Umi ]

∥∥∥∥∥
2

≥ (n−m)ε

4


= 2P

(∥∥∥∥∥
µn−m∑
l=1

U(Hl)− E[U(Hl)]

∥∥∥∥∥
2

≥ (n−m)ε

4

)
(29)

where we defined U(Hl) =
∑
i∈Hl U

m
i . Now consider the sequence of identically distributed independent blocks

(U ′(Hl))l=1,...,µn−m such that each block U ′(Hl) has the same distribution as U(Hl). We are going to use the following
technical result.

Lemma 6. (Yu, 1994) Let X1, . . . , Xn be a sequence of samples drawn from a stationary β-mixing process with
coefficients {βi}. Let X(H) = (X(H1), . . . , X(Hµn−m)) where for all j X(Hj) = (Xi)i∈Hj . Let X ′(H) =
(X ′(H1), . . . , X ′(Hµn−m)) with X ′(Hj) independent and such that for all j, X ′(Hj) has same distribution as X(Hj).
Let Q and Q′ be the distribution of X(H) and X ′(H) respectively. For any measurable function h : X anµn → R bounded
by B, we have

|EQ[h(X(H)]− EQ′ [h(X ′(H)]| ≤ Bµnβan .

By applying Lemma 6, Equation (29) leads to:

P

(∥∥∥∥∥ 1

n−m

n−1∑
i=m

Umi − E[Umi ]

∥∥∥∥∥
2

≥ ε

)
≤2P

(∥∥∥∥∥
µn−m∑
l=1

U ′(Hl)− E[U ′(Hl)]

∥∥∥∥∥
2

≥ (n−m)ε

4

)
+ 2µn−mβan−m . (30)

The variables U ′(Hl) are independent. Furthermore, it can be seen that (
∑µn−m
l=1 U ′(Hl) − E[U ′(Hl)])µn−m is a

σ(U ′(H1), . . . , U ′(Hµn−m)) martingale:

E

[
µn−m∑
l=1

U ′(Hl)− E[U ′(Hl)]

∣∣∣∣∣ U ′(H1), . . . , U ′(Hµn−m−1)

]

=

µn−m−1∑
l=1

U ′(Hl)− E[U ′(Hl)] + E[U ′Hµn−m
− E[U ′Hµn−m

]]

=

µn−m−1∑
l=1

U ′(Hl)− E[U ′(Hl)].

We can now use the following concentration result for martingales.

Lemma 7 ((Hayes, 2005)). Let X = (X0, . . . , Xn) be a discrete time martingale taking values in an Euclidean space
such that X0 = 0 and for all i, ‖Xi −Xi−1‖2 ≤ B2 almost surely. Then for all ε,

P {‖Xn‖2 ≥ ε} < 2e2e
− ε2

2n(B2)2 .

Indeed, taking Xµn−m =
∑µn−m
l=1 U ′(Hl) − E[U ′(Hl)], and observing that ‖Xi −Xi−1‖ = ‖U ′(Hl) − E[U ′(Hl)]‖2 ≤

an−mC with C = 2
√
dkLL′

1−λγ , the lemma leads to

P

(∥∥∥∥∥
µn−m∑
l=1

U ′(Hl)− E[U ′(Hl)]

∥∥∥∥∥
2

≥ (n−m)ε

4

)
≤ 2e2e

− (n−m)2ε2

32µn−m(an−mC)2

= 2e2e
− (n−m)ε2

16an−mC2 .
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where the second line is obtained by using the fact that 2an−mµn−m = n −m. With Equations (29) and (30), we finally
obtain

P

(∥∥∥∥∥ 1

n−m

n−1∑
i=m

Umi − E[Umi ]

∥∥∥∥∥
2

≥ ε

)
≤ 4e2e

− (n−m)ε2

16an−mC2 + 2(n−m)βUan−m .

The vector Umi is a function of Zi = (Xi−m+1, . . . , Xi+1), and Lemma 3 tells us that for all j > m,

βUj ≤ βZj ≤ βXj−m ≤ βe−b(j−m)κ .

So the equation above may be re-written as

P

(∥∥∥∥∥ 1

n−m

n−1∑
i=m

Umi − E[Umi ]

∥∥∥∥∥
2

≥ ε

)
≤ 4e2e

− (n−m)ε2

16an−mC2 + 2(n−m)βe−b(an−m−m)κ = δ′. (31)

We now follow a reasoning similar to that of (Lazaric et al., 2012) in order to get the same exponent in both of the above

exponentials. Taking an−m −m =
⌈
C2(n−m)ε2

b

⌉ 1
κ+1

with C2 = (16C2ζ)−1, and ζ = an−m
an−m−m , we have

δ′ ≤ (4e2 + (n−m)β) exp

(
−min

{(
b

(n−m)ε2C2

)
, 1

} 1
k+1 1

2
(n−m)C2ε

2

)
. (32)

Define

Λ(n, δ) = log

(
2

δ

)
+ log(max{4e2, nβ}),

and

ε(δ) =

√
2

Λ(n−m, δ)
C2(n−m)

max

{
Λ(n−m, δ)

b
, 1

} 1
κ

.

It can be shown that

exp

(
−min

{(
b

(n−m)(ε(δ))2C2

)
, 1

} 1
k+1 1

2
(n−m)C2(ε(δ))2

)
≤ exp (−Λ(n−m, δ)) . (33)

Indeed6, there are two cases:

1. Suppose that min
{(

b
(n−m)(ε(δ))2C2

)
, 1
}

= 1. Then

exp

(
−min

{(
b

(n−m)(ε(δ))2C2

)
, 1

} 1
k+1 1

2
(n−m)C2(ε(δ))2

)

= exp

(
−Λ(n−m, δ) max

{
Λ(n−m, δ)

b
, 1

} 1
k

)
≤ exp (−Λ(n−m, δ)) .

6This inequality exists in (Lazaric et al., 2012), and is developped here for completeness.
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2. Suppose now that min
{(

b
(n−m)(ε(δ))2C2

)
, 1
}

=
(

b
(n−m)(ε(δ))2C2

)
. Then

exp

(
−min

{(
b

(n−m)(ε(δ))2C2

)
, 1

} 1
k+1 1

2
(n−m)C2(ε(δ))2

)

= exp

(
−1

2
b

1
k+1 ((n−m)C2(ε(δ))2)

k
k+1

)
= exp

(
−1

2
b

1
k+1 (Λ(n−m, δ)

k
k+1 max

{
Λ(n−m, δ)

b
, 1

} 1
k+1

)

= exp

(
−1

2
Λ(n−m, δ)

k
k+1 max {Λ(n−m, δ), b}

1
k+1

)
≤ exp (−Λ(n−m, δ)) .

By combining Equations (32) and (33), we get

δ′ ≤ (4e2 + (n−m)β) exp (−Λ(n−m, δ)) .

If we replace Λ(n−m, δ) with its expression, we obtain

exp (−Λ(n−m, δ)) =
δ

2
max{4e2, (n−m)β}−1.

Since 4e2 max{4e2, (n−m)β}−1 ≤ 1 and (n−m)βmax{4e2, (n−m)β}−1 ≤ 1, we consequently have

δ′ ≤ 2
δ

2
≤ δ.

Now, note that since an−m −m ≥ 1, we have

ζ =
an−m

an−m −m
=
an−m −m+m

an−m −m
≤ 1 +m.

Let J(n, δ) = 32Λ(n, δ) max
{

Λ(n,δ)
b , 1

} 1
κ

. Then Equation (31) is reduced to

P

(∥∥∥∥∥ 1

n−m

n−1∑
i=m

(Umi − E[Umi ])

∥∥∥∥∥
2

≥ C√
n−m

(ζJ(n−m, δ))
1
2

)
≤ δ. (34)

Since J(n, δ) is an increasing function on n, and n−1√
n−1(n−m)

= 1√
n−m

√
n−1
n−m ≥

1√
n−m , we have

P

(∥∥∥∥∥ 1

n− 1

n−1∑
i=m

(Gmi − E[Gmi ])

∥∥∥∥∥
2

≥ C√
n− 1

(ζJ(n− 1, δ))
1
2

)

≤ P

(∥∥∥∥∥ 1

n−m

n−1∑
i=m

(Gmi − E[Gmi ])

∥∥∥∥∥
2

≥ C√
n− 1

n− 1

n−m
((m+ 1)J(n− 1, δ))

1
2

)

≤ P

(∥∥∥∥∥ 1

n−m

n−1∑
i=m

(Gmi − E[Gmi ])

∥∥∥∥∥
2

≥ C√
n−m

((m+ 1)J(n−m, δ))
1
2

)
.

By using Equations (25) and (34), we deduce that

P

(∥∥∥∥∥ 1

n− 1

n−1∑
i=m

(Gmi − E[Gmi ])

∥∥∥∥∥
2

≥ C√
n− 1

((m+ 1)J(n− 1, δ))
1
2

)
≤ δ. (35)

By combining Equations (23), (24) and (35), plugging the value of C = 2
√
dkLL′

1−λγ , and taking m =
⌈

log (n−1)

log 1
λγ

⌉
—so that

‖ε1 + ε2‖2 ≤ ε(n)—, we get the announced result.
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B. Proof of Theorem 3
We prove here the following result: for any δ ∈ (0, 1), for all n ≥ 1, consider v̂ρLSTD(λ) = Φθ̂ρ with penalization
parameter ρ = 2Ξ2(n, δ). Then, with at least probability 1− δ, for all n,

‖v̂ρLSTD(λ) − vLSTD(λ)‖µ ≤
4Vmax

√
dL(3 +

√
dL)√

n− 1(1− γ)
√
ν

√
(mλ

n + 1) I(n− 1, δ) + g(n, δ),

where g(n, δ) and I(n, δ) are defined as in Theorem 1.

Proof. Let θ̂ρ be the vector that satisfies

θ̂ρ = arg min
θ∈Rd

{
‖Âθρ − b̂‖22 + ρ‖θρ‖22

}
. (36)

We have

‖Aθ̂ρ − b‖2 ≤ ‖εA‖2‖θ̂ρ‖2 + ‖εb‖2 + ‖Âθ̂ρ − b̂‖2.

Then by using the inequality (a + b)2 ≤ 2(a2 + b2) twice on ‖εA‖2‖θ̂‖2 + ‖εb‖2︸ ︷︷ ︸
a

+ ‖Âθ̂ − b̂‖2︸ ︷︷ ︸
b

and then on

‖εA‖2‖θ̂‖2︸ ︷︷ ︸
a

+ ‖εb‖2︸ ︷︷ ︸
b

we have

‖Aθ̂ρ − b‖22 ≤ 4‖εA‖22‖θ̂ρ‖22 + 4‖εb‖22 + 2‖Âθ̂ρ − b̂‖22.

From Equation (36) we can write that{
‖Âθ̂ρ − b̂‖22 + ρ‖θ̂ρ‖22

}
= min
θ∈Rd

{
‖Âθρ − b̂‖22 + ρ‖θ‖22

}
‖θ̂ρ‖22 =

1

ρ
min
θ∈Rd

{
‖Âθ − b̂‖22 + ρ‖θ‖22 − ‖Âθ̂ρ − b̂‖22

}
,

and

‖Âθ̂ρ − b̂‖22 = min
θ∈Rd

{
‖Âθ − b̂‖22 + ρ(‖θ‖22 − ‖θ̂ρ‖22)

}
≤ min
θ∈Rd

{
‖Âθ − b̂‖22 + ρ‖θ‖22

}
.

So that

‖Aθ̂ρ − b‖22 ≤ 4
‖εA‖22
ρ

min
θ∈Rd

{
‖Âθ − b̂‖22 + ρ‖θ‖22 − ‖Âθ̂ − b̂‖22

}
+ 4‖εb‖22 + 2‖Âθ̂ − b̂‖2M

≤ 4
‖εA‖22
ρ

min
θ∈Rd

{
‖Âθ − b̂‖22 + ρ‖θ‖22

}
+ max

(
0, 2− 4

‖εA‖22
ρ

)
‖Âθ̂ − b̂‖22 + 4‖εb‖22

≤ max

(
4
‖εA‖22
ρ

, 2

)
min
θ∈Rd

{
‖Âθ − b̂‖22 + ρ‖θ‖22

}
+ 4‖εb‖22.

In Section 4.3, we derived high-probability bounds on ‖εA‖2 and ‖Âθ∗ − b̂‖2 = ‖εAθ∗ − εb‖2 with θ∗ = A−1b. It is easy
to also derive a high-probability bound on ‖εb‖22. More precisely, with the definitions of ε1 and ε2 given in Equations (17)
and (21), and with ε3(n, δn) = 2

√
dL2

(1−λγ)
√
n−1

√
(mλ

n + 1) J(n− 1, δn)+Õ( 1
n ), we know that with probability at least 1−δ,

‖εA‖2 ≤ ε1(n, δn), ‖εAθ∗ − εb‖2 ≤ ε2(n, δn) and ‖εb‖2 ≤ ε3(n, δn).

As a consequence,

‖Aθ̂ρ − b‖22 ≤ max

(
4
‖εA‖22
ρ

, 2

){
(ε2(n, δn)2 + ρ)‖θ∗‖22

}
+ 4‖εb‖22.
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With ρ = 2(ε1(n, δn))2, we obtain with probability at 1− δ,

‖Aθ̂ρ − b‖22 ≤ 2(2(ε1(n, δn))2 + (ε2(n, δn))2)‖θ∗‖22 + 4(ε3(n, δn))2

By using the fact that
√
a+ b ≤

√
a+
√
b, this implies

‖Aθ̂ρ − b‖2 ≤
√

2(2ε1(n, δn) + ε2(n, δn))‖θ∗‖2 + 2(ε3(n, δn))

We conclude by using Equation (8) in which we take the norm, by bounding ‖ΦA−1‖µ in the same way as we did in the
proof of Lemma 1, and finish in the way similar to the unregularized proof with δn = δ

6n2 .


