On the Rate of Convergence and Error Bounds for LSTD()\)

Supplementary Material

A. Proof of Lemma 2

We begin by bounding, for any value of m, the distance between G and G™. Set m to any integer greater or equal to 1.
Writing
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|M||F = Vd x k||z| s for M € R?* with x the vector obtained by concatenating all M columns—, we can see that
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By concatenating all its columns, the d x k matrix G may be seen a single vector U;" of size dk. Then, for all € > 0,
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The process (U*)n>m,. defined as a function of the process (Z,,)n>m = (Xn—m+1, Xn—m+2 ;- - Xn+1)n>m, 18 sta-

tionary. By using the next lemma, we can see that it inherits in some sense the S-mixing property of the process (X;);>1
(Assumption 2).

Lemma 5 (originally stated as Lemma 3). Ler (X,,)n>1 be a 5-mixing process, then (Zy)n>m = (Xn—m+1, Xn—m+2
v ooy Xnt1)n>m IS a B-mixing process such that its ith B mixing coefficient BZ satisfies 37 < B,

Proof. LetT = o(Z,,, ..., Z¢), by definition we have

L'=0(Z;(B):j€{m,...,t}, B€o(X™)).

Forall j € {m,...,t} we have

Z;1(B) ={w € Q, Z;(w) € B}.
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For B = By x ... X B,,, we observe that

Z;l(B) = {w € Q,Xj,m+1(w) € By, ...,X]-H(w) € Bm}

Then we have

=0(X;

J

YB):j€{m,..,t},Beca(X)) =0(X1,..., Xe11)

Similarly we can prove that o(Zy;) = (X%, _,,41)- Then let 3;* be the i*" B-mixing coefficient of the process
(Xn)n>1, we have

BX =swE | sup |P(Blo(Xy,..., X)) — P(B)|

t>1 BEo‘(XtJrL)

Similarly for the process (Z,,)n>m We can see that

BZ =supE sup  |P(Blo(Zm,...,Z:)) — P(B)|
t>m BEO’(Z

sy

By applying what we developed above we obtain

BZ = supE l sup |P(Blo(X1, ..., X¢41)) — P(B)
t>m Beo (X2

t+i— m+1)

Denote u =t + 1 we have

BZ = sup El sup  |P(B|o(X1,..., X)) — P(B)|
u>m+1 Beo (X9

rimm)

Then fori > m

Z <

1 — i—m-*

O

Now that we know that (U)") >, is a S-mixing stationary process, we shall use the decomposition technique proposed by
Yu (1994) that consists in dividing the sequence U, ..., U ; into 2u,_., blocks of length a,,_,, (we assume here that
n—m = 26n—_mMin—m)- Lhe blocks are of two kmds those which contains the even indexes & = U“ "™ F; and those
with odd indexes H = Uf:’"l ™ H;. Thus, by grouping the variables into blocks we get
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where Equation (26) follows from the triangle inequality, Equation (27) from the fact that the event {X + Y > a} implies
{X > %} or {Y > £}, and Equation (28) from the assumption that the process is stationary. Since H = U} ™ H; we
have

Hn—m

2 =1 i€H; 2
= 2P ( S vt - Eum)| > 8o _4m)6> (29)
=1 2

K3

(U'(Hy))i=1,....un_,n such that each block U’(H;) has the same distribution as U (H;). We are going to use the following
technical result.

where we defined U(H;) = >, m, Ui". Now consider the sequence of identically distributed independent blocks

Lemma 6. (Yu, 1994) Let X;,...,X,, be a sequence of samples drawn from a stationary [B-mixing process with
coefficients {f;}. Let X(H) (X(H1),...,X(Hy,_,,)) where for all j X(H;) = (Xi)ien,. Let X'(H) =
(X'(Hy),...,X"(H,,_,.)) with X'(H,) mdependent and such that for all j, X'(H;) has same distribution as X (H;).

Let Q and Q' be the distribution of X (H) and X' (H) respectively. For any measurable function h : X#n» — R bounded
by B, we have

Hn—m

[Eq[h(X (H)] — Eq/[h(X'(H)]| < Bnfa,-
> U'(H) - E[U'(H)]

By applying Lemma 6, Equation (29) leads to:
> 6) <2P <
9 =1 2

< Z Um _ m
+ 2/“Ln_mﬂanfrn . (30)

The variables U’(H,) are independent. Furthermore, it can be seen that ()", ™ U'(H;) — E[U’(H,)])
o(U'(Hy),...,U'(H,,_,, )) martingale:

< (n— m)e)
- 4
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=1
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We can now use the following concentration result for martingales.

Lemma 7 ((Hayes, 2005)). Let X = (X, ..
such that Xy =

., X)) be a discrete time martingale taking values in an Euclidean space
i—1||2 < Bg almost surely. Then for all €,

52
P{|| X,|l2 > €} < 2e%e 2527,

Indeed, taking X,,, , = >j; ™ U'(H,) — E[U’(H,)], and observing that | X; — X;_:| = ||[U'(H;) — E[U'(H})]||2 <
ap—mC with C' = ZFLL , the lemma leads to

'
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" U/ ~ U (H)
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2
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= 2626 16“71—1?102 .
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where the second line is obtained by using the fact that 2a,,—, ftnn—m = n — m. With Equations (29) and (30), we finally

obtain

The vector U™ is a function of Z; = (X;_p+1, ..., Xi+1), and Lemma 3 tells us that for all j > m,

(n—m)e?

> e) < 4e*e en-m £ 2(n —m)pY
2

Ap—m "

ZUm m

BY < BZ <BX,, < Be U™

So the equation above may be re-written as

(|

We now follow a reasoning similar to that of (Lazaric et al., 2012) in order to get the same exponent in both of the above

1
exponentials. Taking a,_,, —m = [C"'("%m)er‘ " with Cy = (16C%¢)"1, and ¢ = M , we have

ZUm m

_ (n—m)e _ w
> e) < 4ePe M6en-mS® 4 2(n — m)ﬁe_b(a"‘m_m) =4 31
2

8 < (4e? + (n — m)B) exp ( min { ((n—mb)GQCQ> , l}k+1 %(n - m)C’262> ) (32)
Define

A(n,8) = log( 5) + log(max{4e?, nB}),

and

€(0) = \/ 2AC(2”(;’”7’3)) max {A(” m Ji 1}?

It can be shown that

1

exp <_ min { <(n _ m)?e((S))QCg) , 1}“1 %(n _ m)02(6(5))2> < exp (—A(n—m,3)). (33)

Indeed®, there are two cases:

; b —
1. Suppose that min { (W) , 1} = 1. Then

1

o ( wind (G iepes) 1 20 ””02(6(5”2)

= exp (A(n — 1, 8) masx {A(”bm‘” 1}i>

<exp (—=A(n —m,d)).

SThis inequality exists in (Lazaric et al., 2012), and is developped here for completeness.
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: b b
2. Suppose now that min { (W) s 1} = (W) . Then
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)= max {A(n — m, 6), b}kil>
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By combining Equations (32) and (33), we get
5 < (4¢ + (n — m)B) exp (~A(n — m, 8)) .
If we replace A(n — m, §) with its expression, we obtain
exp (—A(n —m,d)) = g max{4e?, (n —m)B} L.

Since 4e? max{4e?, (n —m)B} ! < 1and (n — m)B max{4e?, (n —m)B} ! < 1, we consequently have
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Now, note that since a,,_,, — m > 1, we have
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", Then Equation (31) is reduced to

Let J(n,8) = 32A(n, §) max { Awd), 1}

1 = m m C n—m %
P(nmi_zmwi Bl > o ,5))>§5.
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Since J(n, ¢) is an increasing function on n, and T o) = Ve [ w2 > We have

1

1 < m m C 1
IP’( nflz;(c:i - E[G}"]) 22 m(g](n—m)) )
< IP’( n_lmgn(GZ”E[Gin]) 22 w%:—; ((m+1)J(n1,5))é>
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By using Equations (25) and (34), we deduce that

1 n—1 . . C %
IP’( n_li;n(Gi - E[G}"]) 22 —— ((m+1)J(n ~ 1,9)) )gé.

By combining Equations (23), (24) and (35), plugging the value of C' = 21‘/‘?7’%, and taking m = [M

log ﬁ
ler + €2]l2 < €(n)—, we get the announced result.

(34)

(35)

—‘—so that
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B. Proof of Theorem 3

We prove here the following result: for any 6 € (0,1), for all n > 1, consider 7% .. DOy = @ép with penalization
parameter p = 2Z2(n, §). Then, with at least probability 1 — §, for all n,

— VULSTD(X =
LSTD(\) Ml \/m(l — )

where g(n,d) and I(n, ) are defined as in Theorem 1.

Vm 1) I(n —1,8) + g(n. ).

Proof. Let é,, be the vector that satisfies
0, = arg mm {||A9 —b||2+ pl|6,13 } (36)

‘We have
146, = bll2 < lleall2lifpll2 + llesll2 + 1 A6, — b]|2-

Then by using the inequality (a + b)2 < 2(a® + b?) twice on |leall2]|0]|2 + |lb]l2 + | A0 — b]|> and then on
~—_———

a b

lleallzlifll2 + lev |2 we have
—— =
a b

140, — b3 < 4lleal3116,115 + 4lles5 + 2(| A6, — b3.
From Equation (36) we can write that
{148, = 815 + pl16,13} = min {1140, — BI + pl6]3 }
16,08 = = min {140 — b1 + plel3 — 1140, - 3]}
p be P

and

140, — bl13 = min { |46 — B3 + (16113 ~ 16,]3) |
< _
min {146~ B3 + pl|0]3}
So that

2
~ 6A . A ~ A A ~ A A ~
140, — b3 < a4 wuin {40 — b3 + plo)3 — 140~ 513} + allen 3 + 20140 — b5,
P HeRd

2
< 4848 sy {140 — 15 + o) + o (0.2 1212 140 53 + 4

< e (4142, 5) iy {140~ 55 + 018} + 4l 3.

In Section 4.3, we derived high-probability bounds on ||e 4|2 and || A6* — b||y = [le40* — €y]|2 with 0* = A~1b. Tt is easy
to also derive a high-probability bound on ||, ||3. More precisely, with the definitions of ¢; and e given in Equations (17)

and (21), and with €3(n, ) = QA\WT)\L/L V(md +1)J(n —1,6,)+O(2), we know that with probability at least 1 — 6,

leallz < €1(n,6n), [l€eal” — ebll2 < €2(n,dn) and |l&]l2 < €3(n, dn).

As a consequence,

2
~ €A "
146, — b|2 < masx (4” p”2,2> [ea(n, 6.0 + )[16°13) + 4l -
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With p = 2(e1(n, 6,))?, we obtain with probability at 1 — §,
146, — b3 < 2(2(e1(n,64))° + (e (n, 8a))%) 16713 + 4(es(n, 5,))

By using the fact that v/a + b < /a + /b, this implies

|40, — bll2 < \/2(2€1(n, 6,) + €2(n, 6,)) 1107 [|2 + 2(es(n, 5,))

We conclude by using Equation (8) in which we take the norm, by bounding ||®A~||, in the same way as we did in the
proof of Lemma 1, and finish in the way similar to the unregularized proof with §,, = (;%. O



