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Abstract
We investigate the statistical convergence rate of
a Bayesian low-rank tensor estimator, and de-
rive the minimax optimal rate for learning a low-
rank tensor. Our problem setting is the regression
problem where the regression coefficient forms
a tensor structure. This problem setting occurs
in many practical applications, such as collabo-
rative filtering, multi-task learning, and spatio-
temporal data analysis. The convergence rate of
the Bayes tensor estimator is analyzed in terms
of both in-sample and out-of-sample predictive
accuracies. It is shown that a fast learning rate
is achieved without any strong convexity of the
observation. Moreover, we show that the method
has adaptivity to the unknown rank of the true
tensor, that is, the near optimal rate depending on
the true rank is achieved even if it is not known
a priori. Finally, we show the minimax opti-
mal learning rate for the tensor estimation prob-
lem, and thus show that the derived bound of the
Bayes estimator is tight and actually near mini-
max optimal.

1. Introduction

Tensor modeling is a powerful tool for representing higher
order relations between several data sources. The second
order correlation has been a main tool in data analysis for
a long time. However, because of an increase in the vari-
ety of data types, we frequently encounter a situation where
higher order correlations are important for transferring in-
formation between more than two data sources. In this sit-
uation, a tensor structure is required. For example, a rec-
ommendation system with a three-mode table, such as user
× movie× context, is regarded as comprising the tensor
data analysis (Karatzoglou et al., 2010). The noteworthy
success of tensor data analysis is based on the notion of the
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low rank property of a tensor, which is analogous to that
of a matrix. The rank of a tensor is defined by a general-
ized version of the singular value decomposition for ma-
trices. This enables us to decompose a tensor into a few
factors and find higher order relations between several data
sources.

A naive approach to computing tensor decomposition re-
quires non-convex optimization (Kolda & Bader, 2009).
Several authors have proposed convex relaxation methods
to overcome the computational difficulty caused by non-
convexity (Liu et al., 2009; Signoretto et al., 2010; Gandy
et al., 2011; Tomioka et al., 2011; Tomioka & Suzuki,
2013). The main idea of convex relaxations is to unfold
a tensor into a matrix, and apply trace norm regulariza-
tion to the matrix thus obtained. This technique connects
low rank tensor estimation to the well-investigated convex
low rank matrix estimation. Thus, we can apply the tech-
niques developed in low rank matrix estimation in terms
of optimization and statistical theories. To address the the-
oretical aspects,Tomioka et al.(2011) gave the statistical
convergence rate of a convex tensor estimator that utilizes
the so-calledoverlapped Schatten 1-normdefined by the
sum of the trace norms of all unfolded matricizations.Mu
et al.(2014) showed that the bound given byTomioka et al.
(2011) is tight, but can be improved by a modified tech-
nique calledsquare deal. Tomioka & Suzuki(2013) pro-
posed another approach calledlatent Schatten 1-normreg-
ularization that is defined by the infimum convolution of
trace norms of all unfolded matricizations, and analyzed
its convergence rate. These theoretical studies revealed the
qualitative dependence of learning rates on the rank and
size of the underlying tensor. However, one problem of
convex methods is that, reducing the problem to a matrix
estimation, one may lose statistical efficiency in exchange
for computational efficiency.

The main question addressed in this paper is whether we
can obtain a tractable method that possesses a (near) opti-
mal learning rate. To answer this question, we consider a
Bayesian learning method. Bayesian tensor learning meth-
ods have been studied extensively (Chu & Ghahramani,
2009; Xu et al., 2013; Xiong et al., 2010; Rai et al., 2014).
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Basically, they construct a generative model of the tensor
decomposition and place a prior probability on the decom-
posed components. As in convex methods, Bayesian meth-
ods have also been polished to efficiently process large
datasets. Their statistical performances have been sup-
ported numerically, but only a few theoretical analyses have
been provided.

In this paper, we present the learning rate of a Bayes esti-
mator for low-rank tensor regression problems and give the
minimax optimal rate for the tensor estimation problem.
The prior probability we consider here is the most basic
one, which places Gaussian priors on decomposed compo-
nents and an exponentially decaying prior on the rank (see
Xiong et al. (2010); Xu et al. (2013); Rai et al.(2014)).
Roughly speaking, we obtain the (near) optimal conver-
gence rate,

∥Â−A∗∥2n = Op

(
d∗(
∑K

k=1 Mk) log(K
√

n(
∑

k Mk)K

n

)
,

wheren is the sample size,̂A is the Bayes estimator,A∗

is the true tensor,d∗ is theCP-rankof the true tensor (its
definition will be given in Section2), and(M1, . . . ,MK)
is the size (A∗ ∈ RM1×···×MK ). Moreover, our analysis
has the following favorable properties.

• The rate is provenwithout assuming any strong con-
vexity on the empiricalL2 norm.

• Rank adaptivity is shown, that is, the convergence rate
is automatically adjusted to the rank of the true tensor
as if we knew it a priori.

In particular, the first property significantly differentiates
our approach from existing approaches. A variant of strong
convexity, such as restricted strong convexity (Bickel et al.,
2009; Negahban et al., 2012) is usually assumed in convex
sparse learning in order to derive a fast rate. However, for
the analysis of the predictive accuracy of a Bayes estimator,
a near optimal rate can be shown without such conditions.
This is a remarkable point of the predictive accuracy anal-
ysis rather than the parameter estimation accuracy. Finally,
we give the minimax optimal learning rate for the tensor
estimation problem. That is roughly given by

inf
Â

sup
A∗∈T

E[∥Â−A∗∥2L2(P (X))] ≥ C
d∗(
∑K

k=1 Mk)

n

whereÂ is any estimator andT is a set of tensors. It is
seen that the derived learning rate is actually near minimax
optimal.

To the best of our knowledge, this is the first result that
gives the minimax optimal rate of low-rank tensor estima-
tion problem and shows (near) optimality of a computation-
ally tractable learning method.

2. Problem Settings

In this section, the problem setting of this paper is
shown. Suppose that there exists the true tensorA∗ ∈
RM1×···×MK of orderK, and we observen samplesDn =
{(Yi, Xi)}ni=1 from the following linear model:

Yi = ⟨A∗, Xi⟩+ ϵi.

Here,Xi is a tensor inRM1×···×MK and the inner product
⟨·, ·⟩ between two tensorsA,X ∈ RM1×···×MK is defined
by ⟨A,X⟩ =

∑M1,...,MK

j1,...,jK=1 Aj1,...,jKXj1,...,jK . ϵi is i.i.d.
noise from a normal distributionN(0, σ2) with mean0 and
varianceσ2.

Now, we assume the true tensorA∗ is “low-rank.” The
notion of rank considered in this paper isCP-rank(Canon-
ical Polyadic rank) (Hitchcock, 1927a;b). We say a tensor
A ∈ RM1×···×MK has CP-rankd′ if there exist matrices
U (k) ∈ Rd′×Mk (k = 1, . . . ,K) such thatAj1,...,jK =∑d′

r=1 U
(1)
r,j1

U
(2)
r,j2

. . . U
(K)
r,jK

, andd′ is the minimum number
to yield this decomposition (we do not require the orthogo-
nality of U (k)). This is calledCP-decomposition. WhenA
satisfies this relation forU = (U (1), U (2), . . . , U (K)), we
write

A = AU = [[U (1), U (2), . . . , U (K)]]

=:

(∑d′

r=1
U

(1)
r,j1

U
(2)
r,j2

. . . U
(K)
r,jK

)
j1,...,jK

. (1)

We denote byd∗ the CP-rank of the true tensorA∗. Notice
that, for the special case of matrices (K = 2), the CP-rank
coincides with the usual rank of a matrix.

In this paper, we investigate the predictive accuracy of the
linear model with the assumption thatA∗ has low CP-rank.
Because of the low CP-rank assumption, the learning prob-
lem becomes more structured than an ordinary linear re-
gression problem on a vector. This problem setting in-
cludes the well-known low rank matrix estimation as a spe-
cial caseK = 2. There are two types of predictive ac-
curacy: in-sampleandout-of-sampleones. The in-sample
predictive accuracy of an estimator̂A is defined by

∥Â−A∗∥2n :=
1

n

n∑
i=1

⟨Xi, Â−A∗⟩2, (2)

where{Xi}ni=1 is the observed input samples. The out-of-
sample one is defined by

∥Â−A∗∥2L2(P (X)) := EX∼P (X)[⟨X, Â−A∗⟩2], (3)

whereP (X) is the distribution ofX that generates the ob-
served samples{Xi}ni=1 and the expectation is taken over
independent realizationX from the observed ones.
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Example 1. Tensor completion under random sam-
pling. Suppose that we have partial observations of a
tensor. A tensor completion problem consists of denois-
ing the observational noise and completing the unobserved
elements. In this problem,Xi is independently identically
distributed from a set{ej1,...,jK | 1 ≤ jk ≤ Mk (k =
1, . . . ,K)}, whereej1,...,jK is an indicator tensor that has
1 at its(j1, . . . , jK)-element and 0 elsewhere, and thus,Yi

is an observation of one element ofA∗ contaminated with
noiseϵi.

The out-of-sample accuracy measures how accurately we
can recover the underlying tensorA∗ from the par-
tial observation. IfXi is uniformly distributed,∥Â −
A∗∥L2(P (X)) =

1√
M1...MK

∥Â−A∗∥2, where∥·∥2 is theℓ2-
norm obtained by summing the squares of all the elements.
If K = 2, this problem is reduced to the standard matrix
completion problem. In that sense, our problem setting is
a wide generalization of the low rank matrix completion
problem.

Example 2. Multi-task learning. Suppose that several
tasks are aligned across a 2-dimensional space. For each
task(s, t) ∈ {1, . . . ,M1} × {1, . . . ,M2} (indexed by two
numbers), there is a true weight vectora∗(s,t) ∈ RM3 . The
tensorA∗ is an array of the weight vectorsa∗(s,t), that is,
A∗

s,t,j = a∗(s,t),j .

The input vectorXi is a vector of predictor variables for
one specific task, say(s, t), and takes a form such that

Xi,(s′,t′,:) =

{
x
(s,t)
i ∈ RM3 , ((s′, t′) = (s, t)),

0, (otherwise).

By assumingA∗ is low-rank in the sense of CP-rank, the
problem becomes a multi-task feature learning with a two
dimensional structure in the task space (Romera-Paredes
et al., 2013).

As shown in the examples, the estimation problem of low-
rank tensorA∗ is a natural extension of low-rank matrix es-
timation. However, it has a much richer structure than ma-
trix estimation. Thus far, some convex regularized learning
problems have been proposed analogously to spectrum reg-
ularization on a matrix, and their theoretical analysis has
also been provided. However, no method have been proved
to be statistically optimal. There is a huge gap between a
matrix and higher order array. One reason for this gap is the
computational complexity of the convex envelope of CP-
rank. It is well known that the trace norm of a matrix is a
convex envelope of the matrix rank on a set of matrices with
a restricted operator norm (Srebro et al., 2005). However,
as for tensors, computing CP-rank and CP-decomposition
themselves is NP-hard (Hillar & Lim , 2013).

In this paper, we investigate a Bayes estimator instead of
the convex regularized one. It will be shown that our Bayes

estimator shows a near optimal convergence rate with a
much weaker assumption, while the learning procedure is
computationally tractable. The rate is much improved as
compared to that of the existing estimators.

3. Bayesian tensor estimator

We now provide the prior distribution of the Bayes estima-
tor that is investigated in this paper. On a decomposition
of a rankd′ tensorA = [[U (1), U (2), . . . , U (K)]] (U (k) ∈
Rd′×Mk), we place a Gaussian prior:

π(U (1), . . . , U (K)|d′) ∝ exp

{
− d′

2σ2
p

K∑
k=1

Tr[U (k)⊤U (k)]

}
,

whereσp > 0. Moreover, we placed a prior distribution on
the rank1 ≤ d′ ≤ dmax as

π(d′) = 1
Nξ

ξd
′(M1+···+MK),

where0 < ξ < 1 is some positive real number,dmax is
a sufficiently large number that is supposed to be larger
than d∗, and Nξ is the normalizing constant,Nξ =

1−ξM1+···+MK

ξ−ξdmax(M1+···+MK ) .

Now, since the noise is Gaussian, the likelihood of a tensor
A is given by

p(Dn|A) =: pn,A ∝ exp

{
− 1

2σ2

n∑
i=1

(Yi − ⟨A,Xi⟩)2
}
.

The posterior distribution is given by

Π(A ∈ C|Dn)

=

∑dmax

d=1

∫
AU∈C pn,AU

π((U (k))Kk=1|d)π(d)dU (1) . . .dU (K)∑dmax

d=1

∫
pn,AU

π((U (k))Kk=1|d)π(d)dU (1) . . . dU (K)
,

whereC ⊆ RM1×...MK . It is noteworthy that the posterior
distribution ofU (k) conditioned byd andU (k′) (k′ ̸= k)
is a Gaussian distribution, because the prior is conjugate
to Gaussian distributions. Therefore, the posterior mean∫
A
f(A)Π(dA|Dn) of a functionf : RM1×...MK → R can

be computed by an MCMC method, such as Gibbs sam-
pling (as for the Bayes tensor estimator, seeXiong et al.
(2010); Xu et al.(2013); Rai et al.(2014)). In this paper, we
consider the posterior mean estimatorÂ =

∫
AΠ(dA|Dn)

which is the Bayes estimator corresponding to the square
loss.

4. Convergence rate analysis

In this section, we present the statistical convergence rate of
the Bayes estimator. Before we give the convergence rate,
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we define some quantities and provide the assumptions. We
define themax-normof A∗ as

∥A∗∥max,2 := min
{U(k)}

{max
i,k

∥U (k)
:,i ∥2 |

A∗=[[U (1), . . . ,U (K)]], U (k) ∈ Rd∗×Mk}.

The ℓp-norm of a tensorA is given by ∥A∥p :=

(
∑

j1,...,jK
|Aj1,...,jK |p)

1
p . The prior mass around the true

tensorA∗ is a key quantity for characterizing the conver-
gence rate, which is denoted byΞ:

Ξ(δ) := − log(Π(A : ∥A−A∗∥n < δ)),

whereδ > 0. SmallΞ(δ) means that the prior is well con-
centrated around the truth. Thus, it is natural to consider
that, if Ξ is large, the Bayes estimator could be close to
the truth. However, clearly, we do not know beforehand
the location of the truth. Thus, it is not beneficial to place
too much prior mass around one specific point. Instead,
the prior mass should cover a wide range of possibilities of
A∗. The balance between concentration and dispersion has
a similar meaning to that of the bias-variance trade-off.

To normalize the scale, we assume that theℓ1-norm ofXi

is bounded1.

Assumption 1. We assume that theℓ1-norm of Xi is
bounded by 1:∥Xi∥1 ≤ 1, a.s...

For theoretical simplicity, we utilize the unnormalized prior
on the rank2, that is π(d) = ξd(

∑
k Mk). It should be

noted that removing the normalization constant does not
affect the posterior. Under these assumptions,Ξ(δ) can be
bounded as follows.

Lemma 1. Under Assumption1, the prior massΞ has the
bound

Ξ( r√
n
) ≤

d∗
∑K

k=1 ∥U∗(k)∥2F
2σ2

p

+

d∗

(
K∑

k=1

Mk

)
log

6
ξ

(√
nσK

p K

(
∥A∗∥max,2

σp
+1

)K−1

r ∨ 1

) .

for all r > 0, where{U∗(k)}k are any tensors satisfying
A∗ = [[U∗(1), . . . , U∗(K)]].

It should be noted thatΞ(r/
√
n) ≤ Ξ(1/

√
n) for

all r > 1. Finally, we define the technical quan-

tities Cn,K := 3K
√
n

(
4σ2

pΞ( 1√
n
)

d∗

)K
2

and cξ :=

min{| log(ξ)|/ log(Cn,K), 1}/4.
1ℓ1-norm could be replaced by another norm such asℓ2. This

difference affects the analysis of out-of-sample accuracies, but re-
jecting samples withmaxX |⟨X,A⟩| ≤ R gives an analogous
result for other norms.

2This is not essential, but for just making the expression ofΞ
simple.

4.1. In-sample predictive accuracy

We now give the convergence rate of the in-sample predic-
tive accuracy. We suppose the inputs{Xi}ni=1 are fixed
(not random). The in-sample predictive accuracy condi-
tioned by{Xi}ni=1 is given as follows.

Theorem 1. Under Assumption1, there exists a universal
constantC such that the posterior mean of the in-sample
accuracy is upper bounded by

E

[∫
∥A−A∗∥2ndΠ(A|Y1:n)

]

≤C

n

[
d∗
(∑

k
Mk +

1

| log(ξ)|

)
log(Cn,K) +

Ξ(
√

cξ
n )

cξ

+ log(dmax) +K + 8K(K + 1)!

]
. (4)

The proof is given in AppendixA.2 in the supple-
mentary material. This theorem provides the speed at
which the posterior mass concentrates around the true
A∗. It should be noted that the integral in the LHS
of Eq. (4) is taken outside ∥A − A∗∥2n. This gives
not only information about the posterior concentration
but also the convergence rate of the posterior mean es-
timator. This can be shown as follows. By Jensen’s
inequality, we haveE

[
∥
∫
AdΠ(A|Y1:n)−A∗∥2n

]
≤

E
[∫

∥A−A∗∥2ndΠ(A|Y1:n)
]
. Therefore, Theorem1

gives a much stronger claim on the posterior than just stat-
ing the convergence rate of the posterior mean estimator.

Since the rate (4) is rather complicated, we give a simplified
bound. By assuminglog(dmax) andK! are smaller than
d∗(
∑

k Mk), we rearrange it as

E

[∫
∥A−A∗∥2ndΠ(A|Y1:n)

]
=O

(
d∗(M1 + · · ·+MK)

n
log

(
K
√

n(
∑K

k=1 Mk)K
σK
p
ξ

))
.

Inside theO(·) symbol, a constant factor depending on
K, ∥A∗∥max,2, σp, ξ is hidden. This bound means that the
convergence rate is characterized by the actual degree of
freedom up to a log term. That is, since the true tensor has
rank d∗ and thus has a decomposition (1), the number of
unknown parameters is bounded byd∗(M1 + · · · +MK).
Thus, the rate is basicallyO( degree of freedom

n ) (up to log or-
der), which is optimal (see Section5 for more precise argu-
ment). Here, we would like to emphasize that the true rank
d∗ is unknown, but by placing a prior distribution on a rank
the Bayes estimator can appropriately estimate the rank and
gives an almost optimal rate depending on the true rank. In
this sense, the Bayes estimator has adaptivity to the true
rank.
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More importantly, we do not assumeany strong convexity
on the design. Usually, to derive a fast convergence rate of
sparse estimators, such as Lasso and the trace norm regu-
larization estimator, we assume a variant of strong convex-
ity, such as a restricted eigenvalue condition (Bickel et al.,
2009) and restricted strong convexity (Negahban et al.,
2012). It is difficult to check the strong convexity condition
in practice. However, our convergence rate does not require
such conditions. One reason why this is possible is that we
are interested in the predictive accuracies rather than the
actual distance between the tensors∥A−A∗∥22 (parameter
estimation accuracy) . It is known that this phenomenon
occurs also in high dimensional regression of vectors, see
Dalalyan & Tsybakov(2008) for example.

4.2. Out-of-sample predictive accuracy

Next, we turn to the convergence rate of the out-of-sample
predictive accuracy. In this setting, the input sequence
{Xi}ni=1 is not fixed, but an i.i.d. random variable gen-
erated by a distributionP (X).

To obtain fast convergence of the out-of-sample accuracy,
we need to bound the difference between the empirical and
populationL2-errors: ∥A − A∗∥2n − ∥A − A∗∥2L2(P (X)).
To ensure that this quantity is small using Bernstein’s in-
equality,maxX |⟨X,A⟩| should be bounded. However, the
infinity norm of the posterior mean could be large in ten-
sor estimation. This difficulty can be avoided by rejecting
posterior sampleA with a large infinity norm.

4.2.1. INFINITY NORM THRESHOLDING

Now, define∥A∥∞ = maxj1,...,jK |Aj1,...,jK |. Then, un-
der Assumption1, we have⟨X,A⟩ ≤ ∥A∥∞. Here, we
assume that the infinity norm∥A∗∥∞ of the true tensor is
approximately known, that is, we knowR > 0 such that
2∥A∗∥∞ < R. This is usually true. For example, we know
the upper bound in tensor completion for a recommenda-
tion system. Otherwise, we may apply cross validation.
Our strategy is to put the infinity norm restriction on the
prior, that is, we utilize the “truncated” prior the support
of which is restricted to∥A∥∞ ≤ R. The estimation with
this prior can be implemented merely by rejecting the pos-
terior samples with an infinity norm larger than a threshold
R during the sampling scheme.

The resultant posterior distribution is expressed as the con-
ditional posterior distributionΠ(·|∥A∥∞ ≤ R,Dn). Ac-
cordingly, we investigate the out-of-sample accuracy of the
conditional posterior:

EDn

[∫
∥A−A∗∥2L2(P (X))dΠ(A|∥A∥∞ ≤ R,Dn)

]
.

Theorem 2. Suppose Assumption1 and∥A∗∥∞ < 1
2R are

satisfied, then the out-of-sample accuracy is bounded as

EDn

[∫
∥A−A∗∥2L2(P (X))dΠ(A|∥A∥∞ ≤ R,Dn)

]
≤C(R2 ∨ 1)

n

[
d∗
(∑

k
Mk +

3

| log(ξ)|

)
log(Cn,K)

+
Ξ(
√

cξ
n )

cξ
+ log(dmax) + 8K(K + 1)!

]
,

whereC is a universal constant.

The proof is given in AppendixB in the supplementary ma-
terial.. The only difference between this and Theorem1 is
thatR2 appears in front of the bound. The source of this
factor is the gap between the empirical and populationL2-
norms. Here again, the convergence rate can be simplified
as

EDn

[∫
∥A−A∗∥2L2(P (X))dΠ(A|∥A∥∞ ≤ R,Dn)

]
≤O

(
d∗(M1 + · · ·+MK)

n
(R2 ∨ 1)×

log

(
K

√
n(
∑K

k=1 Mk)K
σK
p

ξ

))
, (5)

if K! and| log(ξ)| are smaller thand∗(
∑

k Mk). Here, we
observe that the convergence rate achieved is optimal up to
the log-term. We would like to emphasize again that the
optimal rate is achieved, although we do not assume any
strong convexity on the distributionL2(Π). This can be
so because we are not analyzing the actualL2-norm∥A −
A∗∥2. If we do not assume strong convexity like∥A −
A∗∥2 ≤ C∥A − A∗∥L2(P (X)), it is impossible to derive
fast convergence of∥A− A∗∥2. The trick is that we focus
on the “weighted”L2-norm∥A − A∗∥L2(P (X)) instead of
∥A−A∗∥2.

Finally, it is remarked that, ifXi is the uniform at ran-
dom observation in the tensor completion problem, then
∥A − A∗∥2L2(P (X)) =

1∏
k Mk

∥A − A∗∥22 (note that in this

setting∥Xi∥1 = 1). Thus, our analysis yields fast con-
vergence of the tensor recovery. IfK = 2, the analysis
recovers the well known rate of matrix completion prob-
lems up to alog(nM1M2) term (Negahban & Wainwright,
2012; Negahban et al., 2012; Rohde & Tsybakov, 2011):

1

M1M2
∥Â−A∗∥22 = Op

(
d∗(M1 +M2)

n
log(nM1M2)

)
.

4.2.2. MAX -NORM THRESHOLDING

Finally, we briefly describe the convergence rate of the
Bayes estimator based on the rejection sampling with re-
spect to restrictedmax-norm. We reject the posterior sam-
ple with a max-norm larger thanR; that is, we accept
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only a sampleAU that satisfiesU ∈ {(U (1), . . . , U (K)) |
∥U (k)

:,j ∥ ≤ R (1 ≤ k ≤ K, 1 ≤ j ≤ Mk)} =: UR. Then,
we have the following bound.

Theorem 3. Under Assumption1 and∥A∗∥max,2 + σp <
R, we have

EDn

[∫
∥AU −A∗∥2L2(P (X))dΠ(AU |U ∈ UR, Dn)

]
≤C

(
d∗(
∑K

k=1 Mk)

n
(1 ∨R2K) log

(
K
√
nR

K
2
σK
p

ξ

))
,

whereC is a constant depending onK, log(dmax), σp.

The proof is given in AppendixC in the supplementary ma-
terial. In a setting whereMk is much larger thanR, this
bound gives a much better rate than the previous ones, be-

cause the term insidelog is improved from
∏

M
1
2

k to R
K
2 .

On the other hand, the rejection rate during the sampling
would be increased.

5. Minimax optimality

In this section, the learning rates derived above are actually
minimax optimal up tolog terms. To prove this, we specify
theL2(P (X)) norm. We takeL2(P (X)) as a uniform ob-
servation of the entries. That is,⟨X,A⟩ = Ai1,i2,...,iK for
someik ∈ {1, . . . ,Mk} (k = 1, . . . ,K), and the choice of
(i1, i2, . . . , iK) is uniform. The hypothesis space is given
by

TR ={[[U (1), . . . , U (K)]] | U (k) ∈ Rd∗×Mk ,

∥U (k)
:,j ∥ ≤ R (1 ≤ k ≤ K, 1 ≤ j ≤ Mk)},

the set of tensors with rankd∗ and the max norm not more
thanR. The minimax optimal rate is the convergence rate
that can not be improved byanyestimator: for any estima-
tor, there is a tensorA∗ ∈ TR such that the predictive accu-
racy corresponding to the true tensorA∗ is lower bounded
by the minimax optimal risk.

Theorem 4. The minimax learning rate of the tensor esti-
mation is lower bounded as follows. Suppose thatR ≥ 1,
Mk > 4 (∀k < K), MK/d∗ > 4 andMK/d∗ is integer.
Then there exists a constantC such that

inf
Â

sup
A∗∈TR

E[∥Â−A∗∥2L2(P (X))]

≥Cmin

{
σ2

(
d∗(
∑K

k=1 Mk)

n

)
, (R2/d∗)K

}
whereinfÂ is taken over all estimator and the expectation
is taken for the training samples.

The proof is given in AppendixE in the supplementary ma-
terial. The theorem is proven by using the information the-
oretic argument developed byYang & Barron(1999) to de-
rive the minimax optimal rate. The assumption,MK/d∗ is

integer, is just a technical assumption and is not essential.
We can see that the convergence rates given in Theorems2
and3 are minimax optimal uptolog andR2K terms. Note
thatR in Theorem2 is about the infinity norm, not max-
norm. The infinity norm∥A∥∞ is roughly bounded by
∥A∥∞ ≤ ∥A∥Kmax,2. Thus there is no contradiction. This
result supports the use of the Bayes estimators.

6. Related works

In this section, we describe the existing works and clarify
their relation to our work. Recently, theoretical analyses of
convex regularized low-rank tensor estimators have been
developed. The pioneering work (Tomioka et al., 2011)
analyzed a method that utilizes unfolded matricization of
a tensor. LetM =

∏K
k=1 Mk (the number of whole el-

ements). The authors used so-calledoverlapped Schatten
1-normregularization

∑K
k=1 ∥A(k)∥Tr where∥ · ∥Tr is the

trace norm andA(k) ∈ RMk×M/Mk is themode-k unfold-
ing of a tensorA that is a matrix obtained by unfolding the
tensor with thek-th index fixed. Their analysis assumes
the true tensorA∗ has a lowTucker-rank(Tucker, 1966).
Tucker-rank is a general notion of CP-rank. In this sense,
their analysis is more general than ours. However, strong
convexity of the empirical and populationL2-norm is as-
sumed. Under this setting andn = M , the following bound
is obtained:

1

M
∥Â−A∗∥22 ≤ C

d∗

n

(
1
K

∑K
k=1

√
M
Mk

)2
. (6)

It can be seen that our boundd
∗(

∑K
k=1 Mk)

n log(nM) is
smaller than this bound; in particular, ifMk is large, the
difference is significantly large. InMu et al.(2014), it was
shown that the bound (6) is tight and cannot be improved
if the overlapped Schatten 1-norm is used. InMu et al.
(2014), a novel method calledsquare dealwas proposed
and was shown to achieve the following rate. Forn = M ,

1

M
∥Â−A∗∥22 ≤ C

d∗

n

(∏
k∈I1

Mk +
∏

k∈I2
Mk

)
,

whereI1 andI2 are any disjoint decomposition of index set
{1, . . . ,K}. This improves the rate (6), but is still larger
than the rate of the Bayes estimator, because the product of
Mk appears instead of the sum.

Another study on the regularization approach was
presented in Tomioka & Suzuki (2013). The
authors proposed using thelatent Schatten 1-
norm: inf{Ak}:A=

∑K
k=1 Ak

∑K
k=1 ∥A

(k)
k ∥Tr, where

A
(k)
k ∈ RMk×M/Mk is the mode-k unfolding of the tensor

Ak. A nice point of this method is that it automatically
finds the minimum rank direction, that is, the mode-k
unfoldingA∗(k) with the minimum rank. It was shown that
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the rate is

1

M
∥Â−A∗∥22 ≤ C

d∗ maxKk=1{Mk +M/Mk}
n

.

This rate is also larger than that of the Bayes estimator. We
would like to remark that this rate is obtained for the low
“Tucker-rank” situation, which is more general than our
low CP-rank setting, and thus, it is not best suited to our sit-
uation. However, it is not apparent that the latent Schatten
1-norm achieves the same rate as that of the Bayes estima-
tor in low CP-rank settings. Recently, an extention of the
overlapped and latent Schatten 1-norms, calledscaled trace
norm, has been proposed byWimalawarne et al.(2014).

As for Bayesian counter part, a Bayesian low rank matrix
estimator is analyzed inAlquier (2013). The prior in this
study is similar to ours withK = 2, but, instead of placing
prior on the rank, the authors placed a Gamma prior on
the variance of the Gaussian prior. They utilized the novel
PAC-Bayes technique (McAllester, 1998; Catoni, 2004) to
show

∥Â−A∗∥2n ≤ C
d∗(M1 +M2) log(nM1M2)

n
.

This work has a similar flavor to ours in the sense that
no strong convexity is required to obtain the convergence
rate (see alsoDalalyan & Tsybakov(2008) for the use of
Bayes estimator in high dimensional regression). How-
ever, our analysis deals with general tensor estimation
(K ≥ 3) and the posterior concentration is also given
(
∫
∥A−A∗∥2ndΠ(A|Dn) instead of∥Â−A∗∥2n whereÂ is

the posterior mean). More recently,Mai & Alquier (2015)
established a PAC-Bayes bound of the out-of-sample accu-
racy of the low rank matrix estimation. However, the anal-
ysis forK ≥ 3 is not covered by there analysis. As for the
Bayesian tensor estimator, inZhou et al.(2013) a Bayes
estimator of probabilistic tensors was investigated. The
model applies fully observed multinomial random variables
and the rank is determined beforehand. Therefore, the set-
ting is different from ours.Yang & Dunson(2013) investi-
gated classification of high-dimensional tensors where the
covariate is categorical and its distribution is characterized
by a low rank probabilistic tensor. However, all distribu-
tions are multinomial, and thus the setting is different from
our regression problem.

7. Numerical experiments

We now present numerical experiments to justify our
theoretical results. Two experiments are executed: the
first one is a comparison between the convex optimiation
method and the Bayes method, and the second one is
verifying the convergence rate. The problem is the
tensor completion problem where each observation is a

random selection of one element ofA∗ with observa-
tional noiseN(0, 1) (see Example1). The true tensor
A∗ was randomly generated such that each element of
U (k) (k = 1, . . . ,K) was uniformly distributed on[−1, 1].
σp was set at 5, and the true tensor was estimated by the
posterior mean obtained by the rejection sampling scheme
with R = 10. dmax and ξ were set at 10 and 0.5. The
posterior sampling was terminated after 500 iterations. The
experiments were executed in five different settings, called
settings 1 to 5:{(M1, . . . ,MK), d∗} = {(10, 10, 10), 4},
{(10, 10, 40), 5}, {(20, 20, 30), 8}, {(20, 30, 40), 5},
{(30, 30, 40), 6}. For each setting, we repeated the
experiments five times and computed the average of the
in-sample predictive accuracy and out-of-sample accuracy
over all five repetitions. The number of samples was
chosen asn = ns

∏
k Mk, wherens varied from 0.3 to 0.9.

7.1. Comparison with a convex approach

We compare the Bayes estimator with the overlapped
Schatten 1-norm regularization approach (Tomioka et al.,
2011). The comparison is executed in the settings 2 and
5. As for the regularization parameter of the convex reg-
ularized approach, we have chosen the best parameter at
each sample size and each problem setting. The dashed
lines correspond to the convex approach, and the solid line
correspond to the Bayes approach. The accuracies of both
methods are improved as the sample size increases. It can
be seen that the Bayes approach much outperforms the con-
vex approach in terms of both in-sample and out-of-sample
accuracies.
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Figure 1.In-sample and out-of-sample accuracy comparison be-
tween the convex regularization approach and the Bayes ap-
proach, averaged over five repetitions.

7.2. Verification of the convergence rate

To verify our convergence analysis of the Bayes estimator,
we consider the “scaled” accuracy in addition to the actual
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Figure 2.Scaled in-sample accuracy (left) and actual in-
sample accuracy (right) versusns, averaged over five repe-
titions.
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Figure 3.Scaled out-of-sample accuracy (left) and actual out-
of-sample accuracy (right) versusns, averaged over five rep-
etitions.

accuracy. The scaled accuracy is defined by∥Â−A∗∥2n ×( ∏
k Mk

d∗(
∑

k Mk)

)
; the scaled out-of-sample accuracy is also

defined in the same manner. Figure2 shows the in-sample
accuracies and the scaled in-sample accuracies against the
sample rations. The same plot for the out-of-sample accu-
racy is shown in Figure3. It can be seen that the curves of
the scaled accuracies in all settings are satisfactorily over-
lapped. This means that our bound accurately describes the
sample complexity of the Bayesian tensor estimator, be-
cause according to our bounds the scaled accuracies should
behave as1/ns up to a constant factor (and alog term). The
figures show that the scaling factor given by our theories is
well matched to the actual predictive accuracy.

8. Conclusion and discussions

In this paper, we investigated the statistical convergence
rate of a Bayesian low rank tensor estimator. The notion
of a tensor’s rank in this paper was based on CP-rank.
It is noteworthy that the predictive accuracy was derived
without any strong convexity assumption. Moreover, we
showed the minimax optimal rate of the out-of-sample pre-
dictive accuracy. The minimax rate confirms that the ob-
tained bound is (near) optimal. It was also shown that the
Bayes estimator has adaptivity to the unknown rank. Nu-
merical experiments showed that our theories indeed de-
scribe the actual behavior of the Bayes estimator.

Our bound includes thelog term, which is not negligible
whenK is large. However, numerical experiments showed
that the scaling factor without thelog term explains well
the actual behavior. Thelog term could be removed by as-
suming a specific condition on the distribution ofX. Clar-
ification of this issue is an important future work.
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