Convergence rate of Bayesian tensor estimator and its minimax optimality

Taiji Suzuki -+ S-TAIJI@IS.TITECH.AC.JP

t Tokyo Institute of Technology, O-okayama 2-12-1, Meguro-ku, Tokyo 152-8552, JAPAN
 PRESTO, Japan Science and Technology Agency, JAPAN

Abstract

We investigate the statistical convergence rate of
a Bayesian low-rank tensor estimator, and de-
rive the minimax optimal rate for learning a low-
rank tensor. Our problem setting is the regression
problem where the regression coefficient forms
a tensor structure. This problem setting occurs
in many practical applications, such as collabo-
rative filtering, multi-task learning, and spatio-
temporal data analysis. The convergence rate of
the Bayes tensor estimator is analyzed in terms
of both in-sample and out-of-sample predictive
accuracies. It is shown that a fast learning rate
is achieved without any strong convexity of the
observation. Moreover, we show that the method
has adaptivity to the unknown rank of the true
tensor, that is, the near optimal rate depending on
the true rank is achieved even if it is not known
a priori. Finally, we show the minimax opti-
mal learning rate for the tensor estimation prob-
lem, and thus show that the derived bound of the
Bayes estimator is tight and actually near mini-
max optimal.

1. Introduction

low rank property of a tensor, which is analogous to that
of a matrix. The rank of a tensor is defined by a general-
ized version of the singular value decomposition for ma-
trices. This enables us to decompose a tensor into a few
factors and find higher order relations between several data
sources.

A naive approach to computing tensor decomposition re-
quires non-convex optimizatiork¢lda & Bader 2009.
Several authors have proposed convex relaxation methods
to overcome the computational difficulty caused by non-
convexity Liu et al,, 2009 Signoretto et a.2010 Gandy

et al, 2011, Tomioka et al. 2011 Tomioka & Suzukj
2013. The main idea of convex relaxations is to unfold
a tensor into a matrix, and apply trace norm regulariza-
tion to the matrix thus obtained. This technique connects
low rank tensor estimation to the well-investigated convex
low rank matrix estimation. Thus, we can apply the tech-
nigues developed in low rank matrix estimation in terms
of optimization and statistical theories. To address the the-
oretical aspectsfomioka et al.(201]) gave the statistical
convergence rate of a convex tensor estimator that utilizes
the so-callecbverlapped Schatten 1-nordefined by the
sum of the trace norms of all unfolded matricizatiofvtu

et al.(2014) showed that the bound given Bpmioka et al.
(201)) is tight, but can be improved by a modified tech-
nigue calledsquare deal Tomioka & Suzuki(2013 pro-
posed another approach calletent Schatten 1-normeg-

Tensor modeling is a powerful tool for representing higher

order relations between several data sources. The secoHJJa”Zat'on tha; |s"def|fn|e(;1| gy thte_qulrr:_um COﬂ\:jO|UtIO|n of d
order correlation has been a main tool in data analysis fo}race norms of afl unfolded matricizations, and analyze

a long time. However, because of an increase in the varilts convergence rate. These theoretical studies revealed the
ety of data types, we frequently encounter a situation Wherg.ua"t"’:}';/r? depdentljgncet of Iearn|_||ng rates on the Enk anfd

higher order correlations are important for transferring in-S12€ Of In€ underlying tensor. However, one problem o

formation between more than two data sources. In this sit®?"VeX methods is that, reducing the problem to a matrix

uation, a tensor structure is required. For example, a rece_stimation, one may_lt_)se statistical efficiency in exchange

ommendation system with a three-mode table, such as usIa?r computational efficiency.

X movie x context, is regarded as comprising the tensorThe main question addressed in this paper is whether we
data analysisKaratzoglou et a).2010. The noteworthy can obtain a tractable method that possesses a (near) opti-

success of tensor data analysis is based on the notion of tiigal learning rate. To answer this question, we consider a

- . . Bayesian learning method. Bayesian tensor learning meth-
Proceedings of the32™? International Conference on Machine Y 9 y 9

Learning Lille, France, 2015. JMLR: W&CP volume 37. Copy- ods have been studie_d extensiveyh( &.Ghahramami
right 2015 by the author(s). 2009 Xu et al, 2013 Xiong et al, 201Q Rai et al, 2014.
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Basically, they construct a generative model of the tenso2. Problem Settings
decomposition and place a prior probability on the decom- i ) i ) i
posed components. As in convex methods, Bayesian metfil this section, the problem setting of this paper is
ods have also been polished to efficiently process Iargér}\?"\f‘,jX Equose that there exists the true tenfore
datasets. Their statistical performances have been su§ ' * of orderk’, and we qbserve samplesD,, =
ported numerically, but only a few theoretical analyses hav (Yi, X;)}-, from the following linear model:

been provided. Y, = (A%, X;) + €.

In this paper, we present the learning rate of a Bayes esti-

mator for low-rank tensor regression problems and give thédere, X; is a tensor iR xxMx and the inner product
minimax optimal rate for the tensor estimation problem.(-,-) between two tensord, X € RM:1x*Mx js defined
The prior probability we consider here is the most basicoy (A, X) = Zf},’,i;}fﬁ Ajr e Xy inee € s iid.
one, which places Gaussian priors on decomposed comp@pise from a normal distributiov (0, #2) with mean0 and
nents and an exponentially decaying prior on the rank (Se@ariances2.

Xiong et al.(2010; Xu et al. (2013; Rai et al.(2014).

Roughly speaking, we obtain the (near) optimal converNOW, we assume the true tensdr is “low-rank.” The
gence rate notion of rank considered in this papelG®-rank(Canon-

« ical Polyadic rank) iitchcock 1927ab). We say a tensor

lA-A|2 = O d* (3 ey M) log(K\/n(3, M)XK A e RM X/"'XMK has CP-rank!’ if there exist matrices

n R n P U® e RYMe (k= 1,...,K) such thatd;, ;. =

) . ) Zf/:l Ur(lj)1 UT(ZJ)2 e Ur(fj.ii, andd’ is the minimum number
wheren is the sample sized is the Bayes estimatorl” g yield this decomposition (we do not require the orthogo-
is the true tensoi* is the CP-rankof the true tensor (its nality of U(®)). This is calledCP-decompositionWhen A
definition will be given in Sectior2), and (M, ..., Mk) satisfies this relation fob/ — (U(l), U@, .. U(K)), we
is the size f* € RMxxMx) Moreover, our analysis ite
has the following favorable properties.

_ _ _ A=Ay =[[UD, 0@, . v
e The rate is provemithoutassuming any strong con-

vexity on the empiricalLy norm. = (Zd' gL @ ,,.U(K)) @
J1

pe1 ThJ1 7 T2 ik | ]

e Rank adaptivity is shown, that is, the convergence rate oK
is automatically adjusted to the rank of the true tensoiwe denote byl* the CP-rank of the true tensdr. Notice
as if we knew it a priori. that, for the special case of matricds & 2), the CP-rank

) _ o ] ] coincides with the usual rank of a matrix.
In particular, the first property significantly differentiates

our approach from existing approaches. A variant of strong?_” this paper, we investigate the predictive accuracy of the
convexity, such as restricted strong convexjckel etal,  linear model with the assumption that has low CP-rank.
2009 Negahban et g12012) is usually assumed in convex Because of the low CP-rank assumption, thg Iearnl_ng prob-
sparse learning in order to derive a fast rate. However, folem becomes more structured than an ordinary linear re-
the analysis of the predictive accuracy of a Bayes estimatof'€Ssion problem on a vector. This problem setting in-
a near optimal rate can be shown without such conditions¢ludes the well-known low rank matrix estimation as a spe-
This is a remarkable point of the predictive accuracy anal€ial casek’ = 2. There are two types of predictive ac-
ysis rather than the parameter estimation accuracy. Finalluracy:in-sampleandout-of-sampleones. The in-sample
we give the minimax optimal learning rate for the tensorPredictive accuracy of an estimatdris defined by
estimation problem. That is roughly given by Lo
A (K JA— A2 = =) (X5, A — A%, )

inf sup B[4 - A°[3, py] > ¢t M) A= >

A AxeT n
where{X;}"_, is the observed input samples. The out-of-

where A4 is any estimator and” is a set of tensors. It is _ :
)%ample one is defined by

seen that the derived learning rate is actually near minima,

optimal. " . . .
A = A*|1Z,p(x) = Ex~px)[{(X, A= A%)?],  (3)

To the best of our knowledge, this is the first result that

gives the minimax optimal rate of low-rank tensor estima-where P(X) is the distribution ofX that generates the ob-
tion problem and shows (near) optimality of a computation-served sample§X;}? , and the expectation is taken over
ally tractable learning method. independent realizatioN from the observed ones.
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Example 1. Tensor completion under random sam- estimator shows a near optimal convergence rate with a
pling. Suppose that we have partial observations of amuch weaker assumption, while the learning procedure is
tensor. A tensor completion problem consists of denoisecomputationally tractable. The rate is much improved as
ing the observational noise and completing the unobservedompared to that of the existing estimators.

elements. In this problenk; is independently identically
distributed from a sefe;, . | 1 < ji < My (k =

: L 3. Bayesian tensor estimator
1,...,K)}, whereej, ;. is anindicator tensor that has

.....

1 atits(j1,...,jx)-element and O elsewhere, and this, We now provide the prior distribution of the Bayes estima-
is an observation of one elementAf contaminated with  tor that is investigated in this paper. On a decomposition
noisese;. of a rankd’ tensorAd = [[UM, U ... U] (UR ¢

R *My) e place a Gaussian prior:
The out-of-sample accuracy measures how accurately we

can recover the underlying tensad* from the par- . K

tial observation. IleZ- is uniformly distributgd,”A - aUW, US| O(exp{_ 2d2 ZTr[U(k)TU(k)]}

A*HLZ(P(X_)) - \/ﬁ.nA—A*HQ,WhereH.HQ is thels- b 1

norm obtained by summing the squares of all the elements. S

If K = 2, this problem is reduced to the standard matrix whereos;, > 0. Moreover, we placed a prior distribution on
U

completion problem. In that sense, our problem setting idn€ rankl < d’ < dmax as

a wide generalization of the low rank matrix completion

problem.

() = e )

Example 2. Multi-task learning. Suppose that several where0 < ¢ < 1 is some positive real numbet,,. is
tasks are aligned across a 2-dimensional space. For each sufficiently large number that is supposed to be larger
task(s,t) € {1,...,M;} x {1,..., M} (indexed by two than d*, and N, is the normalizing constantNe =
numbers), there is a true weight vectg, ,, € R"=. The gi{;ﬂfﬂf&;:ﬁﬁ,}d.

tensorA* is an array of the weight vectors, ,, that is,

Now, since the noise is Gaussian, the likelihood of a tensor

Asei = azks,t),j' L
. ) . ] A is given by
The input vectorX; is a vector of predictor variables for
one specific task, safs,t), and takes a form such that 1 & )
X w0 e RV, (o) = (s,1)), PDnJA) =i pra ocexp g =55 D (Vi = (4. X)) ¢
i,(s,t ) — . =1
(658 0, (otherwisé.

By assuming4d* is low-rank in the sense of CP-rank, the The posterior distribution is given by
problem becomes a multi-task feature learning with a two
dimensional structure in the task spadRofnera-Paredes  I11(A € C|Dy,)

etal, 2013. S g (U [d)r(d)duW .U

S0 [ Puag T(UENE |d)m(d)dU D .. dUE)

As shown in the examples, the estimation problem of low-
rank tensord* is a natural extension of low-rank matrix es- whereC C RMi%--Mx _ |t is noteworthy that the posterior

timation. However, it has a much richer structure than Maictribution of U®) conditioned byd andU*) (k' # k)

trix estimation. Thus far, some convex regularized IearninqS a Gaussian distribution, because the prior is conjugate
problems have been proposed analogously to spectrum "% Gaussian distributions., Therefore, the posterior mean

ularization on a matrix, and their theoretical analysis has F(A)I(dA|D,) of a functionf : RMi%--Mx _, R can
also been provided. However, no method have been prov X
S . . e computed by an MCMC method, such as Gibbs sam-
to be statistically optimal. There is a huge gap between a . . i
ling (as for the Bayes tensor estimator, 3@eng et al.

matrix and higher order array. One reason for this gap is th 2010; Xu etal.(2013; Rai etal(2014). In this paper, we

computational complexity of the convex envelope of Cp'consider the posterior mean estimatbr- [ ATI(dA|D,,)

rank. It is well known that the trace norm of a matrixisa _, ., . . :
. : . which is the Bayes estimator corresponding to the square
convex envelope of the matrix rank on a set of matrices wit 0SS

a restricted operator norns(ebro et al.2005. However,
as for tensors, computing CP-rank and CP-decomposition ]
themselves is NP-hardH{llar & Lim , 2013. 4. Convergence rate analysis

In this paper, we investigate a Bayes estimator instead dh this section, we present the statistical convergence rate of
the convex regularized one. It will be shown that our Bayeshe Bayes estimator. Before we give the convergence rate,
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we define some quantities and provide the assumptions. W& 1. In-sample predictive accuracy

define thanax-normof A* as . . .
We now give the convergence rate of the in-sample predic-

| A" || max,2 = min {max HU:S’Z.“)HQ | tive accuracy. We suppose the inpyt¥;}” , are fixed
o} ik ) (not random). The in-sample predictive accuracy condi-
A =[uW,. .. uB, U e R*Me} tioned by{X,}"_, is given as follows.

The ¢,-norm of a tensorA is given by ||Al, := Theorem 1. Under Assumptiorl,_ there existsau_niversal
constantC' such that the posterior mean of the in-sample

. oA - _|P)%. The prior mass around the true
(2, | A |”) P accuracy is upper bounded by

tensorA* is a key quantity for characterizing the conver-
gence rate, which is denoted By

Z(6) := —log(Il(A : ||A — A*[|,, <)), E {/ A - A*”ndH(AYm)]

[1]
—~
3|8
SN—

whered > 0. Small=(§) means that the prior is well con- C
centrated around the truth. Thus, it is natural to considergg
that, if = is large, the Bayes estimator could be close to
the truth. However, clearly, we do not know beforehand
the location of the truth. Thus, it is not beneficial to place
too much prior mass around one specific point. Instead,

the prior mass should cover a wide range of possibilities Otrhe proof is given in AppendixA.2 in the supple-

A*. The balance between concentration and dispersion has ; . .
. X : . Mmentary material. This theorem provides the speed at
a similar meaning to that of the bias-variance trade-off.

which the posterior mass concentrates around the true
To normalize the scale, we assume thatéh@orm of X; A*. It should be noted that the integral in the LHS

(00 gy ) e+

ce

+log(dmax) + K + 85 (K +1)!]. (4)

is bounded. of Eq. (@) is takenoutside |4 — A*||2. This gives
Assumption 1. We assume that thé-norm of X; is  hot only information about the posterior concentration
bounded by 1{|X;[; <1, as.. but also the convergence rate of the posterior mean es-

timator. This can be shown as follows. By Jensen’s
For theoretical simplicity, we utilize the unnormalized prior inequality, we haveE [|| [ AdII(A|Y1.,) — A*|2] <
on the rank, that is7(d) = ¥« It should be E[[|A— A*|2dII(A|Y;,)]. Therefore, Theoremtl
noted that removing the normalization constant does nogives a much stronger claim on the posterior than just stat-
affect the posterior. Under these assumpti@{g) can be  ing the convergence rate of the posterior mean estimator.
bounded as follows.
Lemma 1. Under Assumption, the prior mas<s has the
bound

Since the rated) is rather complicated, we give a simplified
bound. By assumingpg(dm.x) and K! are smaller than
d* (>, My), we rearrange it as

* K *
0 > Louil

E(%) < + .
vn 202 E U |A—A ||idH(A|Y1;n)}
K Vi (AT Imaa Kt . .
J* ZMk, log 6( ( Tp ) v 1) ) —0 (d (Ml + —+ MK) IOg (K H(Zf:1 Mk)K”?)) .
k=1 f "

for all » > 0, where{U*(}, are any tensors satisfying Inside theO(-) sym_bol3 a constant factor depending on
A* — [[U*(l), o U*(K)”_ K, ||A*||max,2, 0p, & is hidden. This bound means that the

convergence rate is characterized by the actual degree of
It should be noted tha&(r/\/n) < Z(1/y/n) for  freedom up to alog term. Thatis, since the true tensor has
all » > 1. Finally, we define the technical quan- rankd* and thus has a decompositiohj,(the number of

- 4025()\ unknown parameters is bounded &y(M; + - - - + Mk).
tites C, k= 3Kyn <pdf> and c¢ = Thus, the rate is basicallp (e eedoy (5 1910 or-
min{| log(€)|/ log(Cr.xc), 1} /4. der), which is optimal (see Secti@for more precise argu-

—_—— _ ment). Here, we would like to emphasize that the true rank
_“t1-norm could be replaced by another norm suck:asThis g+ js unknown, but by placing a prior distribution on a rank
difference aﬁfCtS thﬁsnalyas ol;;aut-of-sam_ple accuramles, butrghe Bayes estimator can appropriately estimate the rank and
ecting samples wit )(7 < R gives an analogous . . k
]resultgfor otlfer norms.aXX I )= Rg g gives an almost optimal rat.e depending on thg true rank. In

2This is not essential, but for just making the expressioB of this sense, the Bayes estimator has adaptivity to the true

simple. rank.
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More importantly, we do not assunaay strong convexity satisfied, then the out-of-sample accuracy is bounded as
on the design. Usually, to derive a fast convergence rate of

sparse estimators, such as Lasso and the trace norm regu- Ep, [/ A = A7, (pexon (Al A] o < R, Dn):|
larization estimator, we assume a variant of strong convex-

ity, such as a restricted eigenvalue conditiBickel et al, < C(R?V1)
2009 and restricted strong convexitiNégahban et al. - n
2012. Itis difficult to check the strong convexity condition

in practice. However, our convergence rate does not require 5(\/%)
such conditions. One reason why this is possible is thatwe T
are interested in the predictive accuracies rather than the
actual distance between the tensass— A*||2 (parameter WhereC'is a universal constant.
estimation accuracy) . It is known that this phenomeno
occurs also in high dimensional regression of vectors, s
Dalalyan & Tsybakoy2008 for example.

. 3
d (Zk M, + |10g(§)|) log(Ch i)

+ log(dmax) + 8K(K + 1)'

)

:The proof is given in AppendiB in the supplementary ma-
frial.. The only difference between this and Theotkein
that R? appears in front of the bound. The source of this
factor is the gap between the empirical and populafign
norms. Here again, the convergence rate can be simplified

Next, we turn to the convergence rate of the out-of-samplé&sS

predictive accuracy. In this setting, the input sequence .

(X}, is not fixed, but an i.id. random variable gen-  “Pn {/ 14 = A" 112 e AT(Al[ Alloo < R, D)

erated by a distributio(X).

<0<

4.2. Out-of-sample predictive accuracy

d* (M + - - + M)

n

(R* Vv 1)x

To obtain fast convergence of the out-of-sample accuracy,
we need to bound the difference between the empirical and

populationLy-errors: || A — A*[|7 — [|A — A", px))- [ K Kﬁ

To ensure that this quantity is small using Bernstein’s in- log | K/ (2 k= M) £ ' )
equality,maxx |(X, A)| should be bounded. However, the | | .

infinity norm of the posterior mean could be large in ten-1f ! and|log(&)| are smaller thaa (3, Mj). Here, we

sor estimation. This difficulty can be avoided by rejecting ©PServe that the convergence rate achieved is optimal up to
posterior samplel with a large infinity norm. the log-term. We would like to emphasize again that the

optimal rate is achieved, although we do not assume any
4.2.1. NEINITY NORM THRESHOLDING strong convexity on the distrik_)utioﬂg(l'[). This can be

so because we are not analyzing the acfiyahorm|| A —
Now, define||Afloc = max;,, . j. [4j,,..jc]- Then,un- A*|l,. If we do not assume strong convexity likel —
der Assumptiorl, we have(X, A) < ||Al|.. Here,we  A*|, < C||A — A*|1,(p(x)). it is impossible to derive
assume that the infinity norfhA* ||, of the true tensor is fast convergence dfA — A*|,. The trick is that we focus

approximately known, that is, we knoR > 0 such that  on the “weighted"Ly-norm [|A — A*||,(p(x) instead of
2[|A*||oc < R. Thisis usually true. For example, we know |4 — A*||,.

the upper bound in tensor completion for a recommenda- o . )

tion system. Otherwise, we may apply cross validation.F'na”y’ It is rgmarked that, ifX; is the gnlform at ran-
Our strategy is to put the infinity norm restriction on the dom obse2rvat|on n theltensor comeIetlon probl_em,_then
prior, that is, we utilize the “truncated” prior the support A - A*HLQ(P(X)) - W”A — A%z (note that in this

of which is restricted td|A||. < R. The estimation with ~ setting[|.X;[[ = 1). Thus, our analysis yields fast con-
this prior can be implemented merely by rejecting the posvergence of the tensor recovery. Af = 2, the analysis
terior samples with an infinity norm larger than a thresholdrecovers the well known rate of matrix completion prob-
R during the sampling scheme. lems up to dog(nM; M) term (Negahban & Wainwright

] S 2012 Negahban et 312012 Rohde & Tsybakoy2011):
The resultant posterior distribution is expressed as the con-
( d*(My + Ms)
n

ditional posterior distributiodI(-|||A||cc < R,D,). Ac-
cordingly, we investigate the out-of-sample accuracy of theM1M>
conditional posterior:

|A-A*|2 =0, log(nM1M2)> )

4.2.2. MAX-NORM THRESHOLDING

Ep, [/ HA—A*Hiz(zv(x))dH(A|||A||oo < R,D,)|. Finally, we briefly describe the convergence rate qf the
Bayes estimator based on the rejection sampling with re-

spect to restrictechax-norm We reject the posterior sam-
Theorem 2. Suppose Assumptidrand||A*||c < 1Rare  ple with a max-norm larger tha®; that is, we accept
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only a sampledy that satisfied/ € {(U™M, ..., U)) | integer, is just a technical assumption and is not essential.
HU_(’?)H <R(1<Ek<K,1<j<M,)}=:Ug Then, Wecansee that the convergence rates given in Thed2zems
we have the following bound. and3 are minimax optimal upttog and R2X terms. Note

that R in Theorem2 is about the infinity norm, not max-
norm. The infinity norm|| A/, is roughly bounded by
[Alloo < [[A]|f.x.2- Thus there is no contradiction. This

Ep. |:/||AU _ A*||2LQ(p(x))dH(AU|U € Ug, Dn):| result supports the use of the Bayes estimators.

% K K
S(;(d(Zk;le)(l v B2 log <K\/ERI§U§> ) 6. Related works

In this section, we describe the existing works and clarify
whereC is a constant depending dfi, log(dmax), p- their relation to our work. Recently, theoretical analyses of
. ) . convex regularized low-rank tensor estimators have been
The proof is given in Appendi in the supplementary ma- developed. The pioneering worRdmioka et al, 2011)

terial. In a setting wheré/;, is much larger tham®?, this 51764 a method that utilizes unfolded matricization of
bound gives a much better rate than the prewous ones, b% tensor. Let\/ — H M (the number of whole el-
k=1

Theorem 3. Under Assumptiod and || A*||max,2 + 0p <
R, we have

cause the term insideg is improved from[ ] M s to RS ements). The authors used so-caltee@rlapped Schatten
On the other hand, the rejection rate during the Samp“ng.-normregularizationZkK:I ||A(k)||Tr where|| - |1, is the
would be increased. trace norm andd(¥) € RMx*xM/Mx s themodek unfold-
ing of a tensorA that is a matrix obtained by unfolding the
5. Minimax optimality tensor with thek-th index fixed. Their analysis assumes

the true tensod* has a lowTucker-rank(Tucker, 1966).
In this section, the learning rates derived above are actuallyucker-rank is a general notion of CP-rank. In this sense,
minimax optimal up tdog terms. To prove this, we specify their analysis is more general than ours. However, strong
the L, (P(X)) norm. We takeL»(P(X)) as a uniform ob-  convexity of the empirical and populatidh,-norm is as-
servation of the entries. That i€X, A) = A;, 4,,....i, fOr  sumed. Under this setting and= M, the following bound
someir € {1,..., My} (k=1,...,K), and the choice of s obtained:

(i1,i2,...,ix) is uniform. The hypothesis space is given d 2
1 ~ N %
by . alA-A I3 < Oﬁ(% YK \/Mﬂk) . ®
Ta ={[UD, ..., U] | Uk ¢ RI" *M:
WP <R(I<k<K1<j<M)}, It can be seen that our bounﬁw log(nM) is

the set of tensors with rank* and the max norm not more ST“a”er tha_m t_his_t_)ound; in particular, M is Iarge, the
than R. The minimax optimal rate is the convergence ratedﬁference IS S|gn|f|cantly Ia_rge. Ilu et aI.(2014)., twas
that can not be improved kgny estimator: for any estima- shown that the boundb) is tight and cannot be improved

tor, there is a tensaf™ € T such that the predictive accu- |f2:)hle ove:a\p;ple;jn St(k:]hztter]llénorr’rrw '3 usk;evd. M[rl et al. q
racy corresponding to the true tensét is lower bounded (2014, a novel method calledquare dealvas propose

by the minimax optimal risk and was shown to achieve the following rate. kot M,

Theorem 4. The minimax learning rate of the tensor esti-

mation is lower bounded as follows. Suppose that 1, ||A A3 < C (erh My + [ger, Mk)
My > 4 (Vk < K), Mg /d* > 4 and Mg /d* is integer.
Then there exists a constafitsuch that wherel; andl; are any disjoint decomposition of index set
{1,...,K}. This improves the rate5], but is still larger
ij Pib=-n BlIA = A1, (p o) than the rate of the Bayes estimator, because the product of
M, appears instead of the sum.
« (K K app
>C : 2 d (Ekzl Mk) R2 d* ) .
ZLminq o n (R°/d) Another study on the regularization approach was
presented in Tomioka & Suzuki (2013. The
whereinf ; is taken over all estimator and the expectation guthors proposed using thelatent Schatten 1-
i ini . K k
is taken for the training samples. nornt mf{Ak}:A:Z{;l o ”A’i )”T“ where

The proof is given in Appendik in the supplementary ma- A,(f) € RMxxM/My s the modek unfolding of the tensor

terial. The theorem is proven by using the information the-A4,. A nice point of this method is that it automatically
oretic argument developed bfang & Barron(1999 to de-  finds the minimum rank direction, that is, the make-
rive the minimax optimal rate. The assumptidry /d* is  unfolding A*(*) with the minimum rank. It was shown that



Convergence rate of Bayesian tensor estimator and its minimax optimality

the rate is random selection of one element af* with observa-
X tional noise N(0,1) (see Examplel). The true tensor
d* max_ {My + M/My} A* was randomly generated such that each element of
n U® (k=1,...,K) was uniformly distributed of-1, 1].
» was set at 5, and the true tensor was estimated by the
posterior mean obtained by the rejection sampling scheme

1 ) *
Lji-ap<c

This rate is also larger than that of the Bayes estimator. W

would like to remark that this rate is obtained for the low "

“Tucker-rank” situation, which is more general than ourWlth R = 10. (.imax and¢ were set at 10 arjd 05 The

low CP-rank setting, and thus, it is not best suited to our Sit_poste_rlor sampling was termllnat_ed after 500 |ter§1t|ons. The

uation. However, it is not apparent that the latent Schatteff xpgnments were executed in five different settings, called

1-norm achieves the same rate as that of the Bayes estim ?Igngg 1(;0 55'{(2%10’ 20 ’é\gK%’ '} = {gg’ ;8’ 4118)7 é}’

tor in low CP-rank settings. Recently, an extention of the (30730740)76}7{( F;) 7eac)r71 }7ett'n { e7 e7 o )'Eej’the

overlapped and latent Schatten 1-norms, calteded trace {(30, . ), } or seting, we Tepea

norm, has been proposed byimalawarne et al(2014) experiments five times and computed the average of the
prop ' ' in-sample predictive accuracy and out-of-sample accuracy

As for Bayesian counter part, a Bayesian low rank matrixover all five repetitions. The number of samples was
estimator is analyzed iAlquier (2013. The prior in this  chosen as = ng [ [, M., wheren, varied from 0.3t0 0.9.
study is similar to ours withi' = 2, but, instead of placing

prior on the rank, the authors placed a Gamma prior ory 1. Comparison with a convex approach

the variance of the Gaussian prior. They utilized the novel ) .

PAC-Bayes techniqueMcAllester, 1998 Catonj 2004 to We compare the Bayes estimator with the overlapped

show Schatten 1-norm regularization approadborfiioka et al.
2011). The comparison is executed in the settings 2 and
14— 452 < C’d*(Ml + M>) log(nM; Ms) 5. As for the regularization parameter of the convex reg-
n = n ' ularized approach, we have chosen the best parameter at

) o ] each sample size and each problem setting. The dashed
This work has a similar flavor to ours in the sense thafjines correspond to the convex approach, and the solid line
no strong convexity is required to obtain the convergenceqrespond to the Bayes approach. The accuracies of both
rate (see alsalalyan & Tsybako(2008 for the use of  methods are improved as the sample size increases. It can
Bayes estimator in high dimensional regression). HOWye seen that the Bayes approach much outperforms the con-

ever, our analysis deals with general tensor estimatiogqy approach in terms of both in-sample and out-of-sample
(K > 3) and the posterior concentration is also given.c racies.

([ |A— A*||2dII(A|D,,) instead of| A — A*||2 whereA is
the posterior mean). More recentijai & Alquier (2015 0g s

established a PAC-Bayes bound of the out-of-sample accu- B ot I IoRbetvitidslonnd
racy of the low rank matrix estimation. However, the anal- [| B setting 5: Bayes —E-setting 5: Bayes
ysis for K > 3 is not covered by there analysis. As for the [ E sotting S Gonvex §| | B setting 5: Convex
Bayesian tensor estimator, #hou et al.(2013 a Bayes G o R 8.l

estimator of probabilistic tensors was investigated. The S s x‘x~ z '

model applies fully observed multinomial random variables %’w \\ ki el

and the rank is determined beforehand. Therefore, the set- § B IS $ox

ting is different from oursYang & Dunson(2013 investi- L Bhsm \

gated classification of high-dimensional tensors where the \‘\X\HN B \x
covariate is categorical and its distribution is characterized o y T T Xe
by a low rank probabilistic tensor. However, all distribu- E £ gg;ggg‘:g;g;g

tions are multinomial, and thus the setting is different from
our regression problem.

ns nS
Figure 1.In-sample and out-of-sample accuracy comparison be-
7. Numerical experiments tween the convex regularization approach and the Bayes ap-

proach, averaged over five repetitions.
We now present numerical experiments to justify our

theoretical results. Two experiments are executed: the
first one is a comparison between the convex optimiation; , \ /. ification of the convergence rate

method and the Bayes method, and the second one is

verifying the convergence rate. The problem is theTo verify our convergence analysis of the Bayes estimator,
tensor completion problem where each observation is ave consider the “scaled” accuracy in addition to the actual
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Figure 2.Scaled in-sample accuracy (left) and actual in- Figure 3.Scaled out-of-sample accuracy (left) and actual out-
sample accuracy (right) versus, averaged over five repe-  of-sample accuracy (right) versus, averaged over five rep-
titions. etitions.
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