Convergence rate of Bayesian tensor estimator and its minimax optimality

Supplementary Material:
Convergence rate of Bayesian tensor estimator and its minimax optimality

A. Proofs of Lemma 1 and Theorem 1

Let M, 4 be a positive number that will be determined later on. Eg}, be
Fra=1A=[U0, ... . U | max U ]ls < /Mg, UD€ RO,
and7, beUlL, F, 4.

1A a2 = min {max U] | A* = [UD),..., U], U0 & RixM},
[w®y ik 0

op.a+ is denoted by, /v/d*.

A.1. Proof of Lemma 1

Ford* dimensional vectora®® (k =1,..., K), let
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@, w0y = Z H ugk).
=1 k=1
Then foru®) | v**) (k =1,..., K), we have that
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Therefore, ifu® || < [|A*[max.2 + op, [[u® — u*®)|| <

R T oyt and||uw®|| < [ A*|lmax.2, then we have

[u®, . uy — (D) uw Y| < er.

goeeey

Now, we consider two situations: (iY\*(HA*H ”’2+U L& < Vd*op 4+ and (ii) RA £r L& > Vd*op,a-. (i) If
max,2t0p

[[max,2+0p
Ty < Vel oy - (= ) and [u®) | < [|A* [max 2, then[u®| < [|4*
2, we have that

|max,2 + Up- Hence, by Lemma

—log(IT(A : ||A — A ||, < er|d™)) < —log(II(A : ||A — A¥||e < er|d¥))
My ..., Mg
k k *(k o
<— Y log (H(U:Eiz o®) — ) < ))

Lk KE([A* lmax,2+0p) K1
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k=1ip=1

*(k
er U &2
60p,d+ VA K (|| A || max,2 + o) 51 207 4

K K *(k) |2
er S 181
< —d*(>_ My)log | == :
k=1 60p,ax Vd* K (|| A*[lmax,2 + op)* 1 207 4

(ii) On the other hand, i%(HA*Hmjﬁap)K*l > oy 4V d*, we have that

K * K *(k) (12
Op.a-Vd > UM%
—log(TI(A : |[A — A*||,, < er|d*)) < —d*(Y Mjy)log | —2 + == .
; 6Up,d* RV d* 20'112),(1*
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Combining these inequality, we have that

—log(II(A : | A — A*||, < er)) < —log(II(A : [|A — A*||,, < er|d*)) — log(n(d*))

K K *(k) |2
] 1 r e U1 .
< (3o an) o [} (spmrpemirr A1) + B gt
k=1

p,d*
K A ]| -
6 O‘KK( max,2+1)K 1
<d* My |log |- | =2 e V1

The last line is by the definition of the unnormalized prigel) = ¢4« Mx), Later on we let = 1/,/n. This gives
Lemma 1.

S lT* W12,

2
20p7d*

+ (8)

A.2. Proof of Theorem 1
In this section, we fixX.,, and suppose it is not a random variable.

To prove the theorem, we utilize the technique developedvay (ler Vaart & van Zanter2011). Their technique is
originally developed to show the posterior convergence of Gaussian process regression and is based on tt&ooiss by (
et al, 2000 for the posterior convergence of non-parametric Bayes models. Although our situation is of parametric model,

their technique is useful because ours is high dimensional singular model in which a standard asymptotic statistics for
parametric models does not work.

For a set of tensor&,., an event4,. and a test,. (all of which are dependent on a positive real number 0), it holds
that, fore > 0,

B| [14- ' 2ncam.)|
=E {3262/ rII(]|A — A%, > 467"|Y1:n)dr}
r>0

§3262/ r®{E [¢,] + P(AS)
r>0

+E[(1 - ¢,)1.4,11(A € FE|Y1.0)]
+E[(1—¢)14 (A€ Fp: |A— A2 > der? |V, fdr®

=:32¢* / (A, + B, + C,. + D,.)dr". 9)
r>0

We give an upper bound of,., B,., C,. andD.,. in the following.

Step 1.The probability distribution ot7.,, with a true tenso (that meand’; = (X;, A) + ¢;) is denoted byP, 4. The
expectation of a functiorf with respect taP,, 4 is denoted byP,, 4(f).

For arbitraryr’ > 0, defineC;, s = {A € F.q | jr’ < /n||A — A*||, < (j + 1)r"}. We construct a maximum

cardinality se©; ,» 4 C C;, 4 such that eachl, A’ € ©; , 4 satisfies,/n||A — A’||,, > jr’/2. The cardinality 00, ,+ 4
is equal toD(jr' /2, C}. .4, v/n|| - ||ln) 3. Then, one can construct a test, such that

Pua-$j.a < D' [2,Cjpas VAl - ln)e™ 20" < D(jr' /2,Cj gy V|| - |n)e 377730

1 r’ 9 j27,/2 q2
sup Pn,A(l - ¢j,d) <e 2 max(‘3-—¢,0)" < e~ 16 tT

i )
AEC; 1 4

)

foranyq > 0 (see yan der Vaart & van Zante2011) for the details ). For eacl we construct a test; as¢y = max; ¢; 4.
Then we have

. 1,202 1.2 1,202 1.2
Poacba <D 12, Chra V- n)e” 397 E0 <3 TDE 2, Frgy V|- e R
Jj=1 j=1
3For a normed spacg attached with a norrfj - ||, thee-packing number is denoted (e, F, | - |)).
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2 1

< 9D(r' (2, Fpas /| - |n)e= 37" 73
Here, by setting ¢ = log(D(r'/2, Fr.q,v/7|| - ||n)), we have

2
Py arpq < 9e 5",
sap Py (L — dg) < - 7 HORDE 2 Fn s/l 1))
A€F,a '

Finally, we construct a test as the maximum o, that is,¢) = max,>1 ¢4. Then, we have

Ppoa-¢ < 957 H108(dmax)

sup Poa(l— ¢) < e~ 167 H1os(DO /2 Fras /Al )
A€F,q

foralld > 1.

Substitutingty/ner into r/, we obtain

Pn A*¢ < 96_27L62T2K+10g(dmaX) (10)
sup PnA(]- _ ¢) < efnarzkjulog(D(rf/2,]—}7,1,\/5”.”n)). (11)
A€F,q -
We define
A, = Py = ¢.

From now on, we denote by, the test constructed above to indicate that the test is associated to a specific
Step 2.

By Lemma 14 of yan der Vaart & van Zantei2011) and its proof, one can show that, for any 0,

7LE2’!'2 .'L'2

P [/ LA AII(A) > e T VA I(A : || A — A*||, < er)| < e %
DPn, A*

Therefore, there exists an eveh ,. such that

PA*( i,r) < e—n527>2/8)

and, on the event, ,., it holds that

/p"—’AdH(A) > e II(A L A — AF||, < er).
Pn,Ax

Moreover, it can be checked in a similar way that there exists an edgptsuch that, for a some fixed constaat< %
(which will be determined later),

VYR log(II(A ¢ A - A°)), < JEer®)) 0>2 | w2

1
Py (A5 ) < ——
ar(Ag,) < exp 2 ( 2 Cev/nerk

and, on the eventl, ., it holds that

/ Pn,A dH(A) > efcsngrgK
Pn,A* o

Here, we note that, by a simple calculation, the RHS of Eg) is bounded by

1 2, 2K
ceme’r
16 €€
e 16 s
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if cene®r?® > —8log(IL(A : [|[A — A*|, < \/eger™)).
Now, defineA, = A4, . N Ay, then we have

2
2,2 K 1 II(A: ||A — A* n < K
By — Pac(AS) < o705 4 oxp d — L ((VEEVRrT oIl - | I < vEer™)) |,
2 2 /Ce/nerk

Step 3.

Since

HUDHL, € RPM o s ROM [ max |US 2 > /My a}

K
CHUMHL, e RPM s RUMI | 3 U WS > M),

k=1
Propositionl yields the bound of the prior probability gi¢ as
M M
. d Z Mk d Z Mk Mr d MrAd
II(F5) = II(F¢ < k k 1 : o — .
(]:r) Z ( r,d)ﬂ(d) = Zexp [ 9 + 2 og (de Mk0'2 J 20.2 4 W(d)
d=1 d=1 p; p,

Therefore, its posterior probability in the eve#t is bounded as
Cr = n,A* [H(fﬂylrn)lflr(l - (br)]

M
dz Mk dz Mk Mrd Mrd
< exp |ne’r? + Z(er) + k + k log : — ——| w(d).
; [ 2 2 Ay, Myo? , 207 ,

Step 4.

Here, D, is evaluated. Remind thd?, is defined as
D, =P, a-[II(AEF, 1 ||A— A > 4der™ Y1) (1 — )14, ]

SinceA, = A, , N Ay, C Ay, we have

Dr < Pn,A*

>/ PP a- ALL(A|d) expleener® )n(d)(L - ¢,)La,
4 JAEF, a:||A—A*||, >derK
-y / Paal(1 — 6,)14,] exp(cene?r?X)dLL(Ald)r(d).
a4 JAEF, a:| A=A | >der K

Therefore, using?, 4[(1 — ¢,)1.4,] < 1, the summand in the RHS is bounded by
7(d) exp(cene?r?). (13)
Simultaneously, Eq.1(1) gives another upper bound of the summand as

2K 2, 2K

/ ecgnSQT —ner +10g(D(2\/ﬁ€7'K7}-¢vd’\/ﬁ”'”“’)dH(A|d)7T(d)
AEF, q:||A—A*|,, >derK

<m(d)exp {—;7’%27“2}( + log(D(2v/ner’™ | Fr. 4, v/n| - ||n))} , (14)

for » > 1, where we used; < 1.
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We evaluate the packing numbleg(D(2v/ner’, F,. 4, v/nl| - ||l»)). Itis known that the packing number of unit ball in
d-dimensional Euclidean space is bounded by

Dle, Ba(1), ]| ) < (4+6)d.

€

Here B, (R) denotes the ball with the radiugin d-dimensional Euclidean space.
Similar to Eq. {), the Ly-norm between two tensors = [[U(), ... . UF)]JandA’ = [[U'M) ... U'F)]] can be bounded
by

A-ABE= S (o), ol — @, Uy

LUK LUK
11,82, ,0K

2
K
_ (1) (k=1) 7r(k) _ 77(k) 1(K)
_ Z <Z<U1 U uty —ul ol >>

i1,02,. ik \k=1
<k Yo Swh vl ol vl vty o)
11,82,...,0 K5 k=1
K
1 k—1 k 1(k 1(k+1 K
<KEY" ST UE < x JUETVIE < U Ul < (USRI U0

k=11i1,i2,...,ix

K
<K Y JUDE x - x [UEDSIT® — T ® )5 x U EHD |5 - ox U3,
If A, A" € F, 4, then the RHS is further bounded by

K
|4 = A3 < KMy U - o @, (15)
k=1
Thus, if2er® < KMK/2 using the relation1(5) and/n||A — A’ ||, < vn||A — A||co < /n||A — A’||2, we have that
log(D(2v/ner™, Fra, vl - [In)) < log(D(2er™, Fra, | - [12))
< log(D2er’ /(KM ™""%), By, ar, (V/Mra), |l - [12))

K 44 2ol K K/2
KM 3KM,
k=1 KME)? k=1

otherwiselog(D(2y/ner, F, a4,/ - [[n)) =
Combining Egs. 13) and (4) with Eq. (16) results in the following upper bound @&f,.:

1 K 3KME/?
D, < Zﬂ'( min {eXp(ane2r2K) exp l—2n62r2K +d (Z Mk) log (ﬁ)] } a7
d k=1

forr > 1.
Step 5.

Here, we establish the assertion by combining the bound4,.ofB,., C, and D, obtained above. Set = ﬁ and
M, 4= mal/\/ﬁ)ogrz. Then, we have that, for ail > d*,

K
2

(Z Mk> log <3KMTK‘1/2> <d (Z Mk> log | 3Kvn <W> |
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K
Recall thatC,, x = 3K\/n <W> , andce = min{|log(¢)|/log(Cn k), 1}/4. Let 7y be such that- 1725 +
d (Zk:1 Mk) log(Cy 1) = 0, thatis iy = 22K [d(S2, Mj) log(Chy. )] /2K
By the upper boundd), we have that

E U A - A*||idH(A|Y1:n)} < 32¢% + 3262/ (A, + B, + C, + D,)dr’

r>1

We are going to bound each term in the integral.

1 dIIl' X 9
/ KA drE < / % min{9 exp(—2r*% +log(dmax)), 1}drX < # +7
>1 >1

By Lemmas3, the integral related t#,. is bounded by

X B,dr® < 82(\/cge)/ce —|—/ rK [exp(—r2/8) + exp(—cEr2K/16)] drf
[>1 TK>\/SE(\/Q6)/05

< 2% /K>1rKexp(7”2/8)drK

Ce

Here, the second term of the RHS is bounded by
K 2/8)dr K < © 3 g1 LY <85k 4 1)1
— <= —_ )< L
/TK>1’I“ exp(—r°/8)dr _2; (K_j)!exp( 8)_ (K+1)

Similarly, by Lemma3, the integral related t¢’, is bounded by

d=1
1A K- (K- )
55; EONO R

Next, we bound the integral corresponding/?p. By the definition ofc, and,, for all < 74, it holds that

log[m(d) exp(cer® )] < d'(Y_ My) log(§) + ceig™ < d( Z My,)log(§)/2,
k

(remind that we are using unnormalized pridrl)). On the other hand, for all > 7, it holds that

KME?
exp {—ne 25 /2 4d (Z Mk) log <3E7J<Td> } < exp [—( - fﬁK)/2]

k=1

Therefore, Eq.X7) becomes

Fgw
/ rE D, drf :/ TKDTdT‘K-I-/ rE D, drf
r>1 r=1 T>T g

1._ -
<5+ Y w(d) / P exp(—(r* — 75))ar®
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& exp [—(7‘2K — 72 )] dr } (18)

+ Z / rKdrk exp[ Z M) log(& ] (d)[
ax <r<fq Ta<r

Here the second term of the RHS can be evaluated as
d*—1 d*—1
> w(d) / K exp(— (2 — F2ENAr K < N w(d).
d=1 Fax<r d=1

The third term is evaluated as
M 1

K . K
g rodr® exp [d g M, log({)]
= /7:d <r<ig 2 ( k )

ifﬁKexp{ a (>, M) log(¢ ]

d=d*

M

Z d Z M) log(Ch i) exp [ (ZMk> log(¢ 1

d=d*

</d>d (d+1)( Z M) log(Ch ) exp[ (ZMk>log 1 dd

n, 2

T 2k Mi|log(€)]

2d"+2)
=Thogtg) )

The fourth term is bounded in a similar way to the second term as

M M
Z ﬂ(d)/ i exp(—(r?E — 725))drE < Z 7(d)
d=d* Fq<r

d=d*
Thus Eq. 18) is upper bounded by
2(d* +2)

1
K K ~ Zx2K
r* Dydr —Tge +24+
/>1 2 - |log(£)]

L/ 2(d* +2)
=d (Zk Mk) log(Cp k) +2 + m log(Ch k).

log(Ch k)

Combining all inequalities yields that there exists a universal conétaich that
E {/ A — A*||$LdH(A|Y1m)}

<O<10g(dmax> +K+8 (\/;) —|—8K(K+ D44 (Zk Mk) log(Ch k)

[1]

n 2 Ce
(19)

2(d* +2
+ (d” + )log(C’n,K)-i-l).

[log(&)]

B. Rejection Sampling (Proof of Theorem 2)
In this section, we prove Theorem 2. By assumption, we Have 2||A*| . and £ > 1/\/n. Therefore, ifer > 1/\/n

we have that
* _ R _
14 = A%l < er[[Alloo < R)) S E( Aer) < E(1/vn). (20)

— log(II(A
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Now, for any non-negative measurable functjpnR:*xMx 'we have that

J F(A)1]JA]l < RITI(AA|D,)
/f T(dA|[| Al < R, D,) = (”A”m i
[ FALJA]x < R) <dA\Dn>
(HAHOO < R‘Yl n
JFANA] < B Z2ATI(0A)
fl [l < RIZ-A raA)

We define the evend,. as in the proof of Theorem 1. Then, we have the same upper bousidasf in the previous section.
By Eqg. (20), on the even,.,

/ A]leo < R];)n:* II(dA) > min{exp(r? + Z(1/v/n)), exp(cer?™)} 1

n7

Other quantities such a&., C,., D,. are also bounded in the same manner because

/f M| Afl < M) P2 11(04) /f ) PrA ).

Pn,A* Pn,A*

Thus, the conditional posterior mean of the squared @irpf | A — A*||2dII(A|||A] - < M, Y1.,)] can be bounded by
the same quantity as the RHS of Eq9)

Now, we are going to bound the out-of-sample predictive error:

o | [ 14 4" o0 dAlIAL < 7.0, @y
By the assumption thdtX|[; < 1 a.s., we have that
(X, A~ A%)| < 2R.

Now, we bound the expected err@lf by I + IT + I11 where, forn = emax{4R,1} = max{4R 1}, I, 1T andII]
are defined by

I = EDn |:/ 7’]27"1Afd7":| 5
0

o0
II=Ep, [/ n2r1A7,H(A : \/§||A — Al > 07 | ||Alloo < R, Dy)dr
0

17 =Ep, [ / PPria (A : A= A%llLypco) > 1r = VEIA = A% | 1Al < R, Dy)dr
0

Here,I andI are bounded by
I+11

2 D .
<Cp | Tog(dan) + K o+ — = 4 8 (K 4 1l 0" (3, M) 10g(C k)
i+ 2
L2 Jog(Crr) +C 22
flog()] &)+ ) 22
asin Eqg. 19).

Next, we bound the termi/I. To bound this, we need to evaluate the difference between the empirical|abrmA*||,,
and the expected norfid — A*[| ., p(x)), which can be done by Bernstein’s inequality:

n| A= AL, pex)
20+ A= A*[3./3)

P (|4 = A"l|z,pox)) 2 VA = A7) < exp (—
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wherev = Ex [((X, A— A*)2 —E¢[(X, A— A*)2))2]. Nowv < Ex[(X, A— A*)4] < |A— A*| 2 Ex[(X, A— A*)?] =
A — A% [|A — A*||7, p(x))- This yields that

« . n ||A—A*||L2(P(X)) 2
P — > — < - .
(14 = A" apocy = VA A")—e"pl 2< A=A

If || A — A*||.c < 2R, then the RHS is further bounded byp (-”'A‘Agjfgﬂ”?(”) .
To evaluate/ I I, we evaluate the expectation of the posterior inside the integral:
Ep, [LaTI(A: A= 4|,y > 17 2 VE[A = A" | |1 4]loc < R, Dy)]
<Ex.., [exp(r? + E(O)(A: [ A= A*lypexy > 1 = V2IA = A%y [Alloe < R | Xion)]

<exp(r® + E(1/v/n)) /A L[l[A = A% > i, | Al oo < RIP(IA = A||Ly(pxy) > 0 > V2] A = A*[[)TI(dA)

<exp(r® +Z(1/v/n)) /A 1A~ A% > pr]exp (—"”A = ﬂ}w”) TI(dA)
2, = nn’r’
<exp (12 +20/vi) - ).
Therefore, we have that
111 < /000 %7 min {1,exp (7“2 +=2(1/v/n) — n877;7;2> } d

<1n25(1/\/ﬁ) + /00 n’rexp (—r?) dr

~2 >V/E1/ V)
<CPE(1/v/n), (23)
wheren = ﬁ max{4R, 1} is used in the second inequality.

Combining the inequalitie®@) and @3), we obtain that

Eo. U 14 = A2, (p ey dIL(A[ Al < B, Dn)]

+E(1/vn)

/[H
(@)
ey

2
SC’maXiR 1} <log(§max) + 88K+ 1)+

. d* +2
+d (30 M) 1og(Coc) + Tog(ey 08(Cnic) C> ,

=(,/%
whereC is a universal constant. Noticin@@ > =(1/4/n), we obtain the assertion.

C. Rejection Sampling Il (Proof of Theorem 3)

In this section, the proof of Theorem 3 is given. Let
Upa = {(UW,...,UT)) e RUM ... s RUMic | |UM ||y < R (1< k < dinax, 1 < § < My).},

Ur = JUn.a-
d

Define
Fra={A e RM M 14l < R},
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ForU = (UM,...,U%)), we denote bydy := [[UD,...,U)]]. Since the rejection sampling considered here is
defined on a factorizatiod = [[U("), ..., U¥)]], the quantitied, IT, IIT are redefined as

I1=Ep, {/ nzrlAidr} ,
0

IT=Ep, [/ ?r1ia (U : V2| Ay — A%, > nr | U € Ug, D,,)dr|
0

)
111 = ED,L |:/ T]2T1A7_H(U : ||AU — A*||L2(P(X)) >nr > \/EHAU — A*”n | U e Z/[R,Dn)dT .
0

SinceR > || A*||max,2 + 0p IS satisfied, one can apply the same upper-bound evaluatid(iof: | Ay — A*|, <€, Ay €
Ugr|d*) as Eq. 8).

Then, in the same event, as before, we have that

[ Al < R P 100) > minfexp(r + 20/, expleer ™))

n,

by Eq. @0).

A, D, can be bounded in a similar fashion, except we Bsestead ofM,. ; andi/ instead ofF,.. Now, in this case’,
could be zero. That is,

Cy = By, [HUG{UW}, € Ur, Yin)1a,] = 0.
Thus, by resettind/,. = R and, accordingly, re-defining
Chn.x =3K\nR%,
then we have the same boundlof- I1 as Eq. 22) except the definition of’,, k.

Becauseé|Ay || < R¥ for U € Ug, I11 is bounded byZ R*X=(e).

Therefore, we again obtain that

Ep, [ [ 140 = 41 ity | U € uR,Dw}

Sw <log(dmax> + 85 (K + 1)1 + :(\/;) + 5( ! )

n

, K dr+2 K
+d (ZkMk> log(K\/ﬁRQ)—l—“Og(g”log(K\/ﬁR?)—i-C).

This yields the assertion.

D. Auxiliary lemmas

Proposition 1. Tail bound ofx? distribution Lety, be the chi-square random variable with freedém Then the tail
probability is bounded as
P(xx > k+2Vak + 2z) < exp(—x)

kE k T
P(XkZl”)SeXPLﬁLQIOg()],

k
forz > k.

The proofs of the first assertion and the second one are given in Lemmaduné(t & Massart2000 and Lemma 2.2 of
(Dasgupta & Gupta2002 respectively.
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Lemma 2. The small ball probability of-dimensional Gaussian random varialgle- N (0, o1,) is lower bounded as

d
€
Pllgl<e= (=) .
ol < 9= (557)

forall e < o/d.

Proof. The lower bound is obtained in an almost same manner as the proof of Proposition 2.& dfifde, 1999. If
0 <1, then we have

g g eX exXpl—= —=.
J \/27-(-0-2 P 2 202 T2 P 2773

Therefore, for such that < #+/d, it holds that

Pl <2 P (Vimaxiy < ) 2 [T P (Valg <)
j=1

d
€

> (1)
30d?2

O
Lemma 3. Forall ¢ > 0,¢ > 0, K > 1, it holds that
, I SNK - (K—i+1) g
/xza zexp (— ca¥)dz = 3 ; 3 a B =02/ K exp(—ca?/K).
Proof.
2
/ zexp(—cr¥)dz
>a
K
—/ L exp(—cx)de
2 >a2/K
K[ 1 < K(K-1) [~
=— o571 exp(—cx) #—A—E—————ll/h 2572 exp(—cx)dx
2 w2/ K 2c a2/ K
K KK -1 >
ZAfa(K_lﬂ/KeXp(—ca%”<)+-4—£————lt/1 572 exp(—cx)dz.
2c 2c a2/ K
Then, applying recursive argument we obtain the assertion. O

Lemma 4. For all K > 2, we have
d K
> uu® ™ < T a®
1=1 k=1
In particular,

d K
ZUEUUEQ) . .ul(_K) < H ||u(k)||2.
=1

k=1

Proof. By Holder's inequality, it holds that

1 2 K 2 K
ST u® ™ < e OV k-
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Applying Holder’s inequality again, we observe that

d (K-1)/K
R e (Z R <Kl>>

i=1

[/ 4 1/K-1 , 4 (K—2)/(Kk—1)7 E-1)/K
< (ZWHK) <Z|u£3>--~u§K>|K/<“>> ]
L =1 =1
Mg 1/(K-1) (K—2)/(k—1)7] E-D/K
< <Z|U£2)|K> (Zlu K/(K 2)) ]
i=1
A

Then by applying the same argument recursively we obtain the assertion.

The second assertion is obvious becduge < ||u||x forall K > 2. O

E. Minimax optimality (Proof of Theorem 4)

The proof of Proof of Theorem is given as follows.

Proof. Let T € RMixxMx phe g set of tensors. Thepacking numbeM (5§, T, Lo (P(X))) of the setT” with respect to
Ly(P(X)) norm is the largest number of tensqtd;, ..., Ay} € 7 such that|A; — Aj|z,p(x)) > 0 foralli # j. On
the other hand, thé covering numbeV (8, 7, Lo (P(X))) of the setT with respect taL,(P(X)) norm is the smallest
number of tensorgA;, ..., Ay} € 7 such thatvA € T there existsd; and||A; — Ajl[1,p(x)) < 0 is satisfied. It is
easily checked that

N(3/2,T, La(P(X))) € M(8,T, Lo(P(X))) < N3, T, La(P(X)))- (24)

For a givend,, > 0 ande,, > 0, letQ be thed,, packing numbeM (6,,, Tr, L2(P(X))) of Tr and N be thes,, covering
numberN (e, Tr, L2(P(X))) of Tr. As shown in Yang & Barron 1999, we utilize the following inequality:
52 .
inf sup E[|A - A"[|7,p(x))] = mf P 5 A= A%|17,pcxy = 02/2)
A A*€Tg
53 ( log(N) + 5ze —Hog(2)>
A
2 log(Q)

>

Thus by takingj,, ande,, to satisfy

50350 < log(N), (252)
8log(NV) < log(Q), (25b)
4log(2) < log(Q), (25¢)

the minimax rate is lower bounded 8}
Note that by the assumption on the distribution, we have thaf7 o ) mzilﬂéw-,ix A2 =
Hszll My, ”AH%’ <A’A/>L2(P(X)) - m Zi1,i27~~-,ix Ail""viKA;hm,iK and|| X[}, < 1.

We construct & covering set of/ in the following. Let€r be ad covering of the ball with radiu®. It is known that we

can takefy as
R d
> [ = .
|Er| > (5)

5% ::{(/1,17...,/11\/[)EgRX-“XgR}CRd*XM.

Let
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Here there is a/62M R? /4 packing set/y, of &3 by Lemma?? such thatidy| > (1/6d*)M/4. Based orify;, Uy is
defined by extending the elementdif, to R <M Let

Unr := {U € RY M | 4\/dU € Uy, Ui ; = U j + c; wheree; is chosen so thall; .[|> = M R?/d*}.

By construction, we have thél,;| > (1/6d*)M/4. By introducing(c;)%,, U, U’ € U corresponding td/, U’ € Uy,
st. U # U’ (thatis,||U — U’||3 > R*$>M/4) could be so close to each other that — U’||3 < R262M/64 To deal
with this problem, we identify elements and U’ for which there existgc;)?", € R%" such thatzl 1 Z Uiy —

U{J —¢;)? < MR?5%/4. We pick up a representative from the equivalence class induced from the identification defined
(1/6d*)M/4 B - »
(1/(6/8)d*) =38 (1/6 )
Then, by construction, we havd/, U’ € Uy, s.t. U # U’ satisfy|U — U’||3 > R?6°M /64, ||U;.||2 = R\/M/d, and

|Uj.. = U lla < Ry/M/d (¥j). In particular, there existgsuch thal|U; . — U7 |5 > R*6>M/(64d*).

.. . M/4—
above, and denote Hy,; the set consisting of the representatives. Tlién| > & '

uy 0---0 --- 0---0 uy

o . ~ u; e 0--40 u;—
ForU,, we define its “shifted” sef,; = d* x ) ) i ) || . | €Un p.Let

0---0 0---0 --- u; u;

T={o®,... .S 0D by, (k=1,....K = 1), U%) € Us,ejae |

From now on, we show thaf is ane packing of 7 with respect tal, (P (X)) for somee > 0. By the construction, it is
easily seen thal’ C 7. By the definition oUMK/d* each elementl in 7 can be orthogonally decomposed into

-
4= P eu@ e - o ul),
d=1

where each componengl) ® u&z) ®--® u(K) (d=1,...,d")is mutually orthogonal. Moreover, for two tensotsand
A’in T, we may take such decomposmon so that

.
1 K 1 K
1A= AR = 1w @ @uf™) - (P @ @uf)|3

whereA = 23;1 ufil) ® - ® u ) andA’ = Zj;l vfil) -® v(K) Therefore, we may focus on rank one tensors.

If the norms of two vectors andy are same, we have that

lzll2 = llyll2
o 2 _ o 2 WU — 2 _ 2
=z —y+yllz = llz —ylls + 2z — v, 9) + llyllz = llyl2

1
:><w—y,y>=—§||x—y||§- (26)

Therefore, foruy,u) € Ry, andU, U’ € RMzx*Mx gych thatl|u, |3 = |[u}]|3 = R?*M,/d and||U||% = ||U’|? =
[T, (R2 My /d*)(= (R%/d*)5—1N) and|ju, — u}||s > M,62R?/(d*64) and||u; —u} |2 < R/M;. Then we have that

lur @ U —uf @ U’||3

=[[(ur —uf) @U'|I> + luf @ (U = U)|* + [[(u1r —u}) @ (U = U)|?
+2((ur —uh) @ U uy @ (U =U")) +2((u1 —uy) @ U', (uy —uy) @ (U = T))
+2(u) @ (U -U"), (uy —uy) @ (U -T"))

=lluy — i [PIU 1 + [y P10 = U')1* + g — w0 = U'|?
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+2(ur =y, up (U, U = U') + 2]us = i |20, (U = U")) + 2(us =y, u) [U = U'|J?
=llur = wy [*(R?/d*)*7IM + R*My [d*|U = U'|]* + ua = |P|U — U”||?

1
+ Sl =PIV = U = flux = i [P0 = U)2 = flua = i [0 = U]
(. Eq. 26))
* —1 177 * 1
=llua = w||*(R?/d) S TIM 4 (R2My/d)|[U = U'|]* = 5 [l = 4 [P0 = U2

* —1 77 * 1
=llua = w|[*(R?/d)STIM 4 U = U'P(R2M: fd” = Sl — wy|?).

Sinceljuy — u}||* < R?M, /d*, the right hand side is lower bounded by

x MiMS? (RN T, M;8”

(R /d") 64 64

This implies that/ is a\/ W(R/\/di*)f( packing set with respect - ||» such that

K 1 My, /4—1

e

171>8 H((Sd*) :
k=1

Simultaneously/” is a(R/v/d*)* ¢ packing set with respect 1p- ||, p(x))-

Therefore, we may tak& = C min 02%71%“), (R?/d*)K | ande? = c62 with appropriate constants andc so
that the conditions25) are satisfied. Hence, we obtain the assertion. O

Lemma 5 (Varshamov-Gilbert bound)Suppose that we are given a finite et R? such thal&| > a andVpu, i’ € € s.t.
p # ' satisfies|p — /|| > 6. Letm > 4, then there exists a finite sg/(*), ..., U(™)} ¢ £™ such that
U9 — U012 > ms?/4, (0<j<k< M)
and
M > o™/,

Proof. Pick upU©®) ¢ £&™ arbitrary. LetD = |[m/4]. Q; = {U € £™ | |U — U© |2 > 52D} and pick up one element
UW from Q; and construcf), = {U € @ | |[U — UMW |2 > 62D}, and recursively we defin@; = {U € Q;_; |
|U —UU=Y|2 > §2D}. M is the smallest integer such tHag,  ; = 0.

Let A; =\ Q1 (j =0,...,M). Sinced; C {U € &™ | ||U = UG53 < 2D} and||U - U'||> = Y72, |U.; —
U!;||?, we have that

14y] < Zé(a— v (7).

SinceA; (j =0, ..., M) are disjoint and their union €™, we have

M
> A =T =am
§=0

Hence 5
(m
M+1 —-1) >a™.
o0yt (7) za
Equivalently, we have that
M+1>
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To evaluate the (inverse of) RHM we consider an i.i.d. sequent®;)™, whereP(X; =1) = (a —1)/a
andP(X; = 0) = 1/a. Then, by the Chernoff- Hoeffding bound, we have that

D
Zi:()(a_ 1) ZX < D)

(“5/2/“> (o)
<47™4(2/a)™? = (1)a)™/2.

IN

Therefore M + 1 > a™/2 > a™/* 4+ 1.



