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Abstract

Big Data received from sources such as social
media, in-stream monitoring systems, networks,
and markets is often mined for discovering pat-

terns, detecting anomalies, and making decisions
or predictions. In distributed learning and real-

time processing of Big Data, ensemble-based
systems in which a fusion center (FC) is used

to combine the local decisions of several clas-

sifiers, have shown to be superior to single ex-
pert systems. However, optimal design of the FC
requires knowledge of the accuracy of the indi-

vidual classifiers which, in many cases, is not

available. Moreover, in many applications su-

pervised training of the FC is not feasible since

the true labels of the data set are not available.
In this paper, we propose an unsupervised joint
estimation-detection scheme to estimate the ac-
curacies of the local classifiers as functions of

data context and to fuse the local decisions of
the classifiers. Numerical results show the dra-
matic improvement of the proposed method as
compared with the state of the art approaches.

ual classifiers. Due to their high computational complex-
ity, Big Data applications including data mining, deci-
sion making, and prediction demand parallel processing for
which ensemble learning is well-suitedhang et al.2013
Tekin & van der Schaak013.

An ensemble system is comprised of a set of (possibly het-
erogeneouy classifiers and a combining rule for fusing the
classifiers’ outputs. Individual classifiers may be trained
with different data sets and by judiciously combining their
outputs we can achieve a more accurate decision; a set of
linear (or nonlinear) classifiers may be used to span the data
space to a complicated nonlinear boundary.

The fusion center (FC) which combines the local deci-
sions of the classifiers plays the key role in the perfor-
mance of the overall system. Several different fusion rules
have been proposed in the literature. The majority rule
may be employed when no information on the performance
of the classifiers is availabl&k(ncheva 2004. On the
other hand, weighted majority rule can be used when the
performances of individual classifiers are known a pri-
ori. Another approach is to construct a look-up table dur-
ing the test and validation procedure including the out-
put patterns of the classifiers and their corresponding la-
bels. This approach, known as Behavior Knowledge Space
(BKS), actually estimates the densities of the classifi¢ér ou

1. Introduction puts and requires large training and validation data sets

Ensemble-based approaches have proven to be more déluang & Suen1993. For some ensemble systems the
curate than single-classifier systems for many applicaglassmers and the FC are trained together using a joint pro-
tions involving decision making, prediction, classifica- cedure such as stacked generalization or mixture of classi-

tion, or detection Kuncheva & Whitaker 2003. Fur-  f1ers Wolpert 1992 Jacobs et al199]).

thermore, for problems with high computational complex-Optimal fusion of local decisions requires the a priori
ity, e_nsemb.le-based approaches a_IIow for d|str|buFed. Proknowledge of the accuracy of the classifiers which, in many
cessing which results in load sharing among the individ-applications, may not be available. For example, the data

_—— 4 _ _may have an extremely large dimension which makes it im-
Proceedings of the?2™* International Conference on Machine
Learning Lille, France, 2015. JMLR: W&CP volume 37. Copy-

- 'Here heterogeneity of classifiers implies that they have dif-
right 2015 by the author(s).

ferent error rates in classifying the dat@&bb & Copsey2017).
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precise to evaluate the accuracy of the classifiers based dret the portion of data available for thah classifier be

the training and validation sets; or the data stream may bdenoted bys;(t) € Sk, and letX (t) € X be the context

time-varying for which accurate evaluation of the classi-of the received data wheteis the integer-valued time in-

fiers’ performance is impractical. dex?. The context, which may be a vector in general, may
o . . _represent a side information about the data or it may be a

In many applications the data stream is received along with

its own context. The context may be a small side informa__subset of the features (attributes) of the data. For instanc

. o . . dn the case of image labeling, the context may be the cam-
tion such as a description of the way the data is acquire ara resolution. The set is assumed to be a (subset of a)
(Tekin & van der Schaar013, or it may be a small di- '

mensional portion of the actual high dimensional data repmetrIC space with the metrity (1, 7») that represents the

o "
- . . . istan Wi ndzs. L = 1 n

resenting one of its features or attributes. Since the at-:curOI stance bet eem a dzs. Lety(t) € ¥ = {0, 1} denote

; o . i the true label at time. In the proposed approach, the true
cies of the classifiers vary with the data context, optimal fu : : -

: . : label y(t) is not available for training. Moreover, we are
sion rule requires knowledge of the accuracies of the clas- e .

e . o . not concerned about how the classifiers classify the data.
sifiers for every arriving context resulting in prohibitiye

. . . o However, the accuracy of each classifier is estimated as a

high costs in processing, communication and storage re- — °
! unction of the contex (¢).

quirements.

S ... _
In this paper we assume that no prior information regardim_i/‘(ett ))((gto[)y(_t [)Xy((tf)fi)(to * ly)(7t +’TX(§3]E§10te123122%
0) — 0/ 0 sy 0 - -

the classifiers’ performance is available. The details en th
. o . . served vector of contexts and the unobserved vector of true
working of each classifier, and how they receive their dat . ; )
abels, respectively, for a durati@nstarting at,. As men-

is also unknown. Each classifier may work with a dlﬁerenttioned previouslyy (o) is not available and its detection is

part of the Big Data, the preprocessed data, or even differ- e
ent correlated data from distributed multiple sources. WeaISO a part of the_ propoged approach. Note that in this and

. . subsequent sectionsjs in the rangey totg + 17 — 1, k
propose an unsupervised method based on the Expectanon(—)es froml to K. andi qoes fromo to 1. We define the
Maximization (EM) algorithm, Dempster et al1977), for g X 9 '

evaluating the accuracies of the classifiers as functionliabel matrix by A(to) = [3i()]2.cr, where columr of
. oy Lo corresponds to the true labg(t), and at each time,
of context as well as fusing the decisions of individual

classifiers. To this end, we introduce a model for esti-One of the elements in columinis 1 and the other ig. If

mation of the classifiers’ accuracies in terms of proba-(so(t) = 0, thend, () = 1, indicating that at time we have

bilities of false alarm and detection. As such the pro-y(t) = L; similarly, if 3o (t) = 1, thend () = 0, indicating
: S .~ that at timef we havey(t) = 0.

posed approach allows for maximum likelihood estima-
tion of the classifier parameters based on unlabeled dataet ¢ (¢) be the local decision of thkth classifier at time
This model is different from other typical models in which ¢ and lety(t) = [g1(t) 92(t) ... 9x(t)]" denote the vec-
the probability of correct decision is used to evaluate theor of K local decisions at time, wheret represents the
performance of classifiersT¢kin & van der Schaa013  transpose operation. Finally, [8t(to) = [jx(t)]xx 7 de-
Canzian & van der Scha@014). Our approach is also dif- note the collection of local decisions of all classifiers for
ferent from that in Platanios et al.2014 where the accu- duration7. The FC receives the decisions of all the clas-
racies of classifiers are estimated for unlabeled data. Theifiers,Y (), (as well as the context(t,)) and needs to
authors assume that several (at least three) classifiers ofuse them to get an estimate of the true labels. However,
erate on the same data set and the classifiers make indfr judicial fusing of the received decisions, the FC must
pendent errors. By calculating the agreement rates of thestimate the accuracy of each classifier.
classifiers, the authors are able to estimate the erronfate o .

To model the accuracy of the classifiers, we associate a

each classifier. This method does not work if only a single " . e
classifier operates on each data set. probability of detection and a probability of false alarm

with each classifier.

2. Problem Formulation and Notations Since the performance of a classifier depends on the con-
text of the data it receives, these probabilities are asdume

We consider an ensemble learning system wiititlassi-  to be functions of the context. For a fixed context, how-
fiers each classifying an input data stream characterized byver, a classifier has fixed probabilities of detection and
its context. Every classifier makes a local decision whichfalse alarm. Therefore, for contextand for classifielk,

it delivers to the FC for the final decision. Since multiple- we define the probability of detection, denotediy (),
choice decision making can be divided into a set of binary— o _ ]
decision problems,Lfenhart et al, 2003, without loss of For other appllc_atlons such as processing a database, time can
generality we consider the binary decision problem here. be replaced by the index of the data sample.
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and the probability of false alarm, denotediy.(z) as 3. Estimation of the Classifiers’ Accuracies
" . and Decision Making
pik(z) = p(ge(t) =1[6:(t) = L;x), i=0,1 (1) K
In this section, given the local decisions|t,), and the

We assume that the probabilipy, () is Lipschitz contin-  observed vector of context¥,(,), we first develop an es-
uous with Lipschitz constantsy, i.e., timation method fo®. We then use the estimatédt,) to

detect the true labelgty).
Ipin(z1) — pir(z2)| < cik da (w1, 22) (2)

This assumpti S . ?.1. Estimation Procedure

ption which imposes a constraint on how fas
a classifier's accuracy can change with context is clearlythe maximum likelihood estimate & given Y(to) and
valid in most practical situationsK(einberg et al. 2008 X(to) is given by
Tekin & van der Schaak013. For instance, in the case of R .
image labeling, where the context may be the camera reso- © = argénapr(Y(to), Ato) | ©,X(t0))  (3)
lution, it is not expected that the accuracy of a classifier ca A
change sharply with a small change in the resolution of thé8y consideringA(ty) as a latent variable, the mixture
images. We arrange these probabilities for all the classifie model in @) can be iteratively solved using the EM algo-
into a matrixP(z) £ [pix(x)],i = 0,1,k = 1,2,..., K.  rithm. First, we evaluatg(Y (to), A(to)|©, X(to)) from
Note that the FC does not knai(z) and one of the goals

of our proposed method is to estimate it. In addition, in the p(Y (o), At0)|©, X (to)) = H H H (4)
formulation above and the proposed solution, the context bk 5500
variablez may be vector-valued. For example, if several P O(X (1) (1= par (X ()79 (/51% (t)} '

features are considered as part of the context, thesil X
be a vector. In this case, the metrig (z,,22) may be  The log-likelihood function, logp(Y (to), A(to) |
chosen to be af,, norm for some: > 1. 0, X(tp)), is obtained as

In order to facilitate the detection of the true labels we L(©;Y (to), A(to), X (o))

assign probabilitieg)y(¢) and ¢4 (¢) to labely(t) and ar- .

range them in a matri(to) = [¢;(t)]ax 7, Wherep;(t) = = Z Z Z 3 (t) [yk(t) log pix (X (#))

p(d:(t) = 1) andgo(t) + ¢1(t) = 1. We should point out koot .

that the probabilities;(¢) do not represent a prior prob- + (1= gx(t))log (1 — pir (X (¢))) + = log ¢i(t)| (5)
ability of the true labels. They are introduced in order to _ K _

convert the problem of detection of the true labels into thel he two steps of EM algorithm are described below.

problem of estimation of the;(¢)’s which is then solved Expectation step: In this step, the expectation of the
using the EM algorithm. Also, please note that neither|og_|ike|ihood function. denoted b@(@.@old) is evalu-
A(to) nor ®(to) are available to the FC. They are assumedyieq with respect to the conditional distributip (to) |

to be unknown parameters which are evaluated in the prOf/(tO). ©°!9) of the latent variable\ (o), where©° is the
posed method in order to estimaf&xz) and to detect previ(;us estimate fa®. That is

Y (to). To summarize, the two-tupl€ = {P(z), (o)}

is defined as the unknowrarameter sewvhich the FC tries Q(;0%) (6)
to estimate based on the local decisions of the classifier Y

- o= oo v.ood | L(O;Y (to), Ato), X(t

Y (to), and context of the datX(t,). After estimating the Ato)]Y (t0);0% [ (8 ¥ (fo), Alto), X( 0))}
parameter sg@, the FC detects the true labsjéiy). In = Z Z ZV(M) [z)k(t) log pi (X (£))

the next section, we propose an approach based on the EM PR

algorithm for the FC to achieve these goals.

N 1
| (1= () log (1= pa(X (1)) + 7 log i (1)]

Remark: One may ask whether, instead of the detection
and false alarm probabilities of the classifiers, their accu where £ p,... denotes expectation with respect 4o
racies (i.e., the error probabilities) can be estimated.eTh given the variableg’ andD, ..., and where
problgm is that for the case of unsupervised learning bemgv(i’t) = Bpyo0 0] = p(0i = 1] Y3 0%, X (1))
considered here, we do not know how to solve the problem ’ old
in terms of the error probabilities of the classifiers. More- = P(0ir = 1| ¥(#); ©°%, X (t)) = 7
over, it is clear that given the detection and false alarm  old(; old( x (1)) ¥ (1 — pold( x (4)))vE®)
probabilities of individual classifiers, we can implemére t 1¢Z (1L (p““( ( ))) (() P (X ))) —

- Ll : . t —yp(t
maximum likelihood (ML) fusion rule. However, given the 3> ¢29(¢) TT, (p9¢(X (1)) (1 — pS(X (1)) ™
accuracies, we cannot formulate an ML fusion rule. j=0




Context-based Unsupervised Data Fusion for Decision Making

Maximization stepin this step,Q(©; ©°9) is maximized
with respect t@. In maximizingQ(0; ©°9) with respect
to ¢;(t) we must consider the constrait,_, ¢;(t) = 1.
Using the Lagrange multiplier method, we get

V(i t)

1 .
Zj:O 7(]7 t)
We would like to note that sinc€(©; ©°9) is a concave

function of ¢, (¢), and the constraint is linear, the above La-
grangian method results in the optimal solutionddt,).

o7 (t) = = (i, 1) (8)

Maximization of Q(©; ©°9) with respect tap;. (X (t)) is
also a constraint optimization problem given by

PIRU(X (t)) = argmax Q(©;0°)
ik (X (1))

©)

subject to:
Ipik (1) — pik(x2)| < cindx (x1,22), Yo1,20 € X
0<pu(e)<l1fori=0,1,k=1,2,....K, Vo € X

It can be shown that)(©;©°%) is a concave function
of p;x(X(t)). Therefore we can use convex optimization
methods to solved). Towards this let

0ic(l,7) = cirdx (z(1),2(5))
P (to) £ (11)
pir (X (t0)), pir (X (to + 1)), ..., pir(X (to + T — 1))]1

(Palto) 2 3160 () logpn(X )+ (12)

(10)

(1= g1 () log (1 — pir(X (1)) )

Then, to maximizeQ(0; ©°9) with respect tq; () sub-
ject to the Lipschitz continuity constraint ir2)( we can
solve the constrained optimization problem given by

Pl (to) = argmax (P (to)) (13)
P,k (to)

subject to:

pir(z(to + 1)) — pir(x(to + 5))| < 0ir(l,5) V1, J,

0<pw(X(t) <lfori=0,1, k=12 ... K,
t=to,to+1,...,tc0+T —1

We can rewrite 13) as

Pl (to) = arg l(fna;x Y(p;r(to)) (14)
Pix (to

subject to:Ap,,(to) < @ik, 0 < pyilto) <1

where the inequalities are component-wise, @add1 are
the all-zero and the all-one column vectors of lerifjthre-
spectively, and wherd and o, are defined below. Note

that the objective function inld) is concave and the con-
straints are linear; Thereforel4) can be solved using the
interior point methods,Royd & Vandenberghe2004).

By iterating between the expectation and the maximization
steps, until a stopping criterion is satisflede find an es-
timation of the parameter $et We denote the final esti-
mates of the parameter set By and the final estimates of

P(x) = [pix(z)] and® = [¢;(t)] by P(z) = [pir(x)], and

® = [¢;(t)], respectively.

1 2 3 4 T—-1 T
1 r 1 -1 0 0 0 0 7
2 -1 1 0 0 0 0
3 1 0 -1 0 0 0
4 -1 0 1 0 0 0
271 1 0 0 0 0 —1
27 -1 0 0 0 0 1
2T +1 0 1 -1 0 0 0
AL 2T+2 0 —1 1 0 0 0
27T+3 0 1 0 -1 0 0
2T +4 0 —1 1 1 0 0
a1 1 0 0 0 0 -1
AT -2 -1 0 0 0 0 1
T2-T-1 0 0 0 0 1 —1
-7 L 0 0 0 0 -1 1 4
and
1 B Qik(l,Q) T
2 Qlk(172)
3 0ik(1,3)
4 Qlk(173)
2T—1 0ik(1,T)
o 0i(1,7T)
2T +1 0ik(2,3)
o 2 2T+2 0i(2,3)
ik 2743 0ik(2,4)
2T +4 0ik(2,4)
aT—1 0ik(2,T)
AT—2 0ik(2,T)
T2-T-1 0i((T'—2), T
-t L ou((T —1),T) |

In order to evaluate;,(x) for all z € X, we note that for

3A stopping criterion could be a selected number of iterations

or a threshold on the percentage difference between the last two
estimations.

“For a discussion of the convergence properties of the EM al-
gorithm we refer toDempster et al 1977 Bishop 2006.
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anyj = to,to+1,---,to+T —1,i = 0,1 andk =
1v2a"' 7K;

(15)
(16)

Pir(x(j)) — cindx (z,2(5)) < pir(x)
pik(2(f)) + ciwdx (x,2(4)) = Pir(z)

Therefore, we can interpolate the valuepgf(z(tg + 1)),

1=0,1,--- ,T — 1to obtainp;,(z) foranyxz € X. Let
Pla@) =, _max  {fu(e() - cudae (@.2(7))}
(7)
p2y(w) = _min - {pin(x(7)) + cindr (2, 2())}
(18)
We then sét
Pik(2) = min {ply (), p2,(z)} (19)

Remark: The Lipschitz constants;; affect the perfor-
mance of the algorithm in estimating the paramegeyér)
as functions ofz. As evident from 2), (15 and (@9),
smaller values ofc;;, result in a smoother estimate for
pir(x), while larger values ot allow for larger varia-

tions in the estimates. Therefore the Lipschitz constants

Algorithm 1 Estimation of the parameter set and FC’s de-
cisions
Input: The local decisions ok classifiers front to tg +
T —1, Y (to) and the corresponding contexi(to)
Output: The estimation of the probabilities of false alarm
and detention for all of the classifier®, and the made
decisionsy
Assume an initial estimation fa®"*"
while Stopping criterion is not satisfiedb
PO(X (1)) = pIEM(X (1))
¢P9(t) +— ¢p(t)
Find~(4, ) using (7)
Find ¢7*"(¢) andp{P¥(X (¢)) using @) and (L4)
end while
For allz € X, interpolate the values @f."(z(ty + 1))
using (L7)-(19)
é + @nhew
Make decisions using20)

Gem(t) = arg max, ) p(y(t) | ©) which is given by

0, otherwise. (20)

cir, must be selected in accordance with the performance ofve denote the final detected labelstby= [§(to), 7(to +

the classifiers vs. the context variables. In particularif
example the detection performaneg, (x) of the kth clas-
sifier is believed to be very sensitive to the context vagabl
x, i.e., small changes inresult in large changes jn (),
then the value ot;; must be chosen to be large. On the
other if the detection performance of théh classifier is
not very sensitive to the context variabtethen a smaller
value should be assigned ¢g,. That said, we would like
to also point out that the Lipschitz condition i) (is only
introduced to enable the estimation of the functippgx).

If the selected parameters, do not satisfy 2) for the true
functionsp; (x), then our algorithm still works. However,
in this case our estimates pfi(«) will not be very accu-
rate. In Fig.2 of Sectiord we present results of the estima-
tions for different values of the Lipschitz constants which
verify this statement.

3.2. Fusion Center’s Decisions

In the previous section, we evaluated the estimates of prodn Fig.

abilities of false alarm and detection for all t[le class#ias
well as the prior probabilities of the true labdis To detect

1), ..., y(to+T—1)]. The entire procedure of estimating
the parameter set and making decisions is summarized in
Algorithm 1.

4. Numerical Results

In this section, first we use a system with ugBtolassifiers

to evaluate the performance of the proposed approach. The
probabilities of false alarm and detection of these classifi

as a function of the context are shown in Tablé. These
probabilities are selected so as to represent a variety-of be
haviors. In particular, the classifiers are not very aceyrat
and for many values of the context, their false alarm and de-
tection probabilities are close 5. The£; norm is used

as the distance measure, i.€x(z1,22) = ||z1 — z2l|;.

The values of the Lipschitz constants are also shown in Ta-
ble 1. These values are selected so as to satisfy the condi-
tionin (2).

1 we show the performance of the proposed
method in estimating the probabilities of false alarm and
detection of the individual classifiers. To show the con-

the true labels of the classifiers we use the maximum likevergence speed of the proposed approach, we use a sys-

lihood detection of)(t) given the probabilitiesp, namely

>The minimum in (9) provides a maxmin approximation for
the values of detection (false alarm) probabilities that have be
calculated. This is an interpolation problem and our approach i

tem with 4 classifiers; namely Classifiers — 4 from
Table 1. We initialize the EM algorithm with all the

er[:]Jrobabilities of false alarm equal 2, all the proba-
ilities of detection equal t®.8, and ¢ (t
iliti fd i | do

= 0.6 for

admittedly heuristic. Another approach is to select the median of = to,to + 1,---,T + to — 1. The parametefl is

mean.

chosen to bel00. The estimated probabilities of false
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Table 1. The probabilities of false alarm and detection of the classifiers.

Pok () cok pik () ek | Pok () cok pik () Cik
Classifier1  —2z2 + 2z 20 .5+ .5|sin(27z)| 3.1 | Classifier5 5 05 .754+2(x—.5)° 15
Classifier2  2(z — .5)? 2.0 .9 0.1 | Classifier6 .25+ 2(z—.5)% 15 .75 —2(z—.5)°% 15
Classifier3 .5|sin(27z)] 3.1 1—2(x — .5)2 2.0 | Classifier 7 B(1—a) 05 .75+ .5(x—.5) 05
Classifier 4 1 0.1 542(x — .5)2 2.0 | Classifier8 .25+ 2(z—.5)% 15 5(2 — ) 0.5
Expert 1 Expert 2 Expert 4
1 o)

probability of false alarm

2 I .g Tl eeese

: v

Q

51

= .

‘| Actual probability

2 ¢ Our approach, after the 1st iteration
E;; '''' Our approach, after the 2nd iteration

8 === Qur approach, after the 5th iteration

g —O— Majority rule

0 0.5 1 0 0.5 1
X X X X

Figure 1.Comparison of the proposed method and the majority rule.

alarm and detection for the four classifiers are shown irmethod over the majority rule we definegdiability metric,
Fig. 1 for 1,2 and5 iterations of the EM algorithm. In denoted byDpr where

Fig. 1 we also compare the performance of the proposed K o1 .

method with that of the majority rule which is the most Dp 2 1 3 J, pir(x) = pir(x)| dz 21)
widely used unsupervised fusion rule for ensemble learning 2K —= |, pir(x)dx

(Breiman 1996 Schapire199Q Freund & Schapirgl 997

Herbster & Warmuth1998 Canzian et a2013. It can be The reliability metric in 21) measures the normalized-
seen that the difference between the estimations after tHyTor in the estimation of the detection and false alarm
2nd and thesth iterations are very small indicating the fast Probabilities of all the classifiets Clearly a smaller value
convergence of the proposed approach. On the other harff Dr indicates a better performance for the estimator.

for the majority rule, the final estimated probabilities are |, Fig. 3, we show the value ab » vs. T for different num-
very spiky, and in all of the cases, the proposed approacfer of classifiers, where fak = ¢, Classifiersl, 2, ..., ¢
significantly outperforms the majority rule. In the rest of 516 ysed. The values of, are given in Tabld. As shown,
this section, we set the number of iteration$ to the performance of our method improves with the number

In Fig. 2 we show the effect of the Lipschitz constants Of classifiers and’ and the proposed approach outperforms
on the final estimations. Here we se = c for all  the majority rule in all cases.

i = 0,1andk = 1,2,---, K. Three different values | Fig. 4 we show the probability of error for the proposed
of ¢ = 0.2,1.7,3.2 are used. ltis evident that for small method vs. the majority rule for the case presented in Fig.

value ofc = 0.2, the estimated detection and false alarmy |t can be seen that the proposed method significantly
probabilities are a very smooth function of the context  gytperforms the majority rule.

However, the estimations do not closely follow the actual

functions. On the other hand, for= 3.2, the estimation In order to evaluate the performance of the proposed ap-
can better follow the rapid variations pf, (z) vs. z, but in proach for real data, we used the Wlscons_m breast cancer
this case the estimations are somewhat spiky. data set Murphy & Aha, 1994. The goal is to classify

In order to quantify the improvement of the proposed ®Please note that if the set of context values is discrete, then
the integrals inZ1) are replaced with summations.
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Expert 1 Expert 2 Expert 3 Expert 4

e ¢c=0.2
....... c:l 7
===-c=3.2
— Actual probability

o
n

probability of detection probability of false alarm

Figure 2.Estimations of the probabilities of false alarm and detection vs. conteX fer 4 different experts (Expertl-4 from Table,
T = 100 using the proposed approach fo+ 0.2,1.7, 3.2.

. O Ourapproach =+=+= K=2 0.11

---- -0~.-.______°~ O Majority rule ====K=4 “r Majority rule

--------- Omrmce — Our method

e

0.09

0.08

probability of error, P

0.07

0.06

0.05 50 100 150 200 250 300 350 400

30 40 50 60 70 80 90 100 T
T
Figure 4.The probability of error for the fusion center v&. for

Figure 3.Reliability, Dp versusT for K = 2,4,8 classifiers. the case in Figl.

The values of:ik are given in Tabld.

shape, 4) marginal adhesion, 5) single epithelial, 6) bare
nucleoli, 7) bland chromatin, 8) normal nucleoli, and 9)
Remark: We should point out that this data set comes withmitoses. All the features are in the interval 10]. We

true labels. As discussed previously, our algorithm doesised DecisionStump (one-level decision tree), KNN (k-
not require the true labels and does not utilize the labels innearest neighbor classifier), k-Star (instance classifer u
order to estimate the performance of the classifiers and foing entropy as distance), LogitBoasZeroR (ZeroR clas-
fusing the decisions of the individual classifiers. Howgversifier uses mode), Multilayer Perceptron, and NaiveBayes
the labels are used in order to evaluate the performancgnaive Bayes classifier) as classifiers and trained them with
of our algorithm in terms of correct decisions (see Fig. a subset of the dataEach of these features is considered
6) as well as to compare our results with other methods.as context separately, but due to space limitations, in Fig.
The labels are also used for training the supervised opti-5 we show the performance for clump thickness, unifor-
mal fusion rule (SOFR)Zhair & Varshney 1989, which  mity of cell size, bland chromatin, normal nucleoli, and
provides a lower bound to the performance of any unsumitoses. We implemented our approach for each of the con-
pervised technique (see Fig) texts where for eachandk we set the Lipschitz constants

each data point as benign or malignant.

Each point in the data set haglifferent features: 1) clump "We used machine learning classifiers from Weka. Detailed
thickness, 2) uniformity of cell size, 3) uniformity of cell description of each classifier can be foundwitten et al, 2011).
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Figure 5.The proposed approach is used in order to evaluate the performbdifieient classifiers identified at the top of each sub-
figure as a function of the context

—2—Unsupervised MTBE
—o—Unsupervised APMR
—o— Supervised MTBE
—o—Supervised APMR

ci. = 0.058, and the final results in terms of probabilities
of false alarm and detection versus context are shown il

Fig. 5. As shown, the NaiveBayes has the worst perfor- T ——Our approach
mance. When the context is set todbe- clump thickness, B RN s s e
the performance of k-Star deteriorates with increasing < o

the sense that the probability of false alarm increaseswhil ‘g I '_'_ R il

the probability of detection does not change. Therefore, il 2 w, B o
one wishes to use one of the classifiers, it can be suggestt ; T,
that for larger values of clump thickness, it is better to use =z B
Multilayer Perceptron than k-Star. Therefore the proposec -‘§ 0.05

method can be used in this way to determine the efficacy o =

the individual classifiers. F T IR R

To evaluate the performance of the fusion rule in mak-

ing the right decision about benign or malignant sam- 0 | i i i \
) o : 100 200 300 400 500 600

ples, we define the probability of fusion error as = T

p(g(t) # y(t)). In Fig. 6, we compare the results of

our unsupervised method with the supervised and unsupeFigure 6.Comparison of our approach with the method of track-

vised versions of the method of tracking the best classiing the best classifier (MTBE), adaptive Perceptron weighted ma-

fier (MTBE), (Herbster & Warmuth1998, adaptive Per- jority rule (APMR), and supervised optimal fusion rule (SOFR).

ceptron weighted majority rule (APMR)C@nzian et a.

2013, and the SOFR, in term @f, vs. T'. The parameters

for our method are the same as those in Figvith each  with correct detection, they do not properly characterize a

feature used as a context with a value betwkeand10. It classifier which has a very high false alarm probability.

can be seen that the proposed approach works better than

MTBE and APMR and even the supervised MTBE. APMR

and MTBE do not fuse the data opt|mally Moreover, in its 5. Conclusion

modeling APMR does not “reward” or “punish” the clas- Ensemble-based systems have proven to be superior to

sifiers who make decisions similar to or different from the single-expert systems for Big Data analytics. In many ap-

FC even when the FC correctly detects the true label. Anplications prior information about the accuracies of the in

other fundamental problem with the unsupervised MTBEdividual classifiers is not available and the true label ef th

and APMR is that since these methods are only concernedata is never observed. In this paper, we propose an unsu-

B T ) - pervised method to estimate the accuracies of the experts

For this data set and as shown n Fif, the variations of . .. ; . o
false alarm and detection probabilities with respect to the contex?nd to fuse their local deC|§|ons to obtain a final decision.
variable are very small. The results show the superior performance of the proposed
approach as compared with the state of the art approaches.
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