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1. Ilustrative example of the statistical and
computational challenge

We begin with an example to illustrate the complexity
of the combinatorial relationships that exist between the
marginals of a ranking model, and how it leads to a sta-
tistical and computational challenge. Let n = 4 and
A = {{1,3},{2,4},{3,4},{1,2,3},{1,3,4}}. Assum-
ing the P4’s are known, finding a function ¢ € L(&,) such
that M4q = Pa for all A € A boils down to solving the
linear system given in Figure 1. The values of ¢ are denoted
by ¢, instead of ¢(o) for o € G4. This system shows that
all the equations are quite entangled. For instance, the un-
known ¢1234 appears in 5 equations. Hence, not only the
dimension of the system quickly explodes with n, but all
the equations have complex relationships, and decompos-
ing this system into simpler ones is far from being obvious.

In a statistical setting, a natural approach would certainly
be to perform a least-square regression with the unknowns
as parameters. The complex relationships between the
marginals would however remain, and the computation of
the gradient would quickly become intractable as n grows.

2. General definitions and results

Here we introduce some general definitions and results that
are useful for the technical proofs in the sequel. We de-
note by I{€} the indicator function of any event £ so that
I{€} = 1if € is true and 0 if it is false.

Definition 1 (Induced ranking). Let 7 € I';, be an incom-
plete ranking and A € P(c()) be a subset of items in the
content of 7. The ranking induced by 7 over A is by defi-
nition the unique subword of 7 of content A. We denote it

by’lT‘A.

Definition 2. For a ranking 7 = 71 ...7; € I',, and for
1 <@ < j <k, we denote by m[; ;) its subword defined by
7T[[i,j]] =TG...T5.

Definition 3. Define the coefficients ap(m, ') =
Xpor(n'") for B € P([n]) and 7,7’ € T'(B), so that for
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F e L(T'(A)) with A € P([n]) and 7 € T'(B):
XpF(r)= Y ap(m,a)MpF(r).
n'el(B)

Lemma 1. Let A € P([n]) with |A] = k and
(Fp)pep(a) € @pep(a) Hp. Then forall m € I'(A),

S aFp(m)= Y

BEP(A) 1<i<j<k

Fempe ) (T1i41)
k—j+0)

Proof. By definition of the embedding operator,

~ 7' Cn}
paFs(m) = 3 Fy(r)
mr ﬂ;@ PR =T 1!
HmpCn}

e G B

Thus only the terms ¢ 4 Fp(7) where B is such that 7 is a
contiguous subword of 7 are potentially not null in the sum
> _pep(a) PaFp(m). As the contiguous subwords of  are
all of the form 7p; ;) with 1 < ¢ < j < k, this concludes
the proof. O

3. Technical proofs of Section 4

For a random variable X in R¢ with d > 1 and a sigma-
algebra B, we denote by E[X|B] the conditional expec-
tation of X given B, and define Var[X|B] := E[(X —
E[X])?|B].

Proof of Proposition 1. Since Y
forany A € P([n])

sca, An(0) =1, one has

2
IMadn = Palh = || Y2 oaXnin — Xop)|,
BeP(A)
<24 N 6a(Xpiy — Xpp)lI3,
BeP(A)

using Theorem 3 and the Cauchy-Schwarz inequality. For
A,B € P([n]) with A ¢ B, F € L(I'(B)) and 7 €
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q2314 + q2341 + G2431 + g3124 + 3142 + 3214 + @3241 + @3412 + 3421 + Ga231 + Qu312 + Qu321 = Ppy
q1234 + G1243 + q1324 + 42134 + G2143 + q2314 + G2341 + 2413 T q2431 + G3124 + 3212 + q3241 = P2 4}
Q1342 + 1423 + 1423 + G3142 + 3412 + G3421 + Ga123 + Ga132 + qa213 + Qu231 + Gu312 + Q321 = Ppo gy
q1234 + G1324 + q1342 + G2134 + G2314 + q2341 + G3124 + 3142 + 3214 + G3241 + 3412 + g3421 = Py3.43(34
q1243 + G1423 + Q1432 + G2143 + G2413 + q2431 + Ga123 + Ga132 + Q4213 + Ga231 + Gaz12 + Q321 = Pp3

Q1234 + Q1243 + Q1423 + qu123 = Pp1.2,33(123)
Q1324 + Q1342 + Q1432 + Qa132 = P{1,2,3}(132)
2134 + G2143 + q2413 + Qu213 = Pp1,2,33(213)
G2314 + 42341 + 2431 + Q4231 = P{1,2,3}(231)
q3124 + q3142 + q3412 + Qu312 = Py 2,31(312)
@3214 + G3241 + q3421 + Qa321 = Pp12.33(321)
Q1234 + Q1324 + Q1342 + 2134 = Pp1,3,43(134)
Q1243 + Q1423 + Q1432 + 2143 = Pp1,3,43(143)
q2314 + q3124 + G3142 + q3214 = Pyq 3,43 (314)
@2341 + G3241 + @412 + 3421 = Pp1.3,43(341)
q2413 + Qa123 + qa132 + qu213 = Pp1,3,43(413)
Q2431 + Qa231 + qa312 + Quz21 = Py 3,43 (431)

Figure 1. Linear system to find a function ¢ on &4 with the same marginals as p for A € {{1,3},{2,4}, {3,4},{1,2,3},{1, 3,4}}

I'(A), one has by definition of the embedding operator,
¢paF(m) = F(mp){mp C n}/(JA| —|B| 4 1)! and thus

F(mp)°
loaF|% = Z WH{WIB C o}
wel(A) ’
F(ﬂ_l)Q
= _ I .
2 (A ip+ e 2 e
+/€T(B) mer(A)
T B=T

Now, for 7 € I'(A) and 7’ € I'(B), 7’ = 7 and 75 C
7 is equivalent to 7' T T, 80 3. cp(a), S— H{mp C
7} = |{m € T(A) | #’ T 7}|. Itis easy to see that this
last value is equal to the number of permutations on the set
(c(m)\e(n"))U{e} where ¢ is an element that represents the
block 7’. Tt is thus equal to (|A| — |B| + 1)!, and therefore
loaX||4 = | F|I%/(|A] — |B| + 1)!. Injecting this result,
one obtains

9lA|
E@n) < D v(4) D TR
_ !
AeA BeP(A) (4] = 1Bl + 1!
E[I%5 - Xnpl}].
Inverting the sums concludes the proof. O

The proof of Proposition 2 relies on the following result.

Lemma 2. Let B € P(A) and 0 € F(B%,R%"). For
m e T'(B),

Y 04

AcANNQ(B)
Proof. For m € T'(B), one has
E[f55m] =E[E| Y 8(4)XpPa(r) Bn]
AcANNQ(B)

Since Ay is BY,-measurable by construction and 0 e
F(BY,R?") by hypothesis,

A(A) X Pa(r)

>

AcANNQ(B)

E

>

AcANnQ(B)

By

OAE [XpPa(r) | BY].
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Then for A € Ay N Q(B),
E[XpPa(n) | BY]

“E| Y o) MaPa(r)
w' el (B)

= Z ag(m, ) Z

7' €T (B) oc€l'(A), n'Co

By

E[Pa(o) | BX] .

where the ap (7, 7’) coefficients are defined in Definition
3. Now, for ¢ € I'(A), Palo) = (X7, Hr® =
0})/1a|so |14|Pa(c) | BY is a binomial random variable
of parameters (|TA|, P(0)), and thus E {]31\4(0) | BI”V} =
P4(0). Therefore

E[XpPa(r) | By =

Z ag(m,n")

== XBPA(TI'),

Z PA(O')

w'el(B) c€l'(A), n'Co
so that
E[Xp5m] =E| Y 0A)| XpPalm),
AecANNQ(B)
which is the desired result. O

Proof of Proposition 2. Using Lemma 2, one has for A €
P(A) and € T'(A)

E[Magn(m)] =E Z ¢A)A(B,§(7T)
BeP(A)u{0}
1 YO
=t Z > o)
€P(A A'€ ANNQ(B)
Thus if lim,, o E [ZAG,ZNmQ(B) 5(/1)] = 1, then
Magn(m) ‘ + Y Xpp(r) = Map(r).
’ BeP(A)
O]

The proof of Theorem 4 relies on the two following lemmas

Lemma 3. Let B € P(A) and 0 € F(B%,R%"). For
m e T'(B),

Var P?Bﬁ(ﬂ')} = (XEp(r) — Xpp(7)?)

where X% is the operator on L(I'(B)) defined by
X2 f(m) = Donrer(B) o (m, ') f(x') for f € L(T(B)).

Proof. For m € I'(B), one has
Var [)?B g(ﬂ')} =

E|Var Z é\(A)XBﬁ,\q(Tr)

AcAnNQ(B)

By

Since 8 € F(B%,R?") by hypothesis and the Pu’s are
independent conditionally to Ay,

Var ST 0(A)XpPaln) | B | =
AcANnQ(B)
> 04)?Var [XpPa(r) ‘BN}
AcAnNNQ(B)

Now, for A € P([n]),

Var [XBPA ‘BN]: [(XBPA ) ‘BN]

—E[XsPa(m) |85 )

with
XpPa(r)? =
Z ag(m,m)ag(m, ") Z Pa(a")Pa(c").
!, w! €T(B) o’ 0" €T (A)
m.Co,
' Co

Now, for o, 0’ € T'(A),

E [Pa(o')Pa(e”)

J

=E QZH{W—J}ZH{W: }|B§’V
|IA| ZGIA icla
_ (): "
|IA|2 Z IP’[ =o', O':|.
,JELA
Ifi=j,

P [ﬂ_(i) _ 0'/,7T(j) _ 0_//} _ PA(O'/)H{O'/ _ O_//}
and if 7 # 7,

P[r) =o', 70 = 0] = Pa(0")Pala”),
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because the 7()’s are independent. Thus

E |Pa(o’)Pa(e”) | BY] =
Tal—1 {o' = o
| A’|\ PA(O'I)PA(O'//)+ {U — g }PA(UI)
oy |14l
and so
> E[Pale)Pale") | Bk =
o’,0"" el (A)
mco,
' Co
Ia]—1 {r' = 7"
a2y pa (e My P+ =T a g (),
[ 14| |14

because for 7', 7" € T'(B), 7’ C ¢’ and 7" C ¢’ implies
7' = 7"’ (in other words, ¢’ has a unique subword of con-
tent B). Therefore

Tal—1
E [(XBPA(w)) ’B]”\,} _ | Tf | XpPa(m)?
A
1
+ — ap(m, )2 MpPa(n)
114 7' €T(B)

and injecting this result into (1) gives

_ L

Var {XBID;(W) ] BJVV} -7 (X3 Pa(r) — XpPa(m)?),

where X3 f := 3 ppyan(m ')’ Mpf(n') for f €
Uaep(gnp) L(I'(A)). Gathering all the calculations, one
obtains

f(A)?
74|

2.

AeANNQ(B)
x (XEPa(m) — XpPa(m)?).

Lemma 4. Forall B € P(A),

. S VA =1- 1 —v[eB))Y,
AeANNQ(B) -
e| oy DUR| ey
K T4l ol
A€ANNQ(B) -

where for any collection S C P([n]), v[S] :=
> aes V(A), and ZE is a binomial random variable of pa-
rameters N and v[Q(B)].

Proof. By definition, the coefficients of the WLS estimator
are given for all A € Ay N Q(B) by

Un(4)

WIS (A) = — :
ZA'eﬁNmQ(B) vn(A)
For B € P(A),
E S V()
AeANNQ(B)
=E ST 9VES(4)|B e P(Ay)
AeANNQ(B)

x P [B c P(,ZN)} :

because 3, 7. no(s) gWLS (4) 0 when Ay N

Q(B) = (. On the one hand,

0WES(A)|B e P(Ay)

El D,

AcANNQ(B)

>

AcANNQ(B

vn(4)

= E —
) EA/EXNOQ(B) Un(A)

:1’

and on the other hand,

P[BeP(Ay)| =1-P[B¢P(Ay)

N
(B¢ A}

=1

=1-P[B ¢ A]"Y,

=1-P

where A is a random variable on P([n]) of law v. Then
PBZA]=1-P[BCA]=1-3 .95 VA).

Similarly,
OWLS 2
) I e &
" L4l
Ac ANNQ(B)
é\WLS A)2
=K > IA( ) I{B € P(An)}
L AcAyNQ(B) | L]
Un(A)2I{B € P(An)}
- Z

| AcAnnQ(B) [al(2 are 2ynam) VN (A)?

ZAE.ZNOQ(B) L4l

_(ZA'eﬁNmQ(B) |_’fA,|)2 I{B e P(AN)}]

=E L iBe P(ﬁN)}l
_ZAEXNOQ(B) L4l
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(we recall that 7y (4) = |T4|/N). Now, by definition

N

> Il =) 1{4; > B}

AeAnnQ(B) i=1

We denote by Zp this random variable. The A;’s being
1D, Z ﬁ is a binomial random variable of parameters N
and P[A; D B] = v[Q(B)]. Furthermore, the event {B €
P(An)} is equal to {ZB > 1}. Thus in conclusion,

@/VLS(A)2

B o | " [W} '

: VAS
AcANNQ(B) N

O
Proof of Theorem4. For B € P([n]) and Xp €

F(Bn,L(T'(B))), one has the usual bias-variance decom-
position

E [H)A(B - XBPH?B’] = > (]E P?B(Wﬂ - XBP(W))Q

wel'(B)

+ Z Var [)?B(’]T)}.

el (B)

Therefore, combining Proposition 1, and Lemmas 3 and 4,
one obtains

E@N) < Y vaBE [IXYES — Xopl}]
BeP(A)

< Y wm| ¥ (ERES@] - Xopm)

BeP(A) wel'(B)

+ Z Var [)?JEVLS(W)}

r€T(B)
< Z u¢(B)<||XBp||ZB(1_V[Q(B)])zN
BEP(A)
B
£ Y (hotn) — Xap(m?) & |
N

wel(B)
Notice that for z > 1, 2 + 1 < 2z, so that

HZg>1} _ 2
z8 T ZB+1

Now, Chao & Strawderman (1972) provides the following
closed-form expression, for a binomial random variable Z
of parameters (n, p),

£ [Z i 1} == _p((iz;ﬁ))nﬂ'

Therefore,

{ZzZB > 1} 2
E[ 17 }<V[Q<B>]<N+1>'

Defining the constants

=2 vo(B) Xrer(n) (X5p(r) — Xpp(m)?)

= v[Q(B)]
Co= > vs(B)|XppllE
BeP(A)
p=1- min v[Q(B)]

gives the desired formula. Since Q(B) N A # 0 for
B € P(A), one has v[Q(B)] > 0 for all B € P(A) and
therefore p < 1. This concludes the proof. O

4. Computation of wavelet projections

The computation of wavelet projections only involves the
parameters ap(m,n’) for B € P([n]) and 7, 7" €
I'(B). Their computation can be made once and for
all applications. Here we show how to perform it effi-
ciently. The first simplification comes from the follow-
ing lemma, established in Clémencon et al. (2014). For
T=ma... 7 €'y, and 0 € &, we denote by o(7) the
word o(71) ...o(m) € T'(o(c(n))).

Lemma 5. Ler B € P([n]) and o € S,, a permutation
that keeps the order of the items in B, i.e. such that for all
bt € B b <V = o(b) < o(b). Then forall m,n" €
I(B),

ag(m,7') = aU(B)(U(ﬂ), a(n')).

Lemma 5 implies two simplifications:

e First, for k£ € {2,...,n}, the coefficients
(ap(m, 7)) er(p) are obtained directly from the
(g1, k3 (7, 7)) wer(qa,....kp) forall B C [n] with
|B| = k.

e Second, for B = {by,...,bx} € P([n]) with by <
-+ - < by, the coefficients (ap(m, 7)) er(p) are ob-
tained directly from the (ap(by ... bk, 7))~ cr(p) for
any 7 € I'(B).

Example 1. Let B = {2,4,5} and 0 € &,, such that
o(2) = 1,0(4) = 2 and o(5) = 3. Then for 7,7’ €
['({2,4,5}), ago45(m,7') = aq1 23y (0 (), o(7")).

With the precedent simplifications, one only
needs to compute and store the k! coefficients
(g1, 3y (12.. .k, ™)) rer(qu,... ky) for each k €

{2,...,K}. We now further describe how the com-
putation of each ay k}(12...k,7r) can be made

.....
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efficiently. By construction

XAF=F —¢sXgF = > ¢aXpF

BeP(A\{A}
forany A € P([n]) and F € L(I'(A)). Applying Lemma
1 gives the following recursive formula for the apg (7, 7’)’s.

Lemma 6. Let B € P([n]) and k = |B|. Then for all
m,w € I'(B),

aB(7r,7T)—]I{7r—7r}——

S v

_ 1 !

<k (k—j+1i)!
joi<k—1

!
Qe(ryig) (Wﬂi’jﬂ’mc(”[ﬁ;jﬂ)) '

Using lemma 6, it is easy to see that the computation of all
the agqy. 5y (12...k,m) for m € T'({1,...,k}) and k €
{2,..., K} can be implemented with complexity bounded
by k2. Combined with all the precedent simplifications,
this shows the following result.

Lemma 7. For K € {2,...,n}, the computation of all
coefficients ag(m, ') for m,n' € T'(B) and B € P([n])
with | B| < K has complexity bounded by K*K!.

Example 2. The following tables give the values of the co-
efficients (a1, k3 (12... K, 7)) rer(qu,....k}) for k = 2:

‘ T ‘ 01{172}(12,77) ‘

12 1/2
21 ~1/2
and k = 3:
T OL{17273}(123, 71')
123 1/3
132 ~1/6
213 ~1/6
231 ~1/6
312 ~1/6
321 1/3

5. Technical proofs of Section 5

Proof of Proposition 3. By construction, any MRA-based
linear ranking model can be stored directly as the collection
of estimators (Xp) 5 cP(Ay) and not as a function on &,,.

Denoting by N the total number of parameters to be stored,
one then has

N< Y

BeP(AN)

IB|! < K! [P(Ay)]

<KUY 2l < KoK Ay
AEJZ{N

which gives the result because | Ay | < min(N, |.A|). Now
for any A € P([n]), the marginal on A of gy is given by
Magn = ZBep(A)U{@} ¢4 X p, where we set by conven-
tion Xp = 0 for B € P([n]) \ P(A). Applying Lemma
1, one then has for any 7 € F(A) with k =

Mad(m ! + Z —j+1) XC(”[[i‘jn)(W[[i,j]})-

1<1<]<k

The computation of M 4qn () thus requires at most k(k —
1)/2 operations. O

Proof of Proposition 4. Using the formula of Definition 4,

Xghm = Y 6V (A)XpPa(n)
AeANNQ(B)
. Un(A)
— T
AeANNQ(B) ZAGANHQ N ()
Z ap(m, 7 MpPa(x').
w'eT(B)

Now, for A € P([n]) and =’ € T'(B),

MpPa(r)= Y

Pa(r)
nel(A), n'Cn

> T -n

TE€D(A), ' Cr | A‘ iela

1
=~ iels|n cr}
|74l

Thus, recalling that 7y (A) = |[14|/N for A € P([n]),

XWLS( )= 1
ZA/eANmQ(B) |IA/|
X Z {ieIs|n Cx},
AcANNQ(B)
which concludes the proof. O

Proof of Proposition 5. The explicit formula given by
Proposition 4 for the WLS estimators X V25 shows that
their computation can be decomposed in two steps:

e Compute all the [T4] for A € Ay and all the |{1
i < N | x" c a®} forr € T, such that ¢(r)

P(A\N)

e Compute all the )?E;VLS(W) for all B € P(Ay) and
m € I'(B) using the quantities computed in the first
step and the pre-computed coefficients ap(m, 7’) for
7,7’ € I(B)and B € P(Ay).

<
€
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The first step is a simple counting of occurrence numbers
and it can be performed in one loop over the dataset Dy
with complexity bounded by N2X. _The second step re-
quires for each couple (B, 7) € P(An) x I'(B) at most
ZAe,ZNnQ(B)(‘fM + 1) operations. Indeed, the number
of rankings 7/ € T'(B) for which [{1 < i < N | «’ C
7(D}| # 0/is bounded by 3, 7. ~o(p) [Ta]- The global
complexity of the second step is therefore bounded by

YooBlE YD (a4

BeP(An) AcANNnQ(B)

<KUY N (Lal+)
AcAy BEP(4)
< K125 N7 (IT4] +1)
Aedy
< K12K(N + | A)]),

because _ 4 7. 74| = N by definition and |Ay| < |A.
The global complexity of the two steps is then bounded by
2K (K1 + 1)(N + |A]). O
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