
A Stochastic PCA and SVD Algorithm with an Exponential Convergence Rate

Ohad Shamir OHAD.SHAMIR@WEIZMANN.AC.IL

Weizmann Institute of Science, Rehovot, Israel

Abstract
We describe and analyze a simple algorithm for
principal component analysis and singular value
decomposition, VR-PCA, which uses computa-
tionally cheap stochastic iterations, yet converges
exponentially fast to the optimal solution. In
contrast, existing algorithms suffer either from
slow convergence, or computationally intensive
iterations whose runtime scales with the data
size. The algorithm builds on a recent variance-
reduced stochastic gradient technique, which was
previously analyzed for strongly convex opti-
mization, whereas here we apply it to an inher-
ently non-convex problem, using a very different
analysis.

1. Introduction
We consider the following fundamental matrix optimiza-
tion problem: Given a matrix X ∈ Rd×n, we wish to re-
cover its top k left singular vectors (where k � d) by solv-
ing

max
W∈Rd×k:W>W=I

1

n
‖X>W‖2F , (1)

‖ · ‖F being the Frobenius norm and I being the iden-
tity matrix1. A prominent application in machine learn-
ing and statistics is Principal Component Analysis (PCA),
which is one of the most common tools for unsupervised
data analysis and preprocessing: Given a data matrix X
whose columns consist of n instances in Rd, we are inter-
ested in finding a k-dimensional subspace (specified by a
d × k matrix W), on which the projection of the data has
largest possible variance. Finding this subspace has nu-
merous uses, from dimensionality reduction and data com-
pression to data visualization, and the problem is extremely
well-studied.

1The top k right singular values can also be extracted, by con-
sidering the matrix X> in lieu of X .

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

Letting x1, . . . ,xn denote the columns of X , Eq. (1) can
be equivalently written as

min
W∈Rd×k:W>W=I

−W>
(

1

n

n∑
i=1

xix
>
i

)
W, (2)

which reveals that the solution is also the top k eigenvec-
tors of the covariance matrix 1

n

∑n
i=1 xix

>
i . In this paper,

we will mostly focus on the simplest possible form of this
problem, where k = 1, in which case the above reduces to

min
w:‖w‖2=1

−w>
(

1

n

n∑
i=1

xix
>
i

)
w, (3)

and our goal is to find the top eigenvector v1. However, as
discussed later, the algorithm to be presented can be readily
extended to solve Eq. (2) for k > 1.

When the data size n and the dimension d are modest,
this problem can be solved exactly by a full singular value
decomposition of X . However, the required runtime is
O
(
min{nd2, n2d}

)
, which is prohibitive in large-scale ap-

plications. A common alternative is to use iterative meth-
ods such as power iterations or more sophisticated vari-
ants (Golub & van Loan, 2013). If the covariance ma-
trix has bounded spectral norm and an eigengap λ between
its first and second eigenvalues, then these algorithms can
be shown to produce a unit vector which is ε-far from v1

(or −v1) after O
(

log(1/ε)
λp

)
iterations (where e.g. p = 1

for power iterations). However, each iteration involves
multiplying one or more vectors by the covariance matrix
1
n

∑
i xix

>
i . Letting ds ∈ [0, d] denote the average spar-

sity (number of non-zero entries) in each xi, this requires
O(dsn) time by passing through the entire data. Thus, the
total runtime is O

(
dsn log(1/ε)

λp

)
. When λ is small, this is

equivalent to many passes over the data, which can be pro-
hibitive for large datasets.

An alternative to these deterministic algorithms are
stochastic and incremental algorithms (e.g. (Krasulina,
1969; Oja, 1982; Oja & Karhunen, 1985) and more re-
cently, (Arora et al., 2012; Mitliagkas et al., 2013; Arora
et al., 2013; De Sa et al., 2014)). In contrast to the algo-
rithms above, these algorithms perform much cheaper iter-

A Stochastic PCA and SVD Algorithm with an Exponential Convergence Rate

ations by choosing some xi (uniformly at random or oth-
erwise), and updating the current iterate using only xi. In
general, the runtime of each iteration is only O(ds). On
the flip side, due to their stochastic and incremental nature,
the convergence rate (when known) is quite slow, with the
number of required iterations scaling linearly with 1/ε and
additional problem parameters. This is useful for getting a
low to medium-accuracy solution, but is prohibitive when
a high-accuracy solution is required.

In this paper, we propose a new stochastic algorithm for
solving Eq. (3), denoted as VR-PCA 2, which for bounded
data and under suitable assumptions, has provable runtime
of

O
(
ds

(
n+

1

λ2

)
log

(
1

ε

))
.

This algorithm combines the advantages of the previously
discussed approaches, while avoiding their main pitfalls:
On one hand, the runtime depends only logarithmically on
the accuracy ε, so it is suitable to get high-accuracy solu-
tions; while on the other hand, the runtime scales as the
sum of the data size n and a factor involving the eigengap
parameter λ, rather than their product. This means that the
algorithm is still applicable when λ is relatively small. In
fact, as long as λ ≥ Ω(1/

√
n), this runtime bound is better

than those mentioned earlier, and equals dsn up to logarith-
mic factors: Proportional to the time required to perform a
single scan of the data.

VR-PCA builds on a recently-introduced technique for
stochastic gradient variance reduction (see (Johnson &
Zhang, 2013) as well as (Mahdavi et al., 2013; Konecný &
Richtárik, 2013), and (Frostig et al., 2014) in a somewhat
different context). However, the setting in which we apply
this technique is quite different from previous works, which
crucially relied on the strong convexity of the optimization
problem, and often assume an unconstrained domain. In
contrast, our algorithm attempts to minimize the function in
Eq. (3), which is nowhere convex, let alone strongly convex
(in fact, it is concave everywhere). As a result, the analy-
sis in previous papers is inapplicable, and we require a new
and different analysis to understand the performance of the
algorithm.

2. Algorithm and Analysis
The pseudo-code of our algorithm appears as Algorithm
1 below. We refer to a single execution of the inner loop
as an iteration, and each execution of the outer loop as an
epoch. Thus, the algorithm consists of several epochs, each
of which consists of running m iterations.

2VR stands for “variance-reduced”.

Algorithm 1 VR-PCA
Parameters: Step size η, epoch length m
Input: Data matrix X = (x1, . . . ,xn); Initial unit vec-
tor w̃0

for s = 1, 2, . . . do
ũ = 1

n

∑n
i=1 xi

(
x>i w̃s−1

)
w0 = w̃s−1

for t = 1, 2, . . . ,m do
Pick it ∈ {1, . . . , n} uniformly at random
w′t = wt−1 + η

(
xit
(
x>itwt−1 − x>itw̃s−1

)
+ ũ

)
wt = 1

‖w′t‖
w′t

end for
w̃s = wm

end for

To understand the structure of the algorithm, it is helpful to
consider first the well-known Oja’s algorithm for stochas-
tic PCA optimization (Oja, 1982), on which our algorithm
is based. In our setting, this rule is reduced to repeatedly
sampling xit uniformly at random, and performing the up-
date

w′t = wt−1 + ηtxitx
>
itwt−1 , wt =

1

‖w′t‖
wt.

Letting A = 1
nXX

> = 1
n

∑n
i=1 xix

>
i , this can be equiva-

lently rewritten as

w′t = (I + ηtA)wt−1 + ηt
(
xitx

>
it −A

)
wt−1

wt =
1

‖w′t‖
wt. (4)

Thus, at each iteration, the algorithm performs a power it-
eration (using a shifted and scaled version of the matrixA),
adds a stochastic zero-mean term ηt

(
xitx

>
it
−A

)
wt−1,

and projects back to the unit sphere. Recently, (Balsub-
ramani et al., 2013) gave a rigorous finite-time analysis of
this algorithm, showing that if ηt = O(1/t), then under
suitable conditions, we get a convergence rate of O(1/T).

The reason for the relatively slow convergence rate of this
algorithm is the constant variance of the stochastic term
added in each step. Inspired by recent variance-reduced
stochastic methods for convex optimization (Johnson &
Zhang, 2013), we change the algorithm in a way which en-
courages the variance of the stochastic term to decay over
time. Specifically, we can rewrite the update in each itera-
tion of our VR-PCA algorithm as

w′t = (I + ηA)wt−1 + η
(
xitx

>
it −A

)
(wt−1 − w̃s−1)

wt =
1

‖w′t‖
wt, (5)

where w̃s−1 is the vector computed at the beginning of
each epoch. Comparing Eq. (5) to Eq. (4), we see that our

A Stochastic PCA and SVD Algorithm with an Exponential Convergence Rate

algorithm also performs a type of power iteration, followed
by adding a stochastic term zero-mean term. However, our
algorithm picks a fixed step size η, which is more aggres-
sive that a decaying step size ηt. Moreover, the variance
of the stochastic term is no longer constant, but rather con-
trolled by ‖wt−1− w̃s−1‖. As we get closer to the optimal
solution, we expect that both w̃s−1 and wt−1 will be closer
and closer to each other, leading to decaying variance, and
a much faster convergence rate, compared to Oja’s algo-
rithm.

Before continuing to the algorithm’s analysis, we make two
important remarks:

Remark 1. To generalize the algorithm to find multiple
singular vectors (i.e. solve Eq. (2) for k > 1), one op-
tion is to replace the vectors wt,w

′
t, w̃, ũ by d × k ma-

trices Wt,W
′
t , W̃ , Ũ , and replace the normalization step

1
‖w′t‖

w′t by an orthogonalization step3. This generalization
is completely analogous to how iterative algorithms such
as power iterations and Oja’s algorithm are generalized to
the k > 1 case, and the same intuition discussed above
still holds. This is also the option used in our experiments.
Another option is to recover the singular vectors one-by-
one via matrix deflation: First recover the leading vector
v1, and then iteratively recover the leading eigenvector of
the deflated matrix 1

n

∑n
i=1 xix

>
i −

∑j−1
l=1 vlv

>
l , which is

precisely vj . This is a standard method to extend power
iteration algorithms to recover multiple eigenvectors, and
our algorithm can be applied to solve it. Algorithmically,
one simply needs to replace each computation of the form
xx>w with

(
xx> −

∑j−1
l=1 vlv

>
l

)
w. A disadvantage of

this approach is that it requires a positive eigengap be-
tween all top k singular values, otherwise our algorithm
may not converge.

Remark 2. Using a straightforward implementation, the
runtime of each iteration is O(d), and the total runtime
of each epoch is O(dm + dsn), where ds is the average
sparsity of the data points xi. However, a more careful
implementation can improve this to O(ds(m + n)). The
trick is to maintain each wt as αg + βũ, plus a few addi-
tional scalars, and in each iteration perform only a sparse
update of g, and updates of the scalars, all inO(ds) amor-
tized time. See the supplementary material, Appendix B for
more details.

A formal analysis of the algorithm appears as Thm. 1 be-
low. See Sec. 3 for further discussion of the choice of pa-
rameters in practice.

3I.e. given W ′t , return Wt with the same column space such
that W>t Wt = I . Note that the algorithm relies on Wt remain-
ing parameterically close to previous iterates, and W ′t is a rela-
tively small perturbation of of an orthogonal Wt−1. Therefore,
it’s important to use an orthogonalization procedure such that Wt

is close to W ′t if W ′t is nearly orthogonal, such as Gram-Schmidt.

Theorem 1. Define A as 1
nXX

> = 1
n

∑n
i=1 xix

>
i , and

let v1 be an eigenvector corresponding to its largest eigen-
value. Suppose that

• maxi ‖xi‖2 ≤ r for some r > 0.

• A has eigenvalues s1 > s2 ≥ . . . ≥ sd, where s1 −
s2 = λ for some λ > 0.

• 〈w̃0,v1〉 ≥ 1√
2

.

Let δ, ε ∈ (0, 1) be fixed. If we run the algorithm with any
epoch length parameter m and step size η, such that

η ≤ c1δ
2

r2
λ , m ≥ c2 log(2/δ)

ηλ

mη2r2 + r
√
mη2 log(2/δ) ≤ c3, (6)

(where c1, c2, c3 designates certain positive numerical con-
stants), and for T =

⌈
log(1/ε)
log(2/δ)

⌉
epochs, then with proba-

bility at least 1− dlog2(1/ε)eδ, it holds that

〈w̃T ,v1〉2 ≥ 1− ε.

The proof of the theorem is provided in Sec. 4. It is easy
to verify that for any fixed δ, Eq. (6) holds for any suffi-
ciently large m on the order of 1

ηλ , as long as η is chosen
to be sufficiently smaller than λ/r2. Therefore, by running
the algorithm for m = Θ

(
(r/λ)

2
)

iterations per epoch,
and T = Θ(log(1/ε)) epochs, we get accuracy ε with high
probability4 1 − dlog2(1/ε)eδ. Since each epoch requires
O(ds(m+n)) time to implement, we get a total runtime of

O
(
ds

(
n+

(r
λ

)2
)

log

(
1

ε

))
, (7)

establishing an exponential convergence rate. If λ/r ≥
Ω(1/

√
n), then the runtime isO(dsn log(1/ε)) – up to log-

factors, proportional to the time required just to scan the
data once.

The theorem assumes that we initialize the algorithm with
w̃0 for which 〈w̃0,v1〉 ≥ 1√

2
. This is not trivial, since

if we have no prior knowledge on v1, and we choose w̃0

uniformly at random from the unit sphere, then it is well-
known that |〈w̃0,v1〉| ≤ O(1/

√
d) with high probability.

Thus, the theorem should be interpreted as analyzing the

4Strictly speaking, this statement is non-trivial only in the
regime of ε where log

(
1
ε

)
� 1

δ
, but if δ is a reasonably small

(� 1), then this is the practically relevant regime. Moreover,
as long as the success probability is positive, we can get an al-
gorithm which succeeds with exponentially high probability by
an amplification argument: Simply run several independent in-
stantiations of the algorithm, and pick the solution w for which
w>

(
1
n

∑n
i=1 xix

>
i

)
w is largest.

A Stochastic PCA and SVD Algorithm with an Exponential Convergence Rate

algorithm’s convergence after an initial “burn-in” period,
which results in some w̃0 with a certain constant distance
from v1. This period requires a separate analysis, which
we leave to future work. However, since we only need to
get to a constant distance from v1, the runtime of that pe-
riod is independent of the desired accuracy ε. Moreover,
we note that in our experiments (see Sec. 3), even when
initialized from a random point, no “burn-in” period is dis-
cernable, and the algorithm seems to enjoy the same expo-
nential convergence rate starting from the very first epoch.
Finally, since the variance-reduction technique only kicks
in once we are relatively close to the optimum, it is possi-
ble to use some different stochastic algorithm with finite-
time analysis, such as Oja’s algorithm (e.g. (Balsubramani
et al., 2013)) or (De Sa et al., 2014) to get to this con-
stant accuracy, from which point our algorithm and anal-
ysis takes over (for example, the algorithm of (De Sa et al.,
2014) would require at most O(d/λ2) iterations, starting
from a randomly chosen point, according to their analy-
sis). In any case, note that some assumption on 〈w̃0,v1〉
being bounded away from 0 must hold, otherwise the al-
gorithm may fail to converge in the worst-case (a similar
property holds for power iterations, and follows from the
non-convex nature of the optimization problem).

3. Experiments
We now turn to present some experiments, which demon-
strate the performance of the VR-PCA algorithm. Rather
than tuning its parameters, we used the following fixed
heuristic: The epoch lengthm was set to n (number of data
points, or columns in the data matrix), and η was set to
η = 1

r̄
√
n

, where r̄ = 1
n

∑n
i=1 ‖xi‖2 is the average squared

norm of the data. The choice ofm = n ensures that at each
epoch, the runtime is about equally divided between the
stochastic updates and the computation of ũ. The choice of
η is motivated by our theoretical analysis, which requires η
on the order of 1/(maxi ‖xi‖2

√
n) in the regime where m

should be on the order of n. Also, note that this choice of η
can be readily computed from the data, and doesn’t require
knowledge of λ.

First, we performed experiments on several synthetic ran-
dom datasets (where n = 200000, d = 10000), with dif-
ferent choices of eigengap5 λ. For comparison, we also
implemented Oja’s algorithm, using several different step
sizes, as well as power iterations6. All algorithms were ini-

5For each choice of λ, we constructed a d× d diagonal matrix
D, with diagonal (1, 1 − λ, 1 − 1.1λ, . . . , 1 − 1.4λ, q1, q2, . . .)
where qi = |gi|/d and each gi was chosen according to a standard
Gaussian distribution. We then let X = UDV >, where U and V
are random d× d and n× d orthogonal matrices. This results in
a data matrix X whose spectrum is the same as D.

6We note that more sophisticated iterative algorithms, such as
the Lanczos method, can attain better performance than power

0 20 40 60
−10

−8

−6

−4

−2

λ = 0.16

lo
g−

er
ro

r

0 20 40 60
−10

−8

−6

−4

−2

λ = 0.05

0 20 40 60
−10

−8

−6

−4

−2

λ = 0.016

lo
g−

er
ro

r

0 20 40 60
−10

−8

−6

−4

−2

λ = 0.005

data passes

0 20 40 60
−10

−8

−6

−4

−2

λ = 0.0016

data passes

lo
g−

er
ro

r

 VR−PCA
Power Iterations
Oja, η

t
=1/t

Oja, η
t
=3/t

Oja,η
t
=9/t

Oja, η
t
=27/t

Oja, η
t
=81/t

Oja, η
t
=243/t

Figure 1. Results for synthetic data. Each plot represents results
for a single dataset with eigengap λ, and compares the perfor-
mance of VR-PCA to power iterations and Oja’s algorithm with
different step sizes ηt. In each plot, the x-axis represents the num-
ber of effective data passes (assuming 2 per epoch for VR-PCA),
and the y-axis equals log10

(
1− ‖X>w‖2

maxv:‖v‖=1 ‖X>v‖2

)
, where w

is the vector obtained so far.

tialized from the same random vector, chosen uniformly at
random from the unit ball. Note that compared to our anal-
ysis, this makes things harder for our algorithm, since we
require it to perform well also in the ‘burn-in’ phase. The
results are displayed in figure 1, and we see that for all val-
ues of λ considered, VR-PCA converges much faster than
all versions of Oja’s algorithm, on which it is based, as well
as power iterations, even though we did not tune its param-
eters. Moreover, since the y-axis is in logarithmic scale,
we see that the convergence rate is indeed exponential in
general, which accords with our theory. In contrast, the
convergence rate of Oja’s algorithm (no matter which step
size is chosen) appears to be sub-exponential. This is not
surprising, since the algorithm does not leverage the finite
nature of the training data, and the inherent variance in its
updates does not decrease exponentially fast. A similar be-
havior will occur with other purely stochastic algorithms in
the literature, such as (Arora et al., 2012; Mitliagkas et al.,
2013; De Sa et al., 2014).

Next, we performed a similar experiment using the train-
ing data of the well-known MNIST and CCAT datasets.
The MNIST data matrix size is 784× 70000, and was pre-

iterations. However, they are not directly comparable to power
iterations and VR-PCA, since they are inherently more complex
and can require considerably more memory.

A Stochastic PCA and SVD Algorithm with an Exponential Convergence Rate

0 5 10 15 20
−10

−8

−6

−4

−2

MNIST

lo
g−

er
ro

r

0 5 10 15 20
−10

−8

−6

−4

−2

CCAT

data passes

lo
g−

er
ro

r

Figure 2. Results for the MNIST and CCAT datasets, using the
same algorithms as in Fig. 1, as well as the hybrid method de-
scribed in the text (represented by a thinner plain line). See Fig. 1
for a legend.

processed by centering the data and dividing each coordi-
nate by its standard deviation times the squared root of the
dimension. The CCAT data matrix is sparse (only 0.16%
of entries are non-zero), of size 23149 × 781265, and was
used as-is. The results appear in figure 2. We also present
the results for a simple hybrid method, which initializes the
VR-PCA algorithm with the result of running n iterations
of Oja’s algorithm. The decaying step size of Oja’s algo-
rithm is more suitable for the initial phase, and the resulting
hybrid algorithm can perform better than each algorithm
alone.

Finally, we present a similar experiment on the MNIST
and CCAT datasets, where this time we attempt to recover
k > 1 singular vectors using the generalization of VR-PCA
discussed in remark 1. A similar generalization was also
employed with the competitors. The results are displayed
in figure 3, and are qualitatively similar to the k = 1 case.

4. Proof of Thm. 1
To simplify the presentation of the proof, we use a few im-
portant conventions:

• Note that the algorithm remains the same if we divide
each xi by

√
r, and multiply η by r. Since maxi ‖xi‖2 ≤

r, this corresponds to running the algorithm with step-
size ηr rather than η, on a re-scaled dataset of points
with squared norm at most 1, and with an eigengap of
λ/r instead of λ. Therefore, we can simply analyze the
algorithm assuming that maxi ‖xi‖2 ≤ 1, and in the end

0 5 10 15 20 25 30
−10

−8

−6

−4

−2

0
MNIST

data passes

lo
g−

er
ro

r

0 5 10 15 20 25 30
−10

−8

−6

−4

−2

0
CCAT

lo
g−

er
ro

r

Figure 3. Results for MNIST (for k = 6 singular vectors) and
CCAT (for k = 3 singular vectors). The y-axis here equals

log10

(
1− ‖X>W‖2F

max
V :V>V=I

‖X>V ‖2
F

)
, with W ∈ Rd×k being the

current iterate. This directly generalizes the performance mea-
sure used in previous figures for the k > 1 case. See Fig. 1 for a
legend.

plug in λ/r instead of λ, and ηr instead of η, to get a
result which holds for data with squared norm at most r.

• Let A =
∑d
i=1 siviv

>
i be an eigendecomposition of

A, where s1 > s2 ≥ . . . ≥ sd, s1 − s2 = λ > 0,
and v1, . . . ,vd are orthonormal vectors. Following the
discussion above, we assume that maxi ‖xi‖2 ≤ 1 and
therefore {s1, . . . , sd} ⊂ [0, 1].

• Throughout the proof, we use c to designate positive
numerical constants, whose value can vary at different
places (even in the same line or expression).

Part I: Establishing a Stochastic Recurrence Relation

We begin by focusing on a single epoch of the algorithm,
and a single iteration t, and analyze how 1 − 〈wt,v1〉2
evolves during that iteration. The key result we need is the
following lemma:
Lemma 1. Suppose that 〈wt,v1〉 ≥ 1

2 , and that
〈w̃s−1,v1〉 ≥ 0. If η ≤ cλ, then

E
[(

1− 〈wt+1,v1〉2
)∣∣wt

]
≤(

1− ηλ

16

)(
1− 〈wt,v1〉2

)
+ cη2

(
1− 〈w̃s−1,v1〉2

)
for certain positive numerical constants c.

The proof is rather technical, and appears in the supplemen-
tary material, Appendix A. Below, we provide an abridged
version without some of the technical details.

A Stochastic PCA and SVD Algorithm with an Exponential Convergence Rate

Since we focus on a particular epoch s, let us drop the
subscript from w̃s−1, and denote it simply at w̃. Rewrit-
ing the update equations from the algorithm, we have that
wt+1 =

w′t+1

‖w′t+1‖
, where

w′t+1 = (I + ηA)wt + η(xx> −A)(wt − w̃),

and x is the random instance chosen at iteration t.

It is easy to verify that 〈w′t+1,vi〉 = ai + zi, where

ai = (1 + ηsi)〈wt,vi〉 , zi = ηv>i (xx> −A)(wt − w̃).

Moreover, since v1, . . . ,vd form an orthonormal basis in
Rd, we have

‖w′t+1‖2 =

d∑
i=1

〈vi,w′t+1〉2 =

d∑
i=1

(ai + zi)
2.

Let E denote expectation with respect to x, conditioned on
wt. Based on the above, we have

E
[
〈wt+1,v1〉2

]
= E

[〈
w′t+1

‖w′t+1‖
,v1

〉2
]

= E
[
〈w′t+1,v1〉2

‖w′t+1‖2

]
= E

[
(a1 + z1)2∑d
i=1(ai + zi)2

]
. (8)

Note that conditioned on wt, the quantities a1 . . . ad are
fixed, whereas z1 . . . zd are random variables (depending
on the random choice of x) over which we take an expec-
tation.

The first step of the proof is to simplify Eq. (8), by pushing
the expectations inside the numerator and the denomina-
tor. An analysis based on a second-order Taylor expansion
reveals that Eq. (8) can be lower bounded by

E
[
(a1 + z1)2

]
E
[∑d

i=1(ai + zi)2
] − cη2‖wt − w̃‖2,

and since each zi is zero-mean, this equals

E
[
a2

1 + z2
1

]
E
[∑d

i=1(a2
i + z2

i)
] − cη2‖wt − w̃‖2 (9)

It can be shown that
∑d
i=1 z

2
i ≤ cη2‖wt − w̃‖2, hence we

can lower bound the above by

a2
1∑d

i=1 a
2
i + cη2‖wt − w̃‖2

− cη2‖wt − w̃‖2. (10)

Plugging in ai = (1 +ηsi)〈wt,vi〉 and performing several
simplifications, it can be shown that Eq. (10) (and hence

E[〈wt+1,v1〉2]) is lower bounded by

〈wt,v1〉2
(

1 +
ηλ

2

(
1− 〈wt,v1〉2

)
− cη2‖wt − w̃‖2

)
.

(11)
We now get rid of the ‖wt−w̃‖2 term, by noting that since
(x+ y)2 ≤ 2(x2 + y2) and ‖wt‖ = ‖v1‖ = 1,

‖wt − w̃‖2 ≤ (‖wt − v1‖+ ‖w̃ − v1‖)2

≤ 2
(
‖wt − v1‖2 + ‖w̃ − v1‖2

)
= 2 (2− 2〈wt,v1〉+ 2− 2〈w̃,v1〉) .

Plugging this back, and performing several manipulations,
we finally get

E[1− 〈wt+1,v1〉2]

≤
(
1− 〈wt,v1〉2

)(
1− ηλ

16

)
+ cη2

(
1− 〈w̃,v1〉2

)
as required. Note that to get this bound, we assumed at
several places that η is smaller than either a constant, or a
constant factor times λ (which is at most 1). Hence, the
bound holds by assuming η ≤ cλ for a sufficiently small
numerical c.

Part II: Solving the Recurrence Relation for a Single
Epoch

As before, since we focus on a single epoch, we drop the
subscript from w̃s−1 and denote it simply as w̃.

Suppose that η = αλ, where α is a sufficiently small con-
stant to be chosen later. Also, let

bt = 1− 〈wt,v1〉2 and b̃ = 1− 〈w̃,v1〉2.

Then Lemma 1 tells us that if α is sufficiently small, bt ≤
3
4 , and 〈w̃,v1〉 ≥ 0, then

E [bt+1|wt] ≤
(

1− α

16
λ2
)
bt + cα2λ2b̃. (12)

Lemma 2. Let B be the event that bt ≤ 3
4 for all t =

0, 1, 2, . . . ,m. Then for certain positive numerical con-
stants c, if α ≤ c, and 〈w̃,v1〉 ≥ 0, then

E[bm|B,w0] ≤
((

1− α

16
λ2
)m

+ cα
)
b̃.

Proof. Recall that bt is a deterministic function of the ran-
dom variable wt, which depends in turn on wt−1 and the
random instance chosen at round m. We assume that w0

(and hence b̃) are fixed, and consider how bt evolves as a
function of t. Using Eq. (12), we have

E[bt+1|wt, B] = E
[
bt+1|wt, bt+1 ≤

3

4

]
≤ E[bt+1|wt] ≤

(
1− α

16
λ2
)
bt + cα2λ2b̃.

A Stochastic PCA and SVD Algorithm with an Exponential Convergence Rate

Note that the first equality holds, since conditioned on wt,
bt+1 is independent of b1, . . . , bt, so the event B is equiva-
lent to just requiring bt+1 ≤ 3/4.

Taking expectation over wt (conditioned onB), we get that

E[bt+1|B] ≤ E
[(

1− α

16
λ2
)
bt + cα2λ2b̃

∣∣∣B]
=
(

1− α

16
λ2
)
E [bt|B] + cα2λ2b̃.

Unwinding the recursion, and using that b0 = b̃, we there-
fore get that

E[bm|B] ≤
(

1− α

16
λ2
)m

b̃+ cα2λ2b̃

m−1∑
i=0

(
1− α

16
λ2
)i

≤
(

1− α

16
λ2
)m

b̃+ cα2λ2b̃

∞∑
i=0

(
1− α

16
λ2
)i

=
(

1− α

16
λ2
)m

b̃+ cα2λ2b̃
1

(α/16)λ2

=
((

1− α

16
λ2
)m

+ cα
)
b̃.

as required.

We now turn to prove that the eventB assumed in Lemma 2
indeed holds with high probability:

Lemma 3. For certain positive numerical constants c, sup-
pose that α ≤ c, and 〈w̃,v1〉 ≥ 0. Then for any β ∈ (0, 1)
and m, if

b̃+ cmα2λ2 + c
√
mα2λ2 log(1/β) ≤ 3

4
, (13)

for a certain numerical constant c, then it holds with prob-
ability at least 1− β that

bt ≤ b̃+ cmα2λ2 + c
√
mα2λ2 log(1/β) ≤ 3

4

for some numerical constant c and for all t =
0, 1, 2, . . . ,m, as well as 〈wm,v1〉 ≥ 0.

Proof. To prove the lemma, we analyze the stochastic pro-
cess b0(= b̃), b1, b2, . . . , bm, and use a concentration of
measure argument. First, we collect the following facts:

• b̃ = b0 ≤ 3
4 : This directly follows from the assumption

stated in the lemma.

• The conditional expectation of bt+1 is close to bt, as long
as bt ≤ 3

4 : Supposing that bt ≤ 3
4 for some t, and α is

sufficiently small, then by Eq. (12),

E [bt+1|wt] ≤
(

1− α

16
λ2
)
bt + cα2λ2b̃ ≤ bt + cα2λ2b̃.

• |bt+1− bt| is bounded by cαλ: Since the norm of wt,v1

is 1, we have

|bt+1 − bt| =
∣∣〈wt+1,v1〉2 − 〈wt,v1〉2

∣∣
= |〈wt+1,v1〉+ 〈wt,v1〉| ∗ |〈wt+1,v1〉 − 〈wt,v1〉|
≤ 2 |〈wt+1,v1〉 − 〈wt,v1〉| ≤ 2‖wt+1 −wt‖.

Recalling the definition of wt+1 in our algorithm, and
the fact that the instances xi and hence the matrix A are
assumed to have norm at most 1, it is easily verified that
‖wt+1 −wt‖ ≤ cη ≤ cαλ for some constant c.

Armed with these facts, and using the maximal version of
the Hoeffding-Azuma inequality (Hoeffding, 1963), it fol-
lows that with probability at least 1 − β, it holds simulta-
neously for all t = 1, . . . ,m (and for t = 0 by assumption)
that

bt ≤ b̃+mcα2λ2b̃+ c
√
mα2λ2 log(1/β)

for some constants c, as long as the expression above is less
than 3

4 . If the expression is indeed less than 3
4 , then we get

that bt ≤ 3
4 for all t. Upper bounding b̃ and λ by 1, and

slightly simplifying, we get the statement in the lemma.

It remains to prove that if bt ≤ 3
4 for all t, then 〈wm,v1〉 ≥

0. Suppose on the contrary that 〈wm,v1〉 < 0. Since
|〈wt+1,v1〉 − 〈wt,v1〉| ≤ ‖wt+1 −wt‖ ≤ cαλ as we’ve
seen earlier, and 〈w0,v1〉 ≥ 0, it means there must have
been some wt such that 〈wt,v1〉 ≤ cαλ. But this means
that bt = (1 − 〈wt,v1〉2) ≥ 1 − c2α2λ2 > 3

4 (as long as
α is sufficiently small, since we assume λ is bounded), in-
validating the assumption that bt ≤ 3

4 for all t. Therefore,
〈wm,v1〉 ≥ 0 as required.

Combining Lemma 2 and Lemma 3, and using Markov’s
inequality, we get the following corollary:

Lemma 4. Let confidence parameters β, γ ∈ (0, 1) be
fixed. Suppose that 〈w̃,v1〉 ≥ 0, and that m,α are cho-
sen such that

b̃+ cmα2λ2 + c
√
mα2λ2 log(1/β) ≤ 3

4

for a certain numerical constant c. Then with probability
at least 1− (β + γ), it holds that 〈wm,v1〉 ≥ 0, and

bm ≤
1

γ

((
1− α

16
λ2
)m

+ cα
)
b̃.

for some numerical constant c.

Part III: Analyzing the Entire Algorithm’s Run

Given the analysis in Lemma 4 for a single epoch, we are
now ready to prove our theorem. Let

b̃s = 1− 〈w̃s,v1〉2.

A Stochastic PCA and SVD Algorithm with an Exponential Convergence Rate

By assumption, at the beginning of the first epoch, we have
b̃0 = 1−〈w̃0,v1〉2 ≤ 1− 1

2 = 1
2 . Therefore, by Lemma 4,

for any β, γ ∈
(
0, 1

2

)
, if we pick any

α ≤ 1

2
γ2 and m ≥ 48 log(1/γ)

αλ2

such that
1

2
+ cmα2λ2 + c

√
mα2λ2 log(1/β) ≤ 3

4
,

(14)

then we get with probability at least 1− (β + γ) that

b̃1 ≤
1

γ

(1− αλ2

16

) 48 log(1/γ)

αλ2

+
1

2
γ2

 b̃0

Using the inequality (1 − (1/x))ax ≤ exp(−a), which
holds for any x > 1 and any a, and taking x = 16/(αλ2)
and a = 3 log(1/γ), we can upper bound the above by

1

γ

(
exp

(
−3 log

(
1

γ

))
+

1

2
γ2

)
b̃0

=
1

γ

(
γ3 +

1

2
γ2

)
b̃0 ≤ γb̃0.

Therefore, we get that b̃1 ≤ γb̃0. Moreover, again by
Lemma 4, we have 〈w̃1,v1〉 ≥ 0. Since b̃1 is only smaller
than b̃0, the conditions of Lemma 4 are fulfilled for b̃ = b̃1,
so again with probability at least 1− (β + γ), by the same
calculation, we have b̃2 ≤ γb̃1 ≤ γ2b̃0. Repeatedly ap-
plying Lemma 4 and using a union bound, we get that after
T epochs, with probability at least 1− T (β + γ),

1− 〈w̃T ,v1〉2 = b̃T ≤ γT b̃0 < γT .

Therefore, for any desired accuracy parameter ε, we sim-
ply need to use T =

⌈
log(1/ε)
log(1/γ)

⌉
epochs, and get 1 −

〈w̃T ,v1〉2 ≤ ε with probability at least 1 − T (β + γ) =

1−
⌈

log(1/ε)
log(1/γ)

⌉
(β + γ).

Using a confidence parameter δ, we pick β = γ = δ
2 ,

which ensures that the accuracy bound above holds with
probability at least

1−
⌈

log(1/ε)

log(2/δ)

⌉
δ ≥ 1−

⌈
log(1/ε)

log(2)

⌉
δ = 1−

⌈
log2

(
1

ε

)⌉
δ.

Substituting this choice of β, γ into Eq. (14), and recalling
that the step size η equalsαλ, we get that 〈w̃T ,v1〉2 ≥ 1−ε
with probability at least 1− dlog2(1/ε)eδ, provided that

η ≤ cδ2λ , m ≥ c log(2/δ)

ηλ
,

mη2 +
√
mη2 log(2/δ) ≤ c

for suitable constants c.

To get the theorem statement, recall that this analysis per-
tains to data whose squared norm is bounded by 1. By the
reduction discussed at the beginning of the proof, we can
apply it to data with squared norm at most r, by replacing
λ with λ/r, and η with ηr, leading to the condition

η ≤ cδ2

r2
λ , m ≥ c log(2/δ)

ηλ
,

mη2r2 + r
√
mη2 log(2/δ) ≤ c.

Recalling that the different c’s correspond to possibly dif-
ferent numerical constants, we get the theorem statement.

5. Discussion
In this paper, we presented and analyzed a stochastic algo-
rithm for PCA and SVD with an exponential convergence
rate. Under suitable assumptions, the runtime scales as the
sum of the data size n and an eigengap factor 1

λ2 , and loga-
rithmically in the required accuracy ε. In contrast, the run-
time of previous iterative methods scale either as the prod-
uct of n and an eigengap factor, or polynomially in ε.

This work leaves several open questions. First, we note
that in the regime of moderate data size n (in particu-
lar, when n is dominated by (r/λ)2), the required run-
time scales with 1/λ2, which is inferior to the determin-
istic methods discussed in Sec. 1. Second, in the context
of strongly convex optimization problems, the variance-
reduced technique we use leads to algorithms with runtime
O
(
d
(
n+ 1

λ

)
log
(

1
ε

))
, where λ is the strong convexity

parameter of the problem (Johnson & Zhang, 2013). Com-
paring this with our algorithm’s runtime, and drawing a
parallel between strong convexity and the eigengap in PCA
problems, it is tempting to conjecture that the 1/λ2 in our
runtime analysis can be improved at least to 1/λ. However,
we don’t know if this is true, or whether the 1/λ2 factor is
necessary in our setting. Third, it remains to analyze the
behavior of the algorithm starting from a randomly initial-
ized point, before we obtain some w̃0 sufficiently close to
the optimum. Experimentally, this does not seem to be an
issue, but a full analysis would be more satisfactory, and
might give more guidance on how to optimally choose the
step size. Finally, we believe our formal analysis should be
extendable to the k > 1 case (see remark 1), and that the
dependence on the maximal squared norm of the data can
be relaxed to a dependence on the average squared norm or
some weaker moment conditions.

ACKNOWLEDGMENTS

This research is supported in part by an FP7 Marie Curie
CIG grant, the Intel ICRI-CI Institute, and Israel Science
Foundation grant 425/13. We thank Huy Nguyen for spot-
ting a bug in the proof of lemma 1 in an earlier version of
this paper.

A Stochastic PCA and SVD Algorithm with an Exponential Convergence Rate

References
Arora, R., Cotter, A., Livescu, K., and Srebro, N. Stochas-

tic optimization for PCA and PLS. In 2012 50th An-
nual Allerton Conference on Communication, Control,
and Computing, 2012.

Arora, R., Cotter, A., and Srebro, N. Stochastic optimiza-
tion of PCA with capped MSG. In NIPS, 2013.

Balsubramani, A., Dasgupta, S., and Freund, Y. The fast
convergence of incremental PCA. In NIPS, 2013.

De Sa, C., Olukotun, K., and Ré, C. Global convergence of
stochastic gradient descent for some nonconvex matrix
problems. arXiv preprint arXiv:1411.1134, 2014.

Frostig, R., Ge, R., Kakade, S., and Sidford, A. Competing
with the empirical risk minimizer in a single pass. CoRR,
abs/1412.6606, 2014.

Golub, G. and van Loan, C. Matrix computations (4. ed.).
Johns Hopkins University Press, 2013.

Hoeffding, W. Probability inequalities for sums of bounded
random variables. Journal of the American statistical
association, 58(301):13–30, 1963.

Johnson, R. and Zhang, T. Accelerating stochastic gradient
descent using predictive variance reduction. In NIPS,
2013.

Konecný, J. and Richtárik, P. Semi-stochastic gradient de-
scent methods. CoRR, abs/1312.1666, 2013.

Krasulina, T.P. The method of stochastic approximation
for the determination of the least eigenvalue of a sym-
metrical matrix. USSR Computational Mathematics and
Mathematical Physics, 9(6):189–195, 1969.

Mahdavi, M., Zhang, L., and Jin, R. Mixed optimization
for smooth functions. In NIPS, 2013.

Mitliagkas, I., Caramanis, C., and Jain, P. Memory limited,
streaming PCA. In NIPS, 2013.

Oja, E. Simplified neuron model as a principal component
analyzer. Journal of mathematical biology, 15(3):267–
273, 1982.

Oja, E. and Karhunen, J. On stochastic approximation of
the eigenvectors and eigenvalues of the expectation of a
random matrix. Journal of mathematical analysis and
applications, 106(1):69–84, 1985.

