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Supplementary Material

We have prepared an appendix to address the proofs for
Proposition 3, Theorems 1 and 2 which we provide in the
following sections. For this purpose we will use a few extra
notations which we define here. We will use τN (A) for the
normalised trace of a square matrix A of order N and we
drop N when there is no confusion. In addition, we derive
analytic expressions of the VAR model in the last section.

1. Proof of Proposition 3
Lemma 3. For f ∈ L2(I) non-constant, such that 1/f ∈
L2(I), we have∫

I
f(x)2dx ·

∫
I

1

f(x)2
dx > 1

Proof. Using Cauchy-Schwartz inequality for the scalar
product〈

f(x) ,
1

f(x)

〉
=

∫
I
f(x) · 1

f(x)
dx = 1 .

Inequality is strict since f and 1/f are not collinear (other-
wise f would be constant).

Lemma 4. Let f ∈ L1(I) be positive, non-constant, such
that 1/f ∈ L1(I) and

∫
I f(x)dx = 1.

Assume ∃α > 0,∀x ∈ I, f(x) ≤ 2− α ,

then∫
I
f(x)dx ·

∫
I

1

f(x)
dx ≥ 1 + α

∫
I
(f(x)− 1)2dx

Proof. We denote s(x) = f(x) − 1. Then
∫
I s(x)dx = 0

and ∫
I
f(x)dx.

∫
I

1

f(x)
dx− 1 =

∫
I

−s(x)

1 + s(x)
dx

For x > −1, we have

−x
1 + x

≥ x2 − x3 − x. (19)

Replacing s(x) with x in (19) we get:∫
I
f(x)dx ·

∫
I

1

f(x)
dx− 1 ≥

∫
I
s(x)2(1− s(x))dx.

Since 1− s(x) = 2− f(x) ≥ α > 0,∫
I
f(x)dx ·

∫
I

1

f(x)
dx− 1 ≥ α

∫
I
s(x)2dx

Proof of Proposition 3. Using the definition of Spectral
Dependency Ratios and Lemma 3 we get

ρX→YρY→X =
1

〈|ĥX→Y|2〉〈1/|ĥX→Y|2〉
< 1

Moreover, applying Lemma 4 to f =

|ĥX→Y|2/
∫
I |ĥX→Y|2 = |ĥX→Y|2/‖hX→Y‖22 we

get inequality (9).

2. Proof of Theorem 1
To prove this theorem we rely on a theorem from (Janzing
et al., 2010) and a corollary that we derive from it.

Theorem 3 (concentration of measure for finite dimen-
sional linear relationships). (Janzing et al., 2010) Sup-
pose Σ is a given covariance matrix and suppose A ∈
Mm×n(R) is also a given matrix. Then if one generates
ΣX = UΣU> by uniformly choosing an orthogonal ma-
trix U from O(n) then ΣX together with A, satisfies trace
condition in probability when n tends to infinity. More pre-
cisely for a given ε there exist δ := 1− exp(−κ(n− 1)ε2),
κ being a constant where

|τm(AΣXA
>)− τn(ΣX)τm(AA>)| =

|τm(AUΣU>A>)− τn(Σ)τm(AA>)| ≤ 2ε‖Σ‖‖AA>‖

holds with probability δ.

In the above theorem (and the rest of the document), ‖.‖
applied to a matrix will refer to the operator norm. The
following corollary is a direct consequence of the previous
theorem:

Corollary 1. Suppose Σ is a given covariance matrix and
suppose A ∈ Mm×n(R) is also a given matrix. Then if
one generates AU = AU by uniformly choosing an or-
thogonal matrix U from O(n) then AU together with Σ,
satisfies trace condition in probability when n tends to
infinity. More precisely for a given ε there exist δ :=
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1− exp(−κ(n− 1)ε2), κ being a constant where

|τm(AUΣA>U )− τn(ΣX)τm(AA>)| =
|τm(AUΣU>A>)− τn(Σ)τm(AA>)| ≤ 2ε‖Σ‖‖AA>‖

holds with probability δ.

To prove the main theorem we will also need two lemmas
that are stated below.

Lemma 5. (Serre, 2010) For a given Hermitian matrix H
and any principal submatrix ofH ,H ′, their spectral radius
ρs satisfies

ρs(H) ≥ ρs(H ′).

Lemma 6. (Gray, 2006) Let f : [− 1
2 ,

1
2 ) → R f ∈ L1

be a bounded function and suppose tk is its Fourier series
coefficients, i.e.

tk =

∫ 1
2

− 1
2

f(ν)ei2πkνdν, t ∈ Z.

Consider Toeplitz matrices Tn defined as

[Tn]ij = ti−j i, j ∈ {0, ..., n− 1}

with eigenvalues τn,k(0 ≤ k ≤ n − 1). Then if ti are
absolutely summable we get:

min
x∈[− 1

2 ,
1
2 )
f(x) ≤ τn,i ≤ max

x∈[− 1
2 ,

1
2 )
f(x)

Proof of Theorem 1. Without loss of generality and for the
sake of simplicity we only consider the positive indices of
the time series and we take the filter to be causal; other
cases can be treated in a similar way. Then the following
relation holds between input and output of the filter:

∀i, 0 ≤ i ≤ N − 1 Yi =

m−1∑
j=0

bjXi−j

Formulated in terms of matrices the above relation can be
represented as

Y0
Y1
...

YN−2
YN−1

 = B


X−m+1

X−m+2

...
XN−2
XN−1

 ,

where B is a N × (N +m− 1) matrix as follows:
bm−1 bm−2 · · · b0 0 · · · 0 0

0 bm−1 · · · b1 b0 · · · 0 0
. . .

0 0 · · · bm−1 · · · b1 b0 0
0 0 · · · 0 bm−1 · · · b1 b0



We define ΣiX ∈ Mm×m(R) to be the covariance matrices
as follows:

∀i 0 ≤ i ≤ N − 1 0 ≤ j, k ≤ m− 1

[ΣiX ]jk = Cov(Xi+j , Xi+k)

Since the time series under consideration are weakly sta-
tionary it is obvious that ΣiX is independent of i and we
can replace any appearance of it with Σ. If we take
ΣX0:N−1

,ΣY0:N−1
∈ MN×N (R) to be the covariance ma-

trices for X0:N−1 and Y0:N−1 respectively, then we have

ΣY0:N−1
= BΣX−m+1:N−1

B>

Also define ΣUY0:N−1
to be the covariance matrix of the out-

put for FIR S ′ with b′ = U>b. Furthermore assume the
spectrum of the output for this filter is SUyy. One can write
the diagonal elements of ΣUY0:N−1

based on the above equa-
tion as follows:

[ΣUY0:N−1
]ii = b>UΣU>b

which is therefore equal to the normalized trace of ΣUY0:N−1
.

Taking A = b> in corollary 1 for a randomly selected U
we get

|b>UΣU>b− 1

N
τm(Σ)〈b,b〉| ≤ 2ε‖Σ‖

√
〈b,b〉

and hence

|τ(ΣUY0:N−1
)− 1

N
τm(Σ)‖b‖22| ≤ 2ε‖Σ‖‖b‖22 (20)

with probability δ. On the other hand the elements of diag-
onals of Σ are CX(0). Therefore:

1

N
τm(Σ) =

mNCX(0)

mN
= P (X)

Since Σ is a principal submatrix of ΣX0:N−1
therefore by

corollary 5

‖Σ‖ = ρ(Σ) ≤ ρ(ΣX0:N−1
).

Because CX(τ)’s are absolutely summable, based on
lemma 6 we get

ρ(ΣX0:N−1
) ≤ max

ν
Sxx(ν),

and then inequality (20) can be rewritten as

|
τ(ΣUY0:N−1

)

P (X)‖b‖22
− 1| ≤ 2

ε

P (X)
‖Σ‖

which completes the proof.
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3. Proof of Theorem 2
In this section we give a proof that the TDR (see (12))
asymptotically approaches the SDR (see (6)). We first state
and prove two lemmas that are used to derive this result. As
before suppose {Xt} and {Yt} are given input and output
of an LTI filter that are related through the impulse response
function {ht}. According to the definition of the truncated
linear systems (see Definition 2) of order N for the linear
system above we get the following matrix relationship:

Y ′−N
Y ′−N+1

...
Y ′N−2
Y ′N−1

 = (21)


h0 h−1 · · · h−2N+1

h1 h0 · · · h−2N+2

...
h2N−2 h2N−3 · · · h−1
h2N−1 h2N−2 · · · h0




X−N
X−N+1

...
XN−2
XN−1

 .
According to definition 2 we can write the following TDR
for the linear equation (21):

rXN→YN
=

τ(ΣYN
)

τ(ΣXN
)τ(HNHNT )

(22)

Define

TN := τ(HNHN>). (23)

Now we show that TN converges to ‖h‖22 the energy of the
impulse response.
Lemma 7. Assume ‖h‖22 < +∞, then

lim
N→+∞

TN = ‖h‖22

Proof. To show

lim
N→∞

2N−1∑
k=−2N+1

|hk|2
2N − 1

2N
=
∑
k∈Z
|hk|2, (24)

define

aN,k :=

{
|hk|2 2N−1

2N for |k| ≤ 2N − 1
0 otherwise

Then (24) is equivalent to

lim
N→∞

∑
k∈Z

aN,k =
∑
k∈Z

lim
N→∞

aN,k ,

which follows from the monotone convergence theorem
(Yeh, 2006) since (aN,k)N is a monotonically increasing
sequence for each k.

In order to get the main result, we also need to prove that
Y ′k’s in (21) are asymptotically converging to Yk’s in the
following sense:

Lemma 8. Suppose an LTI filter S with zero mean weakly
stationary processes as input ({Xt}) and output ({Yt}) and
impulse response function {ht} has been given. Then for
the truncated linear systems we have:

lim
N→∞

|τ(ΣYN
)− τ(ΣY′N

)| = 0,

Proof. Let us define a symmetric positive semi-definite bi-
linear form on the vector space of truncated stochastic pro-
cesses W−N :N−1 by

〈WN ,ZN 〉 := τ(ΣW′NZ′N ) ,

where ΣNWZ denotes the cross-covariance matrix between
the two truncated processes (note that our notation ΣW is
simply an abbreviation for ΣWW ). The inner product in-
duces a semi-norm by

‖W‖ :=
√
〈W,W 〉 .

Using the triangle inequality one easily obtains

|‖W‖ − ‖Z‖| ≤ ‖W − Z‖ .

Hence,

|
√
τ(ΣY Y )−

√
τ(ΣY ′Y ′)| ≤

√
τ(ΣY−Y ′). (25)

To prove the lemma it is enough to show that the r.h.s. of
(25) approaches zero when N goes to infinity. So we show
that each element of diagonal of ΣY−Y ′ tends to zero when
N tends to infinity. With overload of notation, in this case
define {h(j)t } as follows

h
(j)
t =

{
0 if −N ≤ t+ j ≤ N − 1

ht otherwise.

Then for the j-th element of diagonal of ΣY−Y ′ we have

[ΣY−Y ′ ]jj = E
[
(Yj − Y ′j )2

]
= (26)

E
[
(

∞∑
l=−∞

Xj−lh
(j)
l )2

]
= E

[
(
∑

l≥N−j
l<−N−j

Xj−lhl)
2
]

(27)

Since autocorrelation function attains its maximum at t = 0
and

∀i, j ∈ Z, E(XiXj) ≤
√

E(X2
i )E(X2

j )

we get:

∀i, j ∈ Z, E(XiXj) ≤ E(X2
0 ).
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As a result we have:

[ΣY−Y ′ ]jj = E
[
(
∑

l≥N−j
l<−N−j

Xj−lhl)
2
]
≤

∑
l,l′≥N−j
l,l′<−N−j

E(X2
0 )hlhl′ = E(X2

0 )
∑

l,l′≥N−j
l,l′<−N−j

hlhl′ ≤

E(X2
0 )(

∑
l≥N−j
l<−N−j

hl)
2 ≤ E(X2

0 )(
∑

l≥N−j
l<−N−j

|hl|)2.

Since {ht} is absolutely convergent, it follows that
[ΣY−Y ′ ]jj can be arbitrarily reduced by increasing N .
Then it follows that τ(ΣY−Y ′) approaches to zero when
N tends to infinity. This concludes the proof.

To derive the result regarding the asymptotic behaviour
of the trace condition in the truncated linear systems and
the equivalence of trace condition (see postulate 2) to SIC,
we will also need one of the convergence theorems due to
Szegö:

Theorem 4 (Szegö’s convergence theorem). (Gray, 2006)
Let f : [− 1

2 ,
1
2 ) → R f ∈ L1 be a bounded function and

suppose tk’s are its Fourier series coefficients, i.e.

tk =

∫ 1
2

− 1
2

f(ν)ei2πkνdν, t ∈ Z.

Consider Toeplitz matrices Tn defined as

[Tn]ij = ti−j i, j ∈ {0, ..., n− 1}

with eigenvalues τn,k(0 ≤ k ≤ n − 1). Then if Tn’s are
Hermitian, i.e. ti = t̄i for any i, then for any continuous
function F we have:

lim
n→∞

1

n

n−1∑
k=0

F (τn,k) =

∫ 1
2

− 1
2

F (f(ν))dν

We are ready to state our convergence theorem:

Theorem 5. For a given truncated linear time series,
rX′N→Y′N

asymptotically approaches to the spectral values
of time series on infinite domain. As a result the spectral
density based estimator coincides with the trace based es-

timator in the limit, and more precisely

lim
N→∞

τ(ΣX′N
) =

1
2∫

− 1
2

Sxx(ν)dν,

lim
N→∞

τ(ΣY′N
) =

1
2∫

− 1
2

Syy(ν)dν,

and lim
N→∞

TN =

1
2∫

− 1
2

|ĥ(ν)|2dν,

where TN is defined as in (23). And eventually:

lim
n→∞

rX′N→Y′N
= ρX→Y lim

n→∞
rY′N→X′N

= ρY→X

Proof. Both ΣX′N and ΣY′N are hermitian Toeplitz matri-
ces and based on theorem 4 where F has been chosen as
identity function and also applying lemma 8 we get:

lim
N→∞

τ(ΣXN
) =

1
2∫

− 1
2

Sxx(ν)dν (28)

lim
N→∞

τ(ΣYN
) =

1
2∫

− 1
2

Syy(ν)dν (29)

Moreover by Plancherel’s theorem and lemma 7 it follows
that:

lim
N→∞

TN = ‖h‖22 =

1
2∫

− 1
2

|ĥ(ν)|2dν (30)

This theorem therefore shows that the trace ratios calcu-
lated for windowed version of time series are nothing but
estimates of the spectral ratios and therefore justifies that
these two different methods for causal inference are indeed
consistent with each other.

4. Analytic expressions of the VAR model
Using basic properties of the Z-transform, we can derive
from (13) the following analytic expressions of the input
PSD Sxx:

Sxx(ν) = |n̂(ν)|2 = |ñ(exp(2πiν))|2 ,

with
ñ(z) =

1

1−
∑
k akz

−k .
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Moreover, the transfer function corresponding to the mech-
anism in (15) is

m̃(z) =

∑
k ckz

−k

1−
∑
k bkz

−k .

As a consequence, testing SIC on the VAR model in the for-
ward direction amounts (when neglecting the filtered noise
ξ) to test independence between

|ĥ(ν)|2 = |m̃(exp(2πiν))|2 (31)

and
Sxx(ν) = |ñ(exp(2πiν)|2 , (32)

which are parametrized by the coefficients {bk, ck} and
{ak} respectively.


