
Universal Value Function Approximators

A. Ground Truth Evaluation
Whenever ground truth values are used in the supervised
setups, we compute these by building an explicit MDP for
eachRg , converted to tabular representation, and then solv-
ing for Vg or Qg . We use these same MDPs also for eval-
uating policy quality: we compute the expected discounted
return when the induced stochastic policy fromQ(s, a, g) is
run on the MDP (with temperature τ = 0.05), and average
these values over all possible start states. Of course, this
ground-truth based procedure is only applicable to small-
scale problems.

B. Neural Network Details
All neural networks mentioned use two hidden layers of
size 128, rectified linear units, all of them implemented us-
ing the Torch7 library (Collobert et al., 2011a). All optimi-
sation uses the SGD-variant Adam (Kingma & Ba, 2014)
with its recommended default hyper-parameters, a mini-
batch size of 20 and learning-rate α = 0.005. The only
exception to this setup is for the larger-scale Ms Pacman
experiment described below.

C. Ms Pacman Experiment Details
150 subgoals were defined, for collecting particular pellets
in the game. Specifically, for i ∈ {1, ..., 150}, pseudo-
reward and pseudo-discount functions for each goal gi were
given by:

Rgi(s, a, s
′) =


1 ¬pelleti(s

′) ∧ pelleti(s)
∧γext(s) 6= 0

0 otherwise

γgi(s) =

{
0 ¬pelleti(s)
γext(s), otherwise

where γext is the external discount function and pellet(s′)
is true if and only if the corresponding pellet is still in the
game.
For reasons of expedience, a few simplifications are made
to the environment during training. These should not dra-
matically affect the performance of the method, however.
For each of the above-defined subgoals, we construct a
modified version of the Ms Pacman Atari environment
(Bellemare et al., 2012) as follows. When the subgoal is
achieved, the environment is reset, Pacman’s position is set
to a random location, and a new episode begins. At the be-
ginning of each episode we skip over a start-up time of 260
frames where nothing happens in the game.
Each demon uses a variant of Deep Q-Learning with Expe-
rience Replay (Mnih et al., 2013) to learn the value func-
tions with respect to its subgoal. The external discount fac-
tor is fixed at 0.95. An action repeat of 4 is used, and frames
are preprocessed by conversion to grayscale and downsam-

Figure 14. The factors discovered when training a UVFA of rank
n = 10 on all data (150 pellet goals). They visibly capture spa-
tial regions, but of course the full value functions are much more
complex, and involve power-pills and ghosts as well – those are
just more difficult to visualise. However, when running a Pacman
agent that follows the UVFA policy for one of the pellet goals, it
consistently reaches it, while avoiding ghosts on the way.

pling to 84x84 pixels. The input to the network is the con-
catenation of the last 4 frames, i.e. an 84x84x4 tensor. The
first hidden layer convolves this with 16 8x8 filters, with
stride 4, and then a rectifier. The second layer is another
convolution, with 32 4x4 filters, with stride 2, and a fur-
ther rectifier. This is followed by a fully-connected layer of
256 rectifier units. The output layer is linear, followed by a
Log-SoftMax. The action set is restricted to the up, down,
left and right actions.
We use the value estimates learned in this manner to train
a UVFA, by performing a rank 10 SVD decomposition to
obtain desirable embedding vectors. We then train the goal
half of the UVFA network to map each pellet’s (x, y) po-
sition (normalized to the interval [0, 1]) to the correspond-
ing vector in the embedding space, using supervised tar-
gets. The goal half of the UVFA is a multi-layer perceptron
with rectifier units, and 4 hidden layers of size 100. This is
trained on 10000 minibatches of size 20, using Adam with
learning rate 0.001. The state half of the network is tabular.
In order to visualize the values learned by the network, we
define a set of mapping states, which are generated by tak-
ing the initial state of the game, and teleporting pacman
to each point in turn on a 37x14 grid, by modifying the
appropriate memory location in the emulator state. If the
resulting position is not a wall, the corresponding observa-
tion image is duplicated 4 times and fed into the network.
The maximal output is taken as an estimate of the value of
that state.
Figure 14 illustrates the matrix factorization in the Pacman
environment. Each of the ten plots illustrates a single com-
ponent of the state embedding φ(s), sweeping over a set
of states s in which Pacman’s position has been set to the
corresponding location.

D. State Embeddings
The same embedding techniques that underlie our two-
stream UVFA architectures can be used for another,



Universal Value Function Approximators

g
(s

,a
)

g

(s
,a

)

rank

(s
,a

) g

ra
n

k

g

(s
,a

)

Figure 13. Illustration of sparse matrix decomposition for a 2-room LavaWorld. From left to right: ground truth Q-values, sparse matrix
with subset of visible ones M, φ̂, ψ̂, reconstructed Q-values for all entries.

straightforward purpose, namely for learning an embed-
ding of states that induces a useful, reachability-based met-
ric. In particular, we can use G = S and a very simple
parameter-free combination function of the form h(·, ·) =
γD(·,·), where D is a distance function (as in section 5.3).
The motivation for this form comes from natural language
processing literature. Several works, for example (Col-
lobert et al., 2011b; Mikolov et al., 2013), define an em-
bedding vector for every word. The training objective is to
predict a given word from words around it in a sentence.
The probability of such prediction is calculated as essen-
tially an exponential of the negative distance between the
word vector and a vector obtained from words around it.
After training, words with similar meaning will have their
vectors close in the embedding space. In our case states of
the environment are related to one another. Specifically it
is easy to move from one state to some states but hard to
move to other states (it takes a longer time for example).
What we would like to achieve is that states that are eas-
ily reachable from one another are close in the embedding
space and those which are not are far. This is what we in-
deed observe in experiments. Initially random embedding
vectors organize to reflect relations between states. For ex-
ample in an open two dimensional grid world we find that

the vectors roughly lie on a two dimensional plane, thus
recovering the underlying structure of the environment.
We test the ability of embeddings to generalize in three set-
tings: 1) V learning with shared state and goal embeddings
φ = ψ, 2) V learning without sharing and 3) Q learning
(no sharing possible). In many environments it might be
easy to go from state s to state s′ but not vice-versa. In this
case a symmetric distance function is not appropriate, so
we propose both a symmetric and an asymmetric D:

DS(s, g) = ‖φ(s)− ψ(g)‖2
DA(s, g) = ‖σ(ψ1(g))(φ(s)− ψ2(g)))‖2

where σ is a the logistic function and ψ1 and ψ2 are two
halves of the embedding vector of g. When learning Q, the
φ embeddings are for pairs (s, a).
If a transition model is available we can instead do boot-
strap learning with only V , by replacing Q(st+1, a

′, g) in
the max of Equation 1 by V (Ta′(st+1), g), where Ta(s)
denotes the state reached after executing action a in state s.
We look at the training time and generalization in the set-
tings of Section 4.1 where only a fraction of state goal pairs
is present. We use 4 room environment of size 8. The train-
ing time is shown in the Figure 15. We see that sharing the



Universal Value Function Approximators

Figure 15. Left: Policy quality as a function of batches of boot-
strapping updates, using V learning with shared and not shared
representations for goals and using Q learning, in a 8x8 4-rooms
environment. Learning is easier with a shared architecture, but
sharing is only applicable when learning V : the embeddings
needed for Q depend on (s, a) jointly in one stream, but only
on g in the other. Given that the Q case must learn 4 times as
many values (differentiating actions in every state), its learning
performance is very much in line with the expected 4x slowdown.
Right: overlaid mapping of 8 embedding factors for a 32×32 en-
vironment. Note how they capture smooth changes within rooms,
while capturing topology and spilling through doorways.

state and goal representation gives the best performance.
Unlike the 4-room environment, the dynamics in Lava-
World are not reversible. There we compared the two dis-
tance function DS and DA, finding that in a two room,
10× 10 LavaWorld environment DS obtains a policy qual-
ity of 0.95, while DA obtained 1.0. Surprisingly, the sym-
metric function captured the environment quite well, but
not as well as the asymmetric functions that captured it per-
fectly.


