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Appendix
A. There exists a Cox process with an a.s. C∞ intensity

coinciding with any finite dimensional prior.

In this section we prove the proposition below.

Proposition .1 Let Q be an (n + 1) dimensional contin-
uous probability distribution whose density has support⊗n+1

i=1 ]0,+∞[, and let x1, . . . , xn be n points on a com-
pact domain S ⊂ Rd. There exists an almost surely non-
negative and C∞ stochastic process λ on S such that

(
λ(x1), ..., λ(xn),

∫
S
λ(x)dx

)
∼ Q.

Proof Let
(y1, . . . , yn, I) ∼ Q

and
(y1(ω), . . . , yn(ω), I(ω))

a random draw. Let us denote xj , j ≤ d the j-th coor-
dinate of x ∈ Rd. We consider the family of functions
parametrized by α ∈ R:

f(ω, x, α) = exp

(
α

d∑
j=1

n∏
l=1

(xj − xjl )
2

)
(1)

×
n∑
l=1

yl(ω)
1

d

d∑
j=1

∏
k 6=l

(
xj − xjk
xjl − x

j
k

)2

.

We note that ∀α, xi, f(ω, xi, α) = yi(ω). Let us define
the polynomial

P (x) =

n∑
l=1

yl(ω)
1

d

d∑
j=1

∏
k 6=l

(
xj − xjk
xjl − x

j
k

)2

.

As P is continuous, it is bounded on the compact S, and
reaches its bounds. Thus we have

∃mp,Mp ≥ 0, s.t. ∀x ∈ S, 0 ≤ mp ≤ P (x) ≤Mp.

Similarly, if we define

R(α, x) = exp

(
α

d∑
j=1

n∏
l=1

(xj − xjl )
2

)
= R(1, x)α,

it follows that

∃mq,Mq > 1, s.t. ∀x ∈ S, 1 < mq ≤ R(1, x) ≤Mq.

Hence,

mpm
α
q µ(S) ≤

∫
S
f(ω, x, α)dx ≤MpM

α
q µ(S). (2)

Moreover, we note that α→
∫
S f(ω, x, α)dx is continuous

on R as its restriction to any bounded interval is continuous
(by dominated convergence theorem). Furthermore, given
that mq,Mq > 1, it follows from Equation (2) that

lim
α→+∞

∫
S
f(ω, x, α)dx = +∞

and
lim

α→−∞

∫
S
f(ω, x, α)dx = 0.

Hence, by intermediate value theorem,

∀ I(ω) > 0, ∃α∗(ω) s.t. I(ω) =

∫
S
f(ω, x, α∗(ω))dx.

Finally, let us define the stochastic process λ on S as

ω → λ(ω, x) := f(ω, x, α∗(ω)).

To summarise,

∀ xi, λ(ω, xi) := f(ω, xi, α
∗(ω)) = yi(ω),

I(ω) =

∫
S
λ(ω, x)dx,

and
(y1, . . . , yn, I) ∼ Q :

this implies
(
λ(x1), ..., λ(xn),

∫
S λ(x)dx

)
∼ Q. Finally,

∀ x ∈ S, λ(ω, x) ≥ 0, and ∀ ω, x→ λ(ω, x) is C∞,

which concludes our proof.
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B. Proof of convergence of Algorithm 1

The idea behind the proof is to show that the sequence of
maximum utility

uk = max
s∈S
Ũ({s′1, ..., s′k−1} ∪ {s})

is positive, increasing and upper-bounded and thus con-
verges to a strictly positive limit. This would then imply
that

uk+1 − uk
uk

−→
k→∞

0

and subsequently that

∀ 0 < α < 1,∃ klim ∈ N s.t. ∀ k > klim,
uk+1 − uk

uk
< α

or in other words Algorithm 1 always stops in finite time.

To show that ∀k > 0, uk > 0, we note that
Σ∗D′D′(θ̃i) is a covariance matrix and as such it is
positive definite. It follows that Σ∗−1D′D′(θ̃i) is also
positive definite. We further note that the j-th di-
agonal term of Σ∗DD′(θ̃i)Σ

∗−1
D′D′(θ̃i)Σ

∗T
DD′(θ̃i) can be

written as xTj Σ∗−1D′D′(θ̃i)xj where xj is the j-th col-
umn of Σ∗TDD′(θ̃i). Hence, by virtue of the pos-
itive definitiveness of Σ∗−1D′D′(θ̃i), the diagonal terms
of Σ∗DD′(θ̃i)Σ

∗−1
D′D′(θ̃i)Σ

∗T
DD′(θ̃i) are all positive, which

proves that the utility function Ũ is positive, and subse-
quently that ∀k > 0, uk > 0.

To show that (uk)k∈N∗ is upper-bounded, we note that the
matrix

CiD′ = Σ∗DD(θ̃i)− Σ∗DD′(θ̃i)Σ
∗−1
D′D′(θ̃i)Σ

∗T
DD′(θ̃i)

where the notation is as per the rest of the paper, is an auto-
covariance matrix, and as such has positive diagonal ele-
ments. Hence,

Tr(Σ∗DD(θ̃i)) ≥ Tr(Σ∗DD′(θ̃i)Σ
∗−1
D′D′(θ̃i)Σ

∗T
DD′(θ̃i))

and finally

∀ k ∈ N∗, uk ≤
1

N

N∑
i=1

Tr(Σ∗DD(θ̃i)).

Moreover, we note that showing that (uk)k∈N∗ is increasing
is equivalent to showing that (vk)k∈N∗ with

vk = min
s∈S

1

N

N∑
i=1

Tr(Ci{s′1,...,s′k−1}∪{s})

is decreasing. We recall that Ci{s′1,...,s′k−1}∪{s} is the co-
variance matrix of the values of the stationary Gaussian

Process of our model at the data points, conditioned on its
values at {s′1, ..., s′k−1} ∪ {s}.

It follows from the law of iterated expectations that
Ci{s′1,...,s′k−1}∪{s} could also be seen as the covariance ma-
trix of the values of a conditional Gaussian Process at the
data points, 1 conditioned on its value at s. Hence,

Ci{s′1,...,s′k−1}∪{s} =

Ci{s′1,...,s′k−1} −
1

Σ̂ss(θ̃i)
Σ̂D{s}(θ̃i)Σ̂

T
D{s}(θ̃i)

where Σ̂XY denotes the covariance matrix between the val-
ues of the conditional GP at points in X and at points in
Y. In particular, Σ̂ss(θ̃i) is a positive scalar. What’s more
the diagonal elements of Σ̂D{s}(θ̃i)Σ̂

T
D{s}(θ̃i) are all non-

negative. Hence,

∀s ∈ S,Tr(Ci{s′1,...,s′k−1}∪{s}) ≤ Tr(Ci{s′1,...,s′k−1})

and averaging over the set of hyper-parameters θi and tak-
ing the min we get

∀ k ≥ 2, vk ≤ vk−1

which concludes the proof.

C. Proof of the rate of convergence of Algorithm 1 and
that uf in Algorithm 1 converges to
1
N

∑N
i=1 Tr(Σ∗DD(θ̃i)) as α goes to 0

The key idea of this proof is to note as previously shown
that no set of inducing points has a utility greater than
w∞ := 1

N

∑N
i=1 Tr(Σ∗DD(θ̃i)), but that any set of induc-

ing points that includes D has a utility equal to w∞.

Let {s′1, ..., s′k} be points selected after k iterations of Al-
gorithm 1, and let us denote by {u1, ..., uk} the maximum
utilities after the corresponding iterations as usual. Let us
denote by

s̃k = argmax
s∈D

Ũ({s′1, ..., s′k−1} ∪ {s})

the best candidate in the data set to be the k-th inducing
point after k − 1 iterations of our algorithm. As previously
mentioned, {s′1, ..., s′k−1} ∪ D is a set of inducing points
with perfect utility. Therefore, if we select the data points
as inducing points after {s′1, ..., s′k−1}, their contribution to
the overall utility will be w∞ − uk−1. If we further con-
strain our choice of D as additional inducing points to start
with s̃k then the incremental utility of choosing s̃k will be

1The conditional GP is defined as the stationary Gaussian
Process in our model is conditioned on its values at the points
{s′1, ..., s′k−1}
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at least w∞−uk−1

n , where n is the data size as usual. This is
because s̃k is the best choice for the k-th inducing point in
D after having picked {s′1, ..., s′k−1} and because the incre-
mental utility of choosing an inducing point is higher ear-
lier (when little is known about the GP) than later (when
more is known about the GP). What’s more, by definition,
the incremental utility of choosing s′k after {s′1, ..., s′k−1} is
higher than that of choosing s̃k after {s′1, ..., s′k−1}. Hence,

uk − uk−1 ≥
w∞ − uk−1

n
.

Let us denote by wk the sequence satisfying

w0 = u0,∀ k ∈ N∗wk − wk−1 =
w∞ − wk−1

n
.

It can be shown (by induction on k) that

∀ k ∈ N∗wk ≤ uk.

Moreover, we note that

wk − w∞ = (1− 1

n
)(wk−1 − w∞).

Hence
wk = w∞ + (1− 1

n
)k(w0 − w∞),

which proves that the sequence wk converges linearly to
w∞ with rate 1− 1

n .

On one hand, we have shown that the sequence uk con-
verges and is upper-bounded by w∞, hence its limit is
smaller than w∞:

u∞ := lim
k→∞

uk ≤ w∞.

On the other hand, we have shown that ∀ k ∈ N∗ wk ≤ uk
which implies

w∞ ≤ u∞.

Hence,

w∞ = u∞ =
1

N

N∑
i=1

Tr(Σ∗DD(θ̃i)).

As wk is upper-bounded by uk and both sequences con-
verge to the same limit, uk, and subsequently Algorithm 1,
converge at least as fast as wk.

In regards to the second statement of our proposition, we
have that

lim
α→0

uf (α) = lim
k→∞

uk =
1

N

N∑
i=1

Tr(Σ∗DD(θ̃i)).


