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Abstract
Recent advances in stochastic gradient varia-
tional inference have made it possible to perform
variational Bayesian inference with posterior ap-
proximations containing auxiliary random vari-
ables. This enables us to explore a new syn-
thesis of variational inference and Monte Carlo
methods where we incorporate one or more steps
of MCMC into our variational approximation.
By doing so we obtain a rich class of infer-
ence algorithms bridging the gap between vari-
ational methods and MCMC, and offering the
best of both worlds: fast posterior approxima-
tion through the maximization of an explicit ob-
jective, with the option of trading off additional
computation for additional accuracy. We de-
scribe the theoretical foundations that make this
possible and show some promising first results.

1. MCMC and Variational Inference
Bayesian analysis gives us a very simple recipe for learning
from data: given a set of unknown parameters or latent vari-
ables z that are of interest, we specify a prior distribution
p(z) quantifying what we know about z before observing
any data. Then we quantify how the observed data x relates
to z by specifying a likelihood function p(x|z). Finally, we
apply Bayes’ rule p(z|x) = p(z)p(x|z)/

R
p(z)p(x|z)dz

to give the posterior distribution, which quantifies what we
know about z after seeing the data.

Although this recipe is very simple conceptually, the im-
plied computation is often intractable. We therefore need
to resort to approximation methods in order to perform
Bayesian inference in practice. The two most popular ap-

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

proximation methods for this purpose are variational infer-
ence and Markov Chain Monte Carlo (MCMC). The former
has the advantage of maximizing an explicit objective, and
being faster in most cases. The latter has the advantage of
being nonparametric and asymptotically exact. Here, we
show how both methods can be combined in order to get
the best of both worlds.

1.1. Variational Inference

Variational inference casts Bayesian inference as an opti-
mization problem where we introduce a parameterized pos-
terior approximation q

✓

(z|x) which is fit to the posterior
distribution by choosing its parameters ✓ to maximize a
lower bound L on the marginal likelihood:

log p(x) � log p(x)�D
KL

(q
✓

(z|x)||p(z|x)) (1)
= E

q✓(z|x)[log p(x, z)� log q
✓

(z|x)] = L. (2)

Since log p(x) is independent of ✓, maximizing the
bound L w.r.t. ✓ will minimize the KL-divergence
D

KL

(q
✓

(z|x)||p(z|x)). The bound above is tight at
D

KL

(q
✓

(z|x)||p(z|x)) = 0, when the approximation
q
✓

(z|x) perfectly matches p(z|x).

1.2. MCMC and Auxiliary Variables

A popular alternative to variational inference is the method
of Markov Chain Monte Carlo (MCMC). Like variational
inference, MCMC starts by taking a random draw z0 from
some initial distribution q(z0) or q(z0|x). Rather than op-
timizing this distribution, however, MCMC methods sub-
sequently apply a stochastic transition operator to the ran-
dom draw z0:

z
t

⇠ q(z
t

|z
t�1, x).

By judiciously choosing the transition operator
q(z

t

|z
t�1, x) and iteratively applying it many times,

the outcome of this procedure, z
T

, will be a random
variable that converges in distribution to the exact posterior
p(z|x). The advantage of MCMC is that the samples it
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gives us can approximate the exact posterior arbitrarily
well if we are willing to apply the stochastic transition
operator a sufficient number of times. The downside of
MCMC is that in practice we do not know how many
times is sufficient, and getting a good approximation using
MCMC can take a very long time.

The central idea of this paper is that we can in-
terpret the stochastic Markov chain q(z|x) =

q(z0|x)
Q

T

t=1 q(zt|zt�1, x) as a variational approximation
in an expanded space by considering y = z0, z1, . . . , zt�1

to be a set of auxiliary random variables. Integrating
these auxiliary random variables into the variational lower
bound (2), we obtain

Laux (3)
= E

q(y,zT |x)[log[p(x, zT )r(y|x, zT )]� log q(y, z
T

|x)]
= L� E

q(zT |x){DKL

[q(y|z
T

, x)||r(y|z
T

, x)]}
 L  log[p(x)],

where r(y|x, z
T

) is an auxiliary inference distribution
which we are free to choose, and our marginal posterior
approximation is given by q(z

T

|x) =
R
q(y, z

T

|x)dy. The
marginal approximation q(z

T

|x) is now a mixture of dis-
tributions of the form q(z

T

|x, y). Since this is a very rich
class of distributions, auxiliary variables may be used to ob-
tain a closer fit to the exact posterior (Salimans & Knowles,
2013). The choice r(y|x, z

T

) = q(y|x, z
T

) would be op-
timal, but again often intractable to compute; in practice,
good results can be obtained by specifying a r(y|x, z

T

) that
can approximate q(y|x, z

T

) to a reasonable degree. One
way this can be achieved is by specifying r(y|x, z

T

) to
be of some flexible parametric form, and optimizing the
lower bound over the parameters of this distribution. In
this paper we consider the special case where the auxil-
iary inference distribution also has a Markov structure just
like the posterior approximation: r(z0, . . . , zt�1|x, zT ) =Q

T

t=1 rt(zt�1|x, zt), in which case the variational lower
bound can be rewritten as

log p(x) � E
q

[log p(x, z
T

)� log q(z0, . . . , zT |x) (4)
+ log r(z0, . . . , zt�1|x, zT )]
= E

q

⇥
log[p(x, z

T

)/q(z0|x)]

+

TX

t=1

log[r
t

(z
t�1|x, zt)/qt(zt|x, zt�1)]

⇤
.

where the subscript t in q
t

and r
t

highlights the possibility
of using different transition operators q

t

and inverse mod-
els r

t

at different points in the Markov chain. By specify-
ing these q

t

and r
t

in some flexible parametric form, we
can then optimize the value of (4) in order to get a good
approximation to the true posterior distribution.

2. Optimizing the lower bound
For most choices of the transition operators q

t

and inverse
models r

t

, the auxiliary variational lower bound (4) cannot
be calculated analytically. However, if we can at least sam-
ple from the transitions q

t

, and evaluate the inverse models
r
t

at those samples, we can still approximate the variational
lower bound without bias using the following algorithm:

Algorithm 1 MCMC lower bound estimate
Require: Model with joint distribution p(x, z) and a de-

sired but intractable posterior p(z|x)
Require: Number of iterations T
Require: Transition operator(s) q

t

(z
t

|x, z
t�1)

Require: Inverse model(s) r
t

(z
t�1|x, zt)

Draw an initial random variable z0 ⇠ q(z0|x)
Initialize the lower bound estimate as
L = log p(x, z0)� log q(z0|x)
for t = 1 : T do

Perform random transition z
t

⇠ q
t

(z
t

|x, z
t�1)

Calculate the ratio ↵
t

=

p(x,zt)rt(zt�1|x,zt)
p(x,zt�1)qt(zt|x,zt�1)

Update the lower bound L = L+ log[↵
t

]

end for
return the unbiased lower bound estimate L

The key insight behind the recent work in stochastic gradi-
ent variational inference is that if all the individual steps of
an algorithm like this are differentiable in the parameters of
q and r, which we denote by ✓, then so is the algorithm’s
output L. Since L is an unbiased estimate of the variational
lower bound, its derivative is then an unbiased estimate of
the derivative of the lower bound, which can be used in a
stochastic optimization algorithm.

Obtaining gradients of the Monte Carlo estimate of Al-
gorithm 1 requires the application of the chain rule
through the random sampling of the transition operators
q
t

(z
t

|x, z
t�1). This can in many cases be realized by draw-

ing from these operators in two steps: In the first step
we draw a set of primitive random variables u

t

from a
fixed distribution p(u

t

), and we then transform those as
z
t

= g
✓

(u
t

, x) with a transformation g
✓

() chosen in such
a way that z

t

follows the distribution q
t

(z
t

|x, z
t�1). If this

is the case we can apply backpropagation, differentiating
through the sampling function to obtain unbiased stochas-
tic estimates of the gradient of the lower bound objective
with respect to ✓ (Salimans & Knowles, 2013; Kingma &
Welling, 2014; Rezende et al., 2014). An alternative solu-
tion, which we do not consider here, would be to approx-
imate the gradient of the lower bound using Monte Carlo
directly (Paisley et al., 2012; Ranganath et al., 2014; Mnih
& Gregor, 2014).

Once we have obtained a stochastic estimate of the gradi-
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ent of (2) with respect to ✓, we can use this estimate in a
stochastic gradient-based optimization algorithm for fitting
our approximation to the true posterior p(z|x). We do this
using the following algorithm:

Algorithm 2 Markov Chain Variational Inference (MCVI)
Require: Forward Markov model q

✓

(z) and backward
Markov model r

✓

(z0, . . . , zt�1|zT )
Require: Parameters ✓
Require: Stochastic estimate L(✓) of the variational lower

bound Laux(✓) from Algorithm 1
while not converged do

Obtain unbiased stochastic estimate ĝ with E
q

[ĝ] =

r
✓

Laux(✓) by differentiating L(✓)
Update the parameters ✓ using gradient ĝ and a
stochastic optimization algorithm

end while
return final optimized variational parameters ✓

2.1. Example: bivariate Gaussian

As a first example we look at sampling from the bivariate
Gaussian distribution defined by

p(z1, z2) / exp


� 1

2�2
1

(z1 � z2)2 � 1

2�2
2

(z1 + z2)2
�
.

We consider two MCMC methods that update the univari-
ate z1, z2 in turn. The first method is Gibbs sampling,
which samples from the Gaussian full conditional distri-
butions p(zi|z�i

) = N(µ
i

,�2
i

). The second method is the
over-relaxation method of (Adler, 1981), which instead up-
dates the univariate zi using q(zi

t

|z
t�1) = N [µ

i

+↵(zi
t�1�

µ
i

),�2
i

(1 � ↵2
)]. For ↵ = 0 the two methods are equiv-

alent, but for other values of ↵ the over-relaxation method
may mix more quickly than Gibbs sampling. To test this
we calculate the variational lower bound for this MCMC
algorithm, and maximize with respect to ↵ to find the most
effective transition operator.

For the inverse model r(z
t�1|zt) we use Gaussians with

mean parameter linear in z
t

and variance independent of
z
t�1 . For this particular case this specification allows

us to recover the q(z
t�1|zt) distribution exactly. We use

�1 = 1,�2 = 10 in our exact posterior, and we initialize the
Markov chain at (�10,�10), with addition of infinitesimal
noise (variance of 10�10). Figure 1 shows the lower bound
for both MCMC methods: over-relaxation with an optimal
↵ of �0.76 clearly recovers the exact posterior much more
quickly than plain Gibbs sampling. The fact that optimiza-
tion of the variational lower bound allows us to improve
upon standard methods like Gibbs sampling is promising
for more challenging applications.
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Figure 1. The log marginal likelihood lower bound for a bivariate
Gaussian target and an MCMC variational approximation, using
Gibbs sampling or Adler’s overrelaxation.

3. Hamiltonian variational inference
One of the most efficient and widely applicable MCMC
methods is Hamiltonian Monte Carlo (HMC) (Neal, 2011).
HMC is an MCMC method for approximating continu-
ous distributions p(z|x) where the space of unknown vari-
ables is expanded to include a set of auxiliary variables
v with the same dimension as z. These auxiliary vari-
ables are initialized with a random draw from a distribu-
tion v0

t

⇠ q(v0
t

|x, z
t�1), after which the method simulates

the dynamics corresponding to the Hamiltonian H(v, z) =
0.5vTM�1v � log p(x, z), where z and v are iteratively
updated using the leapfrog integrator, see (Neal, 2011).

Hamiltonian dynamics of this form is a very effective way
of exploring the posterior distribution p(z|x) because the
dynamics is guided by the gradient of the exact log pos-
terior, and random walks are suppressed by the auxiliary
variables v, which are also called momentum variables.
Furthermore, the transition from v0

t

, z
t�1 to v

t

, z
t

in HMC
is deterministic, invertible and volume preserving, which
means that we have

q(v
t

, z
t

|z
t�1, x) = q(v

t

, z
t

, z
t�1|x)/q(zt�1|x)

= q(v0
t

, z
t�1|x)/q(zt�1|x) = q(v0

t

|z
t�1, x)

and similarly r(v0
t

, z
t�1|zt, x) = r(v

t

|z
t

, x), with z
t

, v
t

the
output of the Hamiltonian dynamics.

Using this choice of transition operator q
t

(v
t

, z
t

|z
t�1, x)

and inverse model r
t

(v0
t

, z
t�1|zt, x) we obtain the fol-

lowing algorithm for stochastically approximating the log
marginal likelihood lower bound:
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Algorithm 3 Hamiltonian variational inference (HVI)
Require: Unnormalized log posterior log p(x, z)
Require: Number of iterations T
Require: Momentum initialization distribution(s)

q
t

(v0
t

|z
t�1, x) and inverse model(s) r

t

(v
t

|z
t

, x)
Require: HMC stepsize and mass matrix ✏,M

Draw an initial random variable z0 ⇠ q(z0|x)
Init. lower bound L = log[p(x, z0)]� log[q(z0|x)]
for t = 1 : T do

Draw initial momentum v0
t

⇠ q
t

(v0
t

|x, z
t�1)

Set z
t

, v
t

= Hamiltonian Dynamics(z
t�1, v

0
t

)

Calculate the ratio ↵
t

=

p(x,zt)rt(vt|x,zt)
p(x,zt�1)qt(v0

t|x,zt�1)

Update the lower bound L = L+ log[↵
t

]

end for
return lower bound L, approx. posterior draw z

T

Here we omit the Metropolis-Hastings step that is typically
used with Hamiltonian Monte Carlo. Section 4.1 discusses
how such as step could be integrated into Algorithm 3.

We fit the variational approximation to the true posterior
distribution by stochastically maximizing the lower bound
with respect to q,r and the parameters (stepsize and mass
matrix) of the Hamiltonian dynamics using Algorithm 2.
We call this version of the algorithm Hamiltonian Varia-
tional Inference (HVI). After running the algorithm to con-
vergence, we then have an optimized approximation q(z|x)
of the posterior distribution. Because our approximation
automatically adapts to the local shape of the exact pos-
terior, this approximation will often be better than a varia-
tional approximation with a fixed functional form, provided
our model for r

t

(v
t

|x, z
t

) is flexible enough.

In addition to improving the quality of our approximation,
we find that adding HMC steps to a variational approxi-
mation often reduces the variance in our stochastic gradi-
ent estimates, thereby speeding up the optimization. The
downside of using this algorithm is that its computational
cost per iteration is higher than when using an approximate
q(z|x) of a fixed form, mainly owing to the need of calcu-
lating additional derivatives of log p(x, z). These deriva-
tives may also be difficult to derive by hand, so it is ad-
visable to use an automatic differentiation package such as
Theano (Bastien et al., 2012). As a rule of thumb, using
the Hamiltonian variational approximation with m MCMC
steps and k leapfrog steps is about mk times as expensive
per iteration as when using a fixed form approximation.
This may be offset by reducing the number of iterations,
and in practice we find that adding a single MCMC step
to a fixed-form approximation often speeds up the conver-
gence of the lower bound optimization in wallclock time.
The scaling of the computational demands in the dimen-
sionality of z is the same for both Hamiltonian variational
approximation and fixed form variational approximation,

and depends on the structure of p(x, z).

Compared to regular Hamiltonian Monte Carlo, Algo-
rithm 3 has a number of advantages: The samples drawn
from q(z|x) are independent, the parameters of the Hamil-
tonian dynamics (M, ✏) are automatically tuned, and we
may choose to omit the Metropolis-Hastings step so as not
to reject any of the proposed transitions. Furthermore, we
optimize a lower bound on the log marginal likelihood, and
we can assess the approximation quality using the tech-
niques discussed in (Salimans & Knowles, 2013). By find-
ing a good initial distribution q(z0), we may also speed up
convergence to the true posterior and get a good posterior
approximation using only a very short Markov chain, rather
than relying on asymptotic theory.

3.1. Example: A beta-binomial model for
overdispersion

To demonstrate our Hamiltonian variational approximation
algorithm we use an example from (Albert, 2009), which
considers the problem of estimating the rates of death from
stomach cancer for the largest cities in Missouri. The data
is available from the R package LearnBayes. It consists of
20 pairs (n

j

, x
j

) where n
j

contains the number of individ-
uals that were at risk for cancer in city j, and x

j

is the num-
ber of cancer deaths that occurred in that city. The counts
x
j

are overdispersed compared to what one could expect
under a binomial model with constant probability, so (Al-
bert, 2009) assumes a beta-binomial model with a two di-
mensional parameter vector z. The low dimensionality of
this problem allows us to easily visualize the results.

We use a variational approximation containing a single
HMC step so that we can easily integrate out the 2 momen-
tum variables numerically for calculating the exact KL-
divergence of our approximation and to visualize our re-
sults. We choose q

✓

(z0), q✓(v
0
1|z0), r✓(v1|z1) to all be mul-

tivariate Gaussian distributions with diagonal covariance
matrix. The mass matrix M is also diagonal. The means
of q

✓

(v01|z0) and r
✓

(v1|z1) are defined as linear functions
in z and r

z

log p(x, z), with adjustable coefficients. The
covariance matrices are not made to depend on z, and the
approximation is run using different numbers of leapfrog
steps in the Hamiltonian dynamics.

As can be seen from Figures 2 and 3, the Hamiltonian dy-
namics indeed helps us improve the posterior approxima-
tion. Most of the benefit is realized in the first two leapfrog
iterations. Of course, more iterations may still prove use-
ful for different problems and different specifications of
q
✓

(z0), q✓(v
0
1|z0), r✓(v1|z1), and additional MCMC steps

may also help. Adjusting only the means of q
✓

(v01|z0) and
r
✓

(v1|z1) based on the gradient of the log posterior is a
simple specification that achieves good results. We find
that even simpler parameterizations still do quite well, by
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finding a solution where the variance of q
✓

(v01|z0) is larger
than that of r

✓

(v1|z1), and the variance of q
✓

(z0) is smaller
than that of p(v|z): The Hamiltonian dynamics then ef-
fectively transfers entropy from v to z, resulting in an im-
proved lower bound.
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Figure 2. Approximate posteriors for a varying number of
leapfrog steps. Exact posterior at bottom right.
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Figure 3. R-squared accuracy measure (Salimans & Knowles,
2013) for approximate posteriors using a varying number of
leapfrog steps.

3.2. Example: Generative model for handwritten digits

Next, we demonstrate the effectiveness of our Hamiltonian
variational inference approach for learning deep generative
neural network models. These models are fitted to a bina-
rized version of the MNIST dataset as e.g. used in (Uria
et al., 2014). This dataset consists of 70000 data vectors
x
i

, each of which represents a black-and-white image of a

handwritten digit. The task of modeling the distribution of
these handwritten digit images is often used as a compara-
tive benchmark for probability density and mass modeling
approaches.

Our generative model p(x
i

, z
i

) consists of a spherical
Gaussian prior p(z

i

) = N (0, I), and conditional likeli-
hood (or decoder) p

✓

(x
i

|z
i

) parameterized with either a
fully connected neural network as in (Kingma & Welling,
2014; Rezende et al., 2014), or a convolutional network as
in (Dosovitskiy et al., 2014). The network takes as input the
latent variables z

i

, and outputs the parameters of a condi-
tionally independent (Bernoulli) distribution over the pix-
els.

Since we now have a dataset consisting of multiple data-
points x

i

, with separate latent variables z
i

per datapoint,
it is efficient to let the distribution q(z|x) be an explicit
function of the data x

i

, since in that case there is often no
necessity for ’local’ variational parameters ✓ per individual
datapoint x

i

; instead, q maps from global parameters ✓ and
local observed value x

i

to a distribution over the local latent
variable(s) z

i

. We can then optimize over ✓ for all observa-
tions x

i

jointly. The joint lower bound to be optimized is
given by

nX

i=1

log p(x
i

) �
nX

i=1

E
q✓(zi|xi)[log p(zi, xi

)�log q
✓

(z
i

|x
i

)],

of which an unbiased estimator (and its gradients) can be
constructed by sampling minibatches of data x

i

from the
empirical distribution and sampling z

i

from q
✓

(z
i

|x
i

).

One flexible way of parameterizing the posterior approx-
imation q

✓

(z
i

|x
i

) is by using an inference network as in
Helmholtz machines (Hinton & Zemel, 1994) or the re-
lated variational auto-encoders (VAE) (Kingma & Welling,
2014; Rezende et al., 2014). We can augment or replace
such inference networks with the MCMC variational ap-
proximations developed here, as the parameters ✓ of the
Markov chain can also be shared over all data vectors x

i

.

Specifically, we replace or augment inference networks as
used in (Kingma & Welling, 2014; Rezende et al., 2014)
with a Hamiltonian posterior approximation as described in
Algorithm 3, with T = 1 and a varying number of leapfrog
steps. The auxiliary inference model r(v|x, z) is chosen to
be a fully-connected neural network with one determinis-
tic hidden layer with n

h

= 300 hidden units with softplus
(log(1 + exp(x))) activations and a Gaussian output vari-
able with diagonal covariance. We tested two variants of
the distribution q(z0|x). In one case, we let this distribution
be a Gaussian with a mean and diagonal covariance struc-
ture that are learned, but independent of the datapoint x.
In the second case, we let q(z0|x) be an inference network
like r(v|x, z), with two layers of n

h

hidden units, softplus
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activations and Gaussian output with diagonal covariance
structure.

In a third experiment, we replaced the fully-connected net-
works with convolutional networks in both the inference
model and the generative model. The inference model
consists of three convolutional layers with 5⇥5 filters,
[16,32,32] feature maps, stride of 2 and softplus activa-
tions. The convolutional layers are followed by a single
fully-connected layer with n

h

= 300 units and softplus
activations. The architecture of the generative model mir-
rors the inference model but with stride replaced by upsam-
pling, similar to (Dosovitskiy et al., 2014). The number of
leapfrog steps was varied from 0 to 16. After broader model
search with a validation set, we trained a final model with
16 leapfrog steps and n

h

= 800.

Table 1. Comparison of our approach to other recent methods in
the literature. We compare the average marginal log-likelihood
measured in nats of the digits in the MNIST test set. See sec-
tion 3.2 for details.

Model log p(x) log p(x)
 � = �

HVI + fully-connected VAE:
Without inference network:
5 leapfrog steps 90.86 87.16
10 leapfrog steps 87.60 85.56
With inference network:
No leapfrog steps 94.18 88.95
1 leapfrog step 91.70 88.08
4 leapfrog steps 89.82 86.40
8 leapfrog steps 88.30 85.51

HVI + convolutional VAE:
No leapfrog steps 86.66 83.20
1 leapfrog step 85.40 82.98
2 leapfrog steps 85.17 82.96
4 leapfrog steps 84.94 82.78
8 leapfrog steps 84.81 82.72
16 leapfrog steps 84.11 82.22
16 leapfrog steps, n

h

= 800 83.49 81.94

From (Gregor et al., 2015):
DBN 2hl 84.55
EoNADE 85.10
DARN 1hl 88.30 84.13
DARN 12hl 87.72
DRAW 80.97

Stochastic gradient-based optimization was performed us-
ing Adam (Kingma & Ba, 2014) with default hyper-
parameters. Before fitting our models to the full training
set, the model hyper-parameters and number of training
epochs were determined based on performance on a vali-

dation set of about 15% of the available training data. The
marginal likelihood of the test set was estimated with im-
portance sampling by taking a Monte Carlo estimate of
the expectation p(x) = E

q(z|x)[p(x, z)/q(z|x)] (Rezende
et al., 2014) with over a thousand importance samples per
test-set datapoint.

See table 1 for our numerical results and a comparison to
reported results with other methods. Without an inference
network and with 10 leapfrog steps we were able to achieve
a mean test-set lower bound of �87.6, and an estimated
mean marginal likelihood of �85.56. When no Hamilto-
nian dynamics was included the gap is more than 5 nats;
the smaller difference of 2 nats when 10 leapfrog steps
were performed illustrates the bias-reduction effect of the
MCMC chain. Our best result is 81.94 nats with convolu-
tional networks for inference and generation, and HVI with
16 leapfrog steps. This is slightly worse than the best re-
ported number with DRAW (Gregor et al., 2015), a VAE
with recurrent neural networks for both inference and gen-
eration. Our approaches are not mutually exclusive, and
could indeed be combined for even better results.

The model can also be trained with a two-dimensional
latent space to obtain a low-dimensional visualization of
data. See figure 4 for a visualization of the latent space of
such a model trained on the MNIST digits.

Figure 4. Visualization of the two-dimensional latent space of a
generative model trained with our proposed Hamiltonian varia-
tional posterior approximation; shown here are the mean images
p(x|z) corresponding to different points z in latent space. Our
proposed method results in better samples than what could be ob-
tained when just using an inference network (without fine-tuning
by Hamiltonian dynamics) as in (Kingma & Welling, 2014).
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4. Specification of the Markov chain
In addition to the core contributions presented above, we
now present a more detailed analysis of some possible
specifications of the Markov chain used in the variational
approximation. We discuss the impact of different specifi-
cation choices on the theoretical and practical performance
of the algorithm.

4.1. Detailed balance

For practical MCMC inference we almost always use a
transition operator that satisfies detailed balance, i.e. a
transition operator q

t

(z
t

|x, z
t�1) for which we have

p(x, z
t

)

�
q
t

(z
t�1|x, zt)

p(x, z
t�1)qt(zt|x, zt�1)

= 1,

where �
q
t

(z
t�1|x, zt) denotes q

t

(z
t

|x, z
t�1) with its z ar-

guments reversed (not q(z
t�1|x, zt): the conditional pdf of

z
t�1 given z

t

under q). If our transition operator satisfies
detailed balance, we can divide ↵

t

in Algorithm 1 by the
ratio above (i.e. 1) to give

log[↵
t

] = log r
t

(z
t�1|x, zt)� log

�
q
t

(z
t�1|x, zt).

By optimally choosing r
t

(z
t�1|x, zt) in this expression, we

can make the expectation E
q

log[↵
t

] non-negative: what is
required is that r

t

() is a predictor of the reverse dynam-
ics that is equal or better than �

q
t

(). If the iterate z
t�1

has converged to the posterior distribution p(z|x) by run-
ning the Markov chain for a sufficient number of steps,
then it follows from detailed balance that �

q
t

(z
t�1|x, zt) =

q(z
t�1|x, zt). In that case choosing r

t

(z
t�1|x, zt) =

�
q
t

(z
t�1|x, zt) is optimal, and the lower bound is unaf-

fected by the transition. If, on the other hand, the chain has
not fully mixed yet, then �

q
t

(z
t�1|x, zt) 6= q(z

t�1|x, zt):
the last iterate z

t�1 will then have a predictable depen-
dence on the initial conditions which allows us to choose
r
t

(z
t�1|x, zt) in such a way that E

q

log[↵
t

] is positive
and improves our lower bound. Hence a stochastic transi-
tion respecting detailed balance always improves our vari-
ational posterior approximation unless it is already perfect!
In practice, we can only use this to improve our auxil-
iary lower bound if we also have an adequately powerful
model r

t

(z
t�1|x, zt) that can be made sufficiently close to

q(z
t�1|x, zt).

A practical transition operator that satisfies detailed bal-
ance is Gibbs sampling, which can be trivially integrated
into our framework as shown in Section 2.1. Another pop-
ular way of ensuring our transitions satisfy detailed bal-
ance is by correcting them using Metropolis-Hastings re-
jection. In the latter case, the stochastic transition operator
q
t

(z
t

|x, z
t�1) is constructed in two steps: First a stochas-

tic proposal z0
t

is generated from a distribution �(z0
t

|z
t�1).

Next, the acceptance probability is calculated as

⇢(z
t�1, z

0
t

) = min


p(x, z0
t

)�(z
t�1|z0

t

)

p(x, z
t�1)�(z0

t

|z
t�1)

, 1

�
.

Finally, z
t

is set to z0
t

with probability ⇢(z
t�1, z

0
t

), and to
z
t�1 with probability 1�⇢(z

t�1, z
0
t

). The density of the re-
sulting stochastic transition operator q

t

(z
t

|x, z
t�1) cannot

be calculated analytically since it involves an intractable
integral over ⇢(z

t�1, z
0
t

). To incorporate a Metropolis-
Hastings step into our variational objective we will thus
need to explicitly represent the acceptance decision as
an additional auxiliary binary random variable a. The
Metropolis-Hastings step can then be interpreted as taking
a reversible variable transformation with unit Jacobian:

z
t�1 ! I[a = 1]z0

t

+ I[a = 0]z
t�1

z0
t

! I[a = 1]z
t�1 + I[a = 0]z0

t

a ! a.

Evaluating our target density at the transformed variables,
we get the following addition to the lower bound:

log[↵
t

] = log[p(x, z
t

)/p(x, z
t�1)] + log[r

t

(a|x, z
t

)]

+ I[a = 1] log[r
t

(z
t�1|x, zt)]

+ I[a = 0] log[r
t

(z0
t

|x, z
t

)]

� log[q
t

(z0
t

|x, z
t�1)q(a|z0

t

, z
t�1, x)].

Assuming we are working with a continuous variable z, the
addition of the binary variable a has the unfortunate effect
that our Monte Carlo estimator of the lower bound is no
longer a continuously differentiable function of the varia-
tional parameters ✓, which means we cannot use the gradi-
ent of the exact log posterior to form our gradient estimates.
Estimators that do not use this gradient are available (Sal-
imans & Knowles, 2013; Paisley et al., 2012; Ranganath
et al., 2014; Mnih & Gregor, 2014) but these typically have
much higher variance. We can regain continuous differen-
tiability with respect to ✓ by Rao-Blackwellizing our Monte
Carlo lower bound approximation L and calculating the ex-
pectation with respect to q(a|z0

t

, z
t�1, x) analytically. For

short Markov chains this is indeed an attractive solution.
For longer chains this strategy becomes computationally
demanding as we need to do this for every step in the chain,
thereby exploring all 2T different paths created by the T
accept/reject decisions. Another good alternative is to sim-
ply omit the Metropolis-Hastings acceptance step from our
transition operators and to rely on a flexible specification
for q() and r() to sufficiently reduce any resulting bias.

4.2. Annealed variational inference

Annealed importance sampling is an MCMC strategy
where the Markov chain consists of stochastic transitions
q
t

(z
t

|z
t�1) that each satisfy detailed balance with respect
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to an unnormalized target distribution log[p
t

(z)] = (1 �
�
t

) log[q0(z)] + �
t

log[p(x, z)], for �
t

gradually increas-
ing from 0 to 1. The reverse model for annealed im-
portance sampling is then constructed using transitions
r(z

t�1|zt) = q
t

(z
t

|z
t�1)pt(zt�1)/pt(zt), which are guar-

anteed to be normalized densities because of detailed bal-
ance. For this choice of posterior approximation and re-
verse model, the marginal likelihood lower bound is then
given by

log p(x) � E
q

TX

t=1

(�
t

� �
t�1) log[p(x, zt)/q0(zt)].

With �0 = 0,�
T

= 1 this looks like the bound we have at
t = 0, but notice that the expectation is now taken with re-
spect to a different distribution than q0. Since this new ap-
proximation is strictly closer to p(z|x) than the old approx-
imation, its expectation of the log-ratio log[p(x, z

t

)/q0(zt)]
is strictly higher, and the lower bound will thus be im-
proved.

The main advantage of annealed variational inference over
other variational MCMC strategies is that it does not re-
quire explicit specification of the reverse model r, and that
the addition of the Markov transitions to our base approxi-
mation q0(z) is guaranteed to improve the variational lower
bound. A downside of using this scheme for variational in-
ference is the requirement that the transitions q(z

t

|z
t�1)

satisfy detailed balance, which can be impractical for opti-
mizing q.

4.3. Using multiple iterates

So far we have defined our variational approximation as
the marginal of the last iterate in the Markov chain, i.e.
q(z

T

|x). This is wasteful if our Markov chain consists
of many steps, and practical MCMC algorithms therefore
always use multiple samples z

T+1�K

, . . . , z
T

from the
Markov chain, with K the number of samples. When using
multiple samples obtained at different points in the Markov
chain, our variational approximation effectively becomes a
discrete mixture over the marginals of the iterates that are
used:

q(z|x) = 1

K

TX

t=T+1�K

q(z
t

|x)

=

TX

t=T+1�K

I(w = t)q(z
t

|x),

with w ⇠ Categorical(T + 1�K, . . . , T ).

To use this mixture distribution to form our lower bound,
we need to explicitly take into account the mixture indi-
cator variable w. This variable has a categorical distribu-
tion q(w = t), t 2 [T + 1 � K, . . . , T ] that puts equal

probability on each of the K last iterates of the Markov
chain, the log of which is subtracted from our variational
lower bound (3). This term is then offset by adding the
corresponding log probability of that iterate under the in-
verse model r(w = t|x, z). The simplest specification for
the inverse model is to set it equal to q(w = t): In that
case both terms cancel, and we’re effectively just taking
the average of the last K lower bounds L computed by
Algorithm 1. Although suboptimal, we find this to be an
effective method of reducing variance when working with
longer Markov chains. An alternative, potentially more op-
timal approach would be to also specify the inverse model
for w using a flexible parametric function such as a neural
network, taking x and the sampled z as inputs.

4.4. Sequential MCVI

In Algorithm 2 we suggest optimizing the bound over all
MCMC steps jointly, which is expected to give the best re-
sults for a fixed number of MCMC steps. Another approach
is to optimize the MCMC steps sequentially, by maximiz-
ing the local bound contributions E

q

log[↵
t

]. Using this
approach, we can take any existing variational approxima-
tion and improve it by adding one or more MCMC steps,
as outlined in Algorithm 4. Improving an existing approxi-
mation in this way gives us an easier optimization problem,
and can be compared to how boosting algorithms are used
to iteratively fit regression models.

Algorithm 4 Sequential MCVI
Require: Unnormalized log posterior log p(x, z)
Require: Variational approximation q(z0|x)

for t = 1 : T do
Add transition operator q

t

(z
t

|x, z
t�1) and inverse

model r
t

(z
t�1|x, zt).

Choose the new parameters by maximizing the local
lower bound contribution E

q(zt,zt�1) log[↵t

]

Set the new posterior approximation equal to
q(z

t

|x) =
R
q
t

(z
t

|x, z
t�1)q(zt�1|x)dzt�1

end for
return the final posterior approximation q(z

T

|x)

5. Conclusion
By using auxiliary variables in combination with stochas-
tic gradient variational inference we can construct posterior
approximations that are much better than can be obtained
using only simpler exponential family forms. One way
of improving variational inference is by integrating one or
more MCMC steps into the approximation. By doing so
we can bridge the accuracy/speed gap between MCMC and
variational inference and get the best of both worlds.
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