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Appendix

A. Orthogonal signatures
In this section we prove that if each attribute signature of
the training classes is orthogonal to each attribute signature
of the test classes, that is, if for each i ∈ {1 . . . z}, j ∈
{1 . . . z�},

�
si, s

�
j

�
= 0, then the right hand side term in eq.

(10) becomes bigger than one.

To make the explanation clearer let us denote by x ∈ Rd

any training instance in the original feature space, and sim-
ilarly let x� ∈ Rd be any test instance. Then, by applying
eq. (8) using the training signature si, and test signature sj
we have

�xi = vec
�
xs�i

�
∈ Rda

�x�
j = vec

�
x�s��j

�
∈ Rda

Note that because of the orthogonality assumption between
training and test signatures the following holds true:

�
�xi, �x�

j

�
= trace

�
xs�i s

�
jx

��� = 0. (11)

Eq. (11) implies that in the new feature space any training
instance is orthogonal to any test instance. Because of that,
the following lemma becomes useful.

Lemma 1. Let us consider H be the hypothesis space com-
posed of all linear classifiers. Then given two orthogonal
sets P , Q, there exists a hypothesis f ∈ HΔH which sep-
arates them.

Proof. Let us consider any couple of points p ∈ P , q ∈ Q
with the only condition that they are not zero. We define

h(x) = sign
�
(p+ q)�x

�
, and

h�(x) = sign
�
(p− q)�x

�
.

For any point p� ∈ P ,

h(p�) = sign
�
(p+ q)�p�

�

= sign
�
p�p�

�

= sign
�
(p− q)�p�

�

= h�(p�)

given that by definition p� and q are orthogonal. Similarly,
for any point q� ∈ Q,

h(q�) = sign
�
(p+ q)�q�

�

= sign
�
q�q�

�

= −sign
�
(p− q)�q�

�

= −h�(q�)

Therefore f ∈ HΔH associated to functions h, h� ∈ H
will be positive if and only if the input is in Q.

As a consequence of Lemma 1, when the orthogonality as-
sumption holds, the right hand side term in eq. (10) be-
comes bigger than 1, so that the bound is vacuous as one
would expect. One illustrative instance of this case hap-
pens when S = [B, 0a,c, ], and S� = [0a,b, C] for some
non-zero matrices B ∈ Ra×b, C ∈ Ra×c. In that case, the
set of attributes that describe the training classes are com-
pletely different from the ones describing the test classes,
thus no transfer can be done.

B. More synthetic experiments
In this section we add further synthetic experiments that
complement the ones reported in Sec. 5.1, and give support
to some claims made thorough the paper.

Firstly, we focus on the question discussed in Sec. 4.2 by
empirically assessing the performance of our approach as
a function of the similarity between S and S�. We use the
trace norm of the product,

��S�S���
Tr

, as a way to mea-
sure the similarity between S and S�. We have considered
here a similar experimental setting as the one described in
Sec. 5.1, and we have fixed the number of attributes to
be 5. We have repeated the experiment 10000 times, and
the results are reported in Fig. 4. We have also calcu-
lated the correlation between the multiclass accuracy and��S�S���

Tr
, which is 0.1877. In the figure we observe that

when
��S�S���

Tr
is low, there is not any instance of high

multiclass accuracy. When
��S�S���

Tr
is high, any result is

possible, from low to high multiclass accuracy. One way to
interpret this is that high correlation between the signatures
in S and S� is necessary to obtain a high performance, but
that is not the only factor for success. Other factors may be
related, for example, the performance of the approach may
be inversely related to the similarity of the test signatures
between each other (and correspondingly the similarity of
the training signatures), because it is difficult to distinguish
between classes when the attributes that describe them are
not discriminative.

Secondly, we extend the last experiment of Sec. 5.1 in
which we studied the extreme case where some attributes
provide no information at all about the classes at hand. Let
us recall that in that experiment we randomly selected ψ
attributes, and tweaked them. In the present experiment
we assess whether our model diminishes the importance of
these attributes through the learned weights V .

Let us define by A the set of all attributes, with cardinal-
ity a. From this set A we randomly sample ψ mislead-
ing attributes, creating the set Ψ ⊆ A. These attributes
will be artificially tweaked in order to test the robustness
of our approach. Similarly we denote by Φ = A \ Ψ the
remainder set of a − ψ informative attributes. We denote
by VΨ ∈ Rd×ψ and VΦ ∈ Rd×(a−ψ) the matrix consist-
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Figure 4. Performance of ESZSL with respect to the similarity
between S and S�.

ing on the columns of V associated to the attributes in Ψ
and Φ respectively. If our model is learning to filter out
misleading attributes, it should learn a V such that VΨ has
a significantly lower magnitude than VΦ. That is exactly
what we quantify in this experiment. We consider the rel-
ative importance of the weights in Ψ with respect to the Φ

as r(VΨ, VΦ) =
(a−ψ)�VΨ�2

Fro

ψ�VΦ�2
Fro

, where �·�Fro denotes the
Frobenius norm. Note that r(VΨ, VΦ) = 1 if the average
squared �2 norm of the columns in Ψ is similar to the av-
erage squared �2 norm of the columns in Φ, that is, if the
model is not capable of distinguishing between misleading
and meaningful attributes.

We have used a similar experimental setting as the one in
Sec. 5.1, that is, we fixed a = 100, and varied ψ in the
range [5, 10, . . . , 45]. We repeated 200 trials for each value
of ψ and report the average results in Fig. 5. We can
see that the values obtained are much lower than 1, im-
plying that our model is able to discriminate meaningful
attributes. Furthermore, we see that r(VΨ, VΦ) grows as
the number of misleading attributes increases, although it
seems to plateau for high values of ψ.

C. More real experiments
In this section we present some additional experiments on
real datasets.

C.1. Attributes prediction

The focus of our model is on maximising the multiclass ac-
curacy among the classes at hand. However, as a byproduct
of the learning process, we can also use V as a way to pre-
dict attributes. In this experiment we check whether these
attribute predictors are effective, or on the contrary, the gain
in zero-shot performance comes at the expense of attribute
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Figure 5. Values of r(VΨ, VΦ) for V obtained using ESZSL,
when varying the number of corrupted attributes ψ.

Mean Average Precision AwA aPY SUN

Learning attributes directly 56.95% 30.78% 79.36%

Using X�V from ESZSL 50.73% 29.51% 68.53%

Table 4. Comparison between SVM (Learning attributes di-
rectly), and ESZSL, for attributes prediction, using mean average
precision as a measure.

prediction. In order to do so, we compare the described op-
tion with a simple approach that learns an SVM for each
attribute directly. The results are reported in table 4.

The gain in ZSL performance comes at the expense of at-
tribute prediction. This may be because our approach tends
to neglect the attributes that are unreliable or useless for
class prediction, whereas in attribute prediction all are con-
sidered equally important. These results are in the same
vein as the ones reported in (Akata et al., 2013).

C.2. Sample results using SUN dataset

In this section we present some qualitative results in order
to gain insights about when ESZSL succeeds and when it
fails. In Fig. 6 we show some samples of the SUN test set
organised in a confusion matrix, according to the predic-
tions made by ESZSL. White cells within this matrix indi-
cate that there is no error made between the corresponding
two classes.
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Figure 6. Samples of the SUN test set in a confusion matrix. Rows represent ground truth classes, columns represent predictions.


