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Abstract lower than possible sampling rate. A feature’s accu-
racy is often related to the sampling rate (Anderson,
), and therefore low sampling rate results in low
accuracy. One can employ non-uniform sampling rate.

In many machine learning applications the qual-
ity of the data is limited by resource constraints
(may it be power, bandwidth, memory, ...). In

such cases, the constraints are on the average re- e Due to memory constraints, it is common practice
sources allocated, therefore there is some control to use sliding windows in spectral features calcula-
over each sample’s quality. In most cases this tion which causes spectral features to be inaccurate
option remains unused and the data’s quality is (Andersoh[ 2011). One may dynamically choose the
uniform over the samples. In this paper we pro- length of the window to use.

pose to actively allocate resources to each sam-

ple such that resources are used optimally over- e Due to computation constraints, features that require
all. We propose a method to compute the optimal averaging are calculated using only part of the data
resource allocation. We further derive general- (for example acquiring word frequencies from only
ization bounds for the case where the problem’s part of the text). This causes these features to be in-
model is unknown. We demonstrate the potential accurately estimated. One can dynamically choose
benefit of this approach on both simulated and which part of the data to use.

real-life problems.
Resources are usually allocated passively, such that all

samples are acquired in the same way. We propose to ac-
1. Introduction tively allocate the resources across samples while mamntai
ing the global resource constraints. In this way “easy” de-
Most machine learning methods take feature vectors as irgisions require less resources. Therefore allowing tosinve
put. These features are often acquired using some noisyore resources in the “harder” cases. Fiddre 1 illustrates
process resulting in less than optimal data quality. In manyhijs approach in the case of support vector machine (SVM)
scenarios, the data quality depends on the resources alassification. The figure shows the optimal resource al-
located for the data acquisition process. Frequently, refocation for the case of Gaussian noise (high amount of
sources (power, memory, bandwidth,...) can be dynamiresources results in low noise). Far away from the deci-
cally allocated while maintaining some global constraintsjon boundary, few resources are needed, since even with
on their average. Examples of such scenarios are: large uncertainty the correct result is clear. Surprising!
very near the decision boundary few resources are needed
e Due to bandwidth constraints the use of vector quanalso. This is since the error will be close to 0.5 even when
tization (VQ) is popular|(Linde et al., 1980). Such a lot of resources are allocated. Therefore, most of the re-
guantization can be viewed as adding noise to the insources should be allocated to samples which fall between
put. One can dynamically switch VQ schemes whilethose two extremes.
maintaining the average bandwidth rate.

In this paper we propose a method for allocating resources
e Due to power constraints, mobile devices often usdn thedecision makinghase. We assume that special effort
is made such that the training data is of the highest quality.
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our model separates the system from the disturbance. This
allows to better introduce prior knowledge about the distur
bance structure. Second, we consider the decision space to
be continuous and not discrete. This allows us to use new
techniques. Our approach does not include heuristics and
has little computational requirements in the decision mak-
ing phase. Third, we propose a general probabilistic frame-
work with a theoretical analysis of the overall classifioati
scheme.

Another related field is that of active Iearni@tles,
). In active learning, features are acquired for
“free”, however the learner can choose which labels to
acquire. Choosing which label to acquire may result in
a substantial improvement in the learning performance
(Freund et &ll, 1997). Situations in which the label’'s dyali
can be controlled have also been investigm etal.,
M). A related problem is that of active class selection

1 1, 2007) in which labels are known, however

acquiring the data has a cost. As opposed to active learn-
ing, we are concerned with the quality of the features and
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Low resource budget
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. , .
15 2 25
distance from the dividor

Figure 1.lllustration of optimal allocation for the case of SVM
classification. Bigger circles indicates less resources and ther
fore more uncertainty

larger by several orders of magnitude from the training sef'0t With the quality of the labels.
size. Other related work includes several methods that have
The contributions of this paper are threefold. First, weP&€n Proposed in order to incorporate the knowledge

; t data are noisy in learning schemes; for exam-
present a general model for problems of resource aIIocatloH]a : >
in classification problems. To the best of our knowledge,P'€S (Xuetal.,[ 2009), , | (Trafalis and Gilbert._2007),

this formulation is novel and such a problem has not beefELGhaouiand Lebr 1.1997). While these methods pro-
investigated before. Second, we define the resource allocyide away to deal W'th existing uncertainty, they do not try
tion optimization problem and propose an efficient method© actively manage it.

for solving it. Lastly, we derive a bound on the error that The paper is structured as follows: Secfidn 2 formally de-
results from not knowing the data distribution. fines the problem at hand. The main result of this paper
is given in Sectio13, where a general method to derive

Related works Our approach shares the motivation an optimal resource allocation is presented alongside an

with active classification| (Heckerman et &l.. 1994) Inexample. Sectiohl4 explores the situation where the data

active classification. a decision tree is used to ac_distribution is unknown and provides a performance bound

quire features on need. This tree is constructed suchn the error resulting from the need to learn the distribu-
that the total cost is balanced with classification ac-lon- Sectiorib gives a taste of the method potential using
curacy.  Joint learning of the classifier and aSSOCi_simulation results on both a toy data set and real-life data.

ated decision tree was consideréd (Greinerlef al. 199§ectiorﬂi concludes this paper with some final thoughts.
\Jiand Carin) 2007; Xu et al., 2014). In addition, simi-
lar schemes where features are also actively acquired du2. Model Formulation

ing the learning phase (also known as budgeted learn- 4
ing) were investigated| (Melville ethll, 2004). Recent e assume that samples, y) € (x © R% {~1,1}) are

work had also explored a sequential approach where Egeneratedi.i.q.from somejointdistribution with a maggin
each step a decision about which feature to acquire nexgensity functionp(x). We_ assume thay is closed and
has to be made. Both greedy (Gaoand Igo||§,L_12011bounded. The data quality management (DQM) process
Saar-Tsechansky et/dl.. 2009) and Dynamic programmin’?s illustrated in Figur&l2. A sample undergoes some coarse
algorithms [(Kanani and McCalldni, 2012) were consid- eature acquisition which produces a low quality feature
ered. There is also a growing research interest in receMector. We denote the resulting marginal density func-
iéears in classifiers cascadds (Vasconcelos and Saberidipn p(z). We assume: is also iny. Both the underlying

) where decisions are made sequentially and eadfifta model and the coarse acquisition model are known,
namelyp(x), p(Z) andp(z|z) are assumed known. This

feature vector is then re-acquired using resources a#idcat
Our work differs from the above in several aspects. First,

stage employs more resources than its predecessor.
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h(x) Where 5 denotes the resource “budget” allocated. The
e maximal possible change rate is denoted gy., =
hi;h quaﬁty ‘ Lschemeg 0 azx
data-set maXIGX g($7 )
r(?c)l An example Consider the special case of a linear SVM
~ . .1 2003), such that(z) = signw = + b). As
e e B i before, the data are corrupted by some noise. Assume that
e datas catisiton sccuistion » cassifier the noise is Gaussian with mean 0 and variance where
r denotes the resources allocated to the acquisition process
For simplicity, we assumg(z) is a proper classifier. Now

Figure 2.Data flow in Data quality management the error resulting from the disturbance is,
G(x,7) =P(h(z +0(r)) # h(z)) = ®(|w "z + b|\/7),

where® denotes the cumulative distribution function of the
standard normal distribution. Further,

using a pre-learned quality functior{z) to produce the
feature vector:. This feature vector is then classified using
a binary classifieh(z). Bothh(x) andr(z) are previously
learned using high quality training data. While learning lwTz + b —@wTetn)?r

h(zx) can be done using any learning algorithm, the main 9x(r) = 27r ‘ ’ '

result of this paper is a method to deriver). We assume

that the model that connects the allocated resourtes 3. Finding the Optimal Resource Allocation

with the resulting disturbance inis known. This assump-

tion is quite reasonable. Examples include the influence ofVe now move on to state the main result of this paper. The
Samp"ng rate on tempora| features, Samp]ing time of specﬂext theorem shows that the optimal resource allocation can
tral features, iower in communication and radar and manye€ derived by solving an equations set that is equivalent to

more (Andersdr, 2011). problem ).
_ _ _ —¢.n_  Theorem 1. If for everyz € x, p(z) > 0. Then for some
Denote byP*(z) = P(Y = W(X)|X = z) andP~(2) = ) ; L
P(Y # h(X)|X = z) the posterior performance measures” ~ 0 & Unique solution for probleril(1) is given by
of h. In addition,AP(z) = P*(z) — P~ (z). The er- R 0 9(%,0) <\
ror which results from the disturbanéegenerated using r(@) = { 72 (\) g(#,0) > A 2
resources can be stated as: B =/ ﬁ(;)r(x)da: ’ 2)
X
G(z,r) = AP(x)P(h(z + 6(r)) # h(z)),

A
PN - Whereg—! denote the inverse function gf Note that solv-
G(#,7) = By (G(2,7)[2)- ing this equations set will provide the desirkd

The partial derivatives in is denoted as _ _ _
Proof. The proof consists of four parts. First, we will show

9u(r) = g(z,7) = —0G(z,r) that a solution exists. Second, we will show that (2) is well
f ’ _or ’ defined. Third, we will show thal]2) meets the necessary
9(z,7) = Ex(g(z,7)|T). conditions for an optimum (the Euler equation; for more in-

formation see (Gelfand et/al., 2000). Finally, we will show
We assume that noise decreases performance; formally thigat no other solution can solve the Euler equation. Since
assumption states thét(,r) is positive. We further as- the problem is written now only in terms af for ease of
sume thatg(z,r) is a positive continuous function and reading, we will use throughout the proofinstead ofz
g.(r) is strictly decreasing for every € y (and there- anding(z,r) instead ofg(z, r).
fore,g, (r) is also positive continuous and strictly decreas-
ing). This mild assumption holds for many common distri- Part 1~ Since L(r(x)) is bounded and continuous, in or-
butions of disturbance. der to show that a solution exists it suffices to show that the
. . . . . set of possible solutions(z) } can be bounded. Denote by
We wish to fmd' opt|.mal allocation for the gyallgble re- #(z) the optimum ofllfﬂén)d} assume by contradiction that
sources constraints in the sense that classification sesulf

. L ) . _ is not bounded. Namely, that for every chogsen- 2
will be most similar to those obtained from optimal quality 4 y b

data. Namely solve the problem Az =P(#(z) > a) > 0.
min,z) L(r(2)) = E:;G(Z,r(Z)) On the other hand, from the second part of equafidn (2) it
st Ez(r(z)) < B @ can be seen thatr < £,
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Define a new quality function
. 0 7(x) > «
rx) = { #(2)+ Aza @) <a @ O
It is clear that[(B) meets the resource constraints. Now,
AL £ L(7) — L(7) = E[G(z,7(x)) — G(z,0);7(z) > a]+
E[G(z,7(x)) — G(z,7(x) + Aza); 7 (z) < o >
—Az + E[G(z,7(2)) — G(x, (z) + Aza); F(x) < 28] >
—Az + E[g(z, 7(z) + Aza)Axa; #(x) < 28] >

Where gpin(r) = minge, g(x, 7). The last inequality
holds sinceg(x, r) is decreasing im and sincek(7(z)) =
8 implies thatP(7(z) < 28) > i. Clearly, fora big
enoughAL > 0 which contradict the assumption that
is the optimum.

Part 2 We will now show that[(R) is well defined, mean-
ing that for every3 > 0 a unique solution for[{2) ex-
ists. We start by noting that singg.(r) is strictly de-
creasing with bounded integral then* () is defined for
A € (0 g.(0)]. Moreover,g; () is strictly decreasing in
A and)l\iir%)ggl()\) = o0.

We define the following sets:

It(\) = {z[ g(x,0) > A},
I=(A) = {z| g(z,0) <A}
We further define

BN = / p()r(z)dz / p(x)gs (V.

X I+(\)

The following limits are easy to show:

lim A(A) = lim [ p(z)g;'(Ndz = 0,
A= gmazx A= gmax I+(>\)
1 = l = .
/\11%6( ) = im [ p(z)gy t(N)dz 00

07+ ()

If 5(\) is strictly decreasing irk than, for everys there
will be a unique\ which meet the constraimt(A) = 5. In

order to show thaB () is strictly decreasing we assume,

without loss of generality, that < A. From the definition
of I't(\) it is obvious thatf ™ (\) C I7()\). Moreover,

7(x

[ 0<i@)
r@ = {g; 1) < g1 (V)

Now,

500 = [por(@y = [ o P <

X

/ p(2)7(x)dz < /  p@)i(@)dz = B(V),
I+(\) I+(3)

andB(\) is strictly decreasing it .

Part 3 For the next part of the proof we note that from

calculus of variations (Gelfand etlal., 2000) it is knownttha
the optimum must satisfy the Euler equation. The Euler
equation for probleni{1) is given by

if r(x)=0 then g(z,0) <
if r(z)>0 then g(z,r(z))
B = [p@)r(z)de

X

A
B (4)

It is easy to verify that a solution t@](2) solves equations

@).

Part 4 It is now left to show that no other solution can
solve [4). Since we have already shown théY) is strictly
decreasing showing that every solution of the Euler equa-
tion is of the form [2) will prove the theorem. In order to
show that, we will note the following set of conditions: If
g(z,0) > X then from the first condition if{4)(z) > 0
Using the second condition yieldgz) = g~'(\). If
g(z,0) < Atheng(z,r(z)) < g(x,0) < X Using
the second condition if{4) yields(z) = 0 Finally, if
g(z,0) = X thenr(z) = 0. This is since that if-(x) > 0
theng(x,r(z)) < g(x,0) = X\ which is a contradiction to
the second condition if{4). O

Remark 1. The assumption thagi(x) > 0 is technical
and can be relaxed. Wher{z) = 0 the resources allo-
cated have no meaning and can receive any value. This
may cause () to be non-continuous in, that complicates

the problem technically. It can be defined that whenever
p(z) =0, r(x) = 0 to avoid technicalities.

Remark 2. The assumption that is bounded is also tech-
nical and can be replaced with milder conditions. Itis used
only to ensure thaE(r(x)) exists and finite where is the
optimal allocation given by {2).

Revisiting the example shown earlier (linear classifiehwit
Gaussian noise) we demonstrate how Thedrém 1 can be
used to derive the optimal resource allocation for a specific

model. Experimental results matching this model can be
found in Sectiofb.

. lw T m+b\ —(w z+b>2
As a reminderg, (r) = e .

We assume that the coarse measurenigstcorrupted by
some Gaussian noise with variangé. Using [2) it is not
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difficult to show that the optimal resource allocation can beon the Rademacher complexity. We also establish a bound
obtained by solving the equations set: on the actual average resource consumption. The actual
resource consumption can differ from the constrains since

—(w ! y+b)2r(z . ~
A= [ g ly—al” '%\ =l @ gy it depends on the coarse d4ta;}—i.....v. In cases where
8 szé (@) : the constraints are rigid proper slacks should be taken.
= z T\

Denote byrg(z) the solution of[(5) for samplé and

Note that knowing the correct allows the calculation of

r(Z), therefore a solution to the equations set can be found 1(X;) = G(X;, Z a;jo;(X
using single variable search methods. Note also that con- j=

trary to the assumptions made earlielis not bounded.

This however, is of little practical implication as explath  The bound can be stated as:

by RemarkP. Theorem 2. For every natural numbe¥ > 0, and every
sampleS = (X;,Y;)i=1,.. .~ the Radamacher complexity
4. Unknown Data Distribution is bounded by

Let us now turn our attention to the more practical case RiloH gy < B 2log K
where the classifieh is known but, the data distribution (to Hy .k, 5) < D I\ TN
is unknown. The model should be learned from a finite

training sample of coarsely acquired d@t%q;, Yitizi,..n
Note that although the distributions are unknown, the loss 54 _oN(min )2
functionsG(x,r) andG(Z,r) are known. We propose to B(|57 (7s(x) = Bl) > ) < e?MHDL ()
approximate the uncertainty functionalz) by using K
Radial basis functions (RBF) such that

K
= qigi(x)

= Proof. The proof is rather standard, the set of possible hy-
where {¢;}i=1,..k = ¢(Jx — =) for some set potheses is bounded and Radamacher calculus is used to
{x;i}i=1,...,k. We assume that;(x) is bounded from be- derive the desired bound on the generalization error. From
low by some constant,;,, > 0 almost everywhere. Note (@) it is clear that|a[[; < =
that this assumption always holdsaifis bounded. Since

. o L - _We note that for every, v > 0

r(x) is always positive we can limit ourselves to choosing

(6)

MoreoverVe > 0, and for any other sample/

Where v
5% rsto) = D)

the vectora such thati o; > 0. Now () can be substi-  |G(z, a) — G(x,7)| < g(z,0)|a — | < Gmaz|o — |-
tuted by:
Therefore,
N _
min(al ..... aK) Remp<r<x)) % Z G XZ» Z aj¢j( )) R(l o HN,K, S) < gmazR(l, © HN,Ka S)»
N K 5 a
st B(r) =5 2 2 a;0;(Xi) < B, where

K
(5) U= 0;¢;(X;) =< a, (¢1(X3),..., ox (X;)) >
Since¢;(z) > 0 andG is convex, problem[{5) is con- j=1

vex and can be solved using conventional methods. We

will define the hypothesis spadéy x as the set of vec- < o,0 > is used to denote the inner product.

tors {ou,...,ax} for which there exists a samplg = The problem can now be stated as an L1 regression problem
(X;,Y;)iz1,.. .~ suchthafa, ..., ax} solves[(b). and it is known[(S tlal.. 2010) that

We wish now to bound the generalization error that results

from the need to learn the distributions. For that purpose R(l"o Hy i, S) <

we will use the Rademacher complexity that measures the B 2log K
complexity of a hypothesis space with respect to a certain p max [(#1(Xi), - or (Xi))|oo N =
training set. The generalization error can be bounded using "

the Rademacher complexity (we use the same notation as 8 2log K

Surhone et all, 2010). We will therefore establish a bound Prmin N
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which conclude the proof of the first part of the theorem . Performance on a toy database R=0.33

0.05

The bound onj3(#(z)) is derived using Hoeffding’s in- — Uniform Allocation
eqﬁuality noticing thap3(#(x)) is bounded betweef and 0.04| "~ Data Qualty Management
Gmin = g 0.03f »
Remark 3. In most cases/(#, r) is unknown, in contrary ol I
to the assumptions made. It can however be approximate T
without knowing the distribution of: . The approxima- 0.9 H-1T ‘ ‘ ‘
tion uses the fact that the relation betwaeand. is local. 02004 006 a8 01 0.12
Therefore, in most cases one can omit the prior and assun . .

~ _ . . Lift values for repeted experiments on
thatz = = — 6 where the distribution 06 is known. In a toy database R=0.33 beta=0.08
a similar fashionA P(x) can be assumed to equiabver 2 ‘ ‘ ‘ ‘

all the features space. This causes the algorithm to “waste
more resources on some samples than it should but in cas
where the classifier is good this effect is small.

15

lift

This approximation had been used in the simulation pre
sented in Sectidnl 5 and provided good results.

5. Simulation Results experiment number

We tested our method on three data-sets. The first is a syn- Figure 3.Performance on toy database
thetic toy data-base. The second is the IRIS database from

the UCI repository, in this database noise was added arti-

ficially. The third is a speaker verification corpus. This standard deviation of 0.17.

simulates a real-life scenario where noise is the resutt-of r The improvement is however much lower for very high and
ducing recording’s length. In all tests our method (DQM) yery |ow resource budgets. In the former, since there is
provided significant benefit over uniform allocation of re- |itt1e room for improvement and in the latter, since little

sources resources do little benefit no matter how they are divided.

Toy database We created a toy-data set composed of
3000 linearly separable samplesin, generated such that
the distance from the separator is uniformly distributed be
tween 0 to 3. The coarse samplesvere generated from

IRIS dataset We tested our method also on the well
known “IRIS” data-set taken from the UCI data reposi-
tory (Bache and Lichman, 2013). The data-set contains 3

. : . .%Iasses of 50 instances each, where each class refers to a
the raw samples by adding zero mean Gaussian noise Wltt

standard deviation 0.33. Measurement noise was taken tgpe of ins plant. There are 4 features which are the length
be Gaussian with zer.o n;ean and variajicas? + r ()] ! and width of the sepal and the petal. We used this data-set

wherer(z) is the resources allocated to samgle The tq soI_ve.the binary classification prgblem ofdis_tinguis_jjin
problem is therefore similar to the problem presented earl-rIS virginica from all the rest. This problem is not lin-
lier early separable. We hav_e chosdm) to l_Je the bandW|_dth_

' needed to transfer the picture of the iris. The quantization
The method was then tested with a variety of resource budaoise generated from the picture resolution is proportiona
gets and compared to uniformly distributing the resourcego the LSB (least significant bit) in each axis, which is in-
between samples. Figuré 3 shows the performance meaersely proportional tq/r(x). Therefore the setting match
sured, averaging over 100 consecutive runs. Note that ithe setting that was presented on the toy data-set. Tests
each run the noise generated for both resource allocatiowere conducted again with coarse acquisition standard de-
schemes is uncorrelated. The figure shows the classificadation of 0.33. Since the data set is rather small, error was
tion error as a function of the noise variation. For DQM the calculated by averaging over 20 different generated noise
noise variation refers to the variation associated with thesectors. This creates the equivalent of 3000 items dataset.
average resource consumption. On each run we have caMl experiments were repeated 100 times. Fiddre 4 shows
culated the ratio between the error for uniform allocationthe performance measured averaging over the 100 consec-
and the error for DQM (this ratio is known as lift). Figure utive runs. Figurél4 shows lift values for a total resource
[3 shows the lift for a total resource budget which matches$udget that matches an average variation of 0.08. The ben-
an average variation of 0.08. It can be seen that the beneféfit of using DQM is smaller than in the toy dataset. The
of using DQM is significant. The average lift is 1.31 with average lift is 1.09 with standard deviation of 0.07. The re-
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Performance on IRIS database R=0.33 variable environment conditions. We have investigated the
‘ ‘ ‘ ‘ problem of distinguishing one speaker (for which we have
54 recordings) from all the other speakers (2160 “impos-
tors” recording of 40 different speakers). For each sample,
features extracted from the full recordirrg @sec) were re-
garded as “perfect”. We refer to the difference between fea-

— Uniform Allocation

0.04 - - -Data Quality Management | | tures generated using part of the recording to the “perfect”
features as noise. Resources are controlled using a “sam-
%02 o004 o006 008 0.1 0.12 pling factor” which is inversely proportional to the pontio
noise variation of recording used. For example, a sampling factor of 2
Lift values for repeted experiments on means that only the first half of the recording is processed.

the IRIS database R=0.33 beta=0.08

1.5
We implemented a simple text independent speaker iden-

tification engine based on SVM classification. SVM
is known to provide good performance in this task
(Fenglei and Bingxi, 2001). Mel-frequency scale cepstral
coefficient (MFCC) are extracted from each recoré;ng
This is done using a 25msec window with 10msec inter-
val. Those coefficients are time-averaged, resulting in a
vector of 13 features. The classifier is trained using the
“perfect” features. The “noise” was modelled as Gaussian
with mean0 and standard deviation < /s — 1 wheres is

the sampling factor. This modelling was done empirically
and Figuré b shows that this is quite reasonable. It can be
duced benefit is due to the structure of this particular dataseen that each feature reacts differently to the reduation i
set. Samples in this data-set reside in fairly tight cluster the amount of data. However, the distance from the divid-
with similar distances from the divider. This causes theing hyperplane roughly obeys this model. Notice that since

optimal solution to be close to uniformly allocation of re- the noise is not spherical the model used depend on the di-
sources. viding hyperplane. Since the differences are not large, in

practice one may use the same model for all dividing hy-
o perplanes (persons to be identified).

experiment number

Figure 4.Performance on “IRIS” database

Speaker identification In the two experiments shown s
far artificial noise was added to the features. In orderFrom the database, 100 sets of samples were randomly cho-
to test the method on a more realistic setting we furtheksen, each containing all 54 “positive” samples as well as
tested it on the task of speaker identification. Speakeriden 000 “impostor” samples. For each set, an SVM classifier
tification classifiers often use short-time spectral fezdur was trained using the maximal amount of data available.
(Bimbot etal., 2004). Such feature’s "noise level” is re- Then, coarse acquisition was preformed using 1/3 of the
lated to the length of the voice recordings used. Speakejvailable data. The classifier performance was evaluated
identification had been studied extensively and is requiredor different sampling factors. Resources were allocated
for many applications. (Bimbot etal., 2004). Due to the hoth uniformly and by DQM. Averages and standard devi-
high computational cost required to extract the acoustigtions was taken over the 100 datasets.

features, resources are often a concern. For example, ima,cll-h | ) _— he f
ine a mobile application that records an activity log of your | '€ results obtained can be seen in Fiddre 6. The figure
also presents the lift values for a resource budget corre-

day, whenever you meet someone it will open the micro- ) ) o
phone and try to recognize the other speakers in the corsPonding to processing half of the data. The average lift in

versation. This should be done using as little power as pos:t-hiS setting is 1.204 with stand_ard dc_avia.tt.ion 0f0.1 '.lt can
sible. Since the dominant part of computation resource?e seen that the method provided S|gn|f|§:ant benefit when
used is for the recording and extraction of acoustic feallere are enough resources to “make a difference”. As can

tures, using shorter recordings means less power. Both r&€ Seen on Fl'gurﬁ; 6, :]he method may pro‘?ﬂ@()% re—l I
sources used for recording and resources used for extragQu'ce reduction for the same desired performance level.
tion of acoustic features are proportional to the length of WO Observations are worth mentioning:

the recording used.
e When noise level is low, performance may improve

We used the MIT Mobile Device Speaker Verification Cor- by adding more noise. This is due to the fact that,

pus (Ram Woo and Hazen, 2006). This corpus contains
short 2-words recordings collected using mobile devices in  *We used HTK MFCC matlab package
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standard deviation

standard deviation

In th
quality can be controlled by active allocation of resources
to each sample. We believe that in many scenarios, care-
ful allocation of resources can substantially improve per-
form

Standard deviation of the error in different

107 features as a function of sampling factor
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Figure 5.The effect of using a portion of the recording on the
features values. Noise level as a function of sampling factor

contrary to the assumption, the classifier is not proper.

error rate
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Figure 6.Performance in speaker verification task

With small amount of noise some samples “suffer” for further research:

while other benefit, resulting in indifference to noise.
When noise is significant this effect is negligible.

While “noise” is assumed to be zero mean, as can be
seen in Figurgl5, in practice it is not. In low noise en-
vironments this bias is not negligible resulting in un-
expected influence of the sampling factor on the clas-
sifier performance. This can possibly be compensated
by incorporating some bias correction into the classi-
fier. This bias may be the result of unvoiced segments
in the recording, an issue that can be addressed by pre-
processing.

6. Conclusion

is work we presented a novel setting where the data’s

ance. The improvement will be larger in cases where

there is much diversity in classification “difficulty”. How-

ever, scenarios in which the needed accuracy is more or
less uniform will show little improvement. Such diversity
is arguably common in real-life problems where systems

e We have chosen the loss function to be the expected

error. One can use any other loss function. This can be
beneficial, for example, in cases where the data-set is
small and therefore the actual error may differ signifi-
cantly from the expectation. As long as the loss func-
tion is continuous, strictly decreasingsirand convex

in r, the results presented in this paper should hold.

We have takei¥ to be some coarse measurement of
This can be substituted by any other measurement as
long as the relationship(z|z) is known. Note thaf:
andz do not even need to be within the same space.
As an example, recall from the previous section the
mobile activity log application with speaker recogni-
tion capability. In the model presented earlier, a short
recording was used as a coarse measurement. Instead,
Z may be the location of the user. Different locations
will exhibit different class distributions and different
background noise levels. Similar methods to the one
presented can be used to derive).

are designed to meet performance in the worst case, WhilACKNOWLEDGMENTS

the average case requires much fewer resources.
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