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Abstract

In many machine learning applications the qual-
ity of the data is limited by resource constraints
(may it be power, bandwidth, memory, ...). In
such cases, the constraints are on the average re-
sources allocated, therefore there is some control
over each sample’s quality. In most cases this
option remains unused and the data’s quality is
uniform over the samples. In this paper we pro-
pose to actively allocate resources to each sam-
ple such that resources are used optimally over-
all. We propose a method to compute the optimal
resource allocation. We further derive general-
ization bounds for the case where the problem’s
model is unknown. We demonstrate the potential
benefit of this approach on both simulated and
real-life problems.

1. Introduction

Most machine learning methods take feature vectors as in-
put. These features are often acquired using some noisy
process resulting in less than optimal data quality. In many
scenarios, the data quality depends on the resources al-
located for the data acquisition process. Frequently, re-
sources (power, memory, bandwidth,...) can be dynami-
cally allocated while maintaining some global constraint
on their average. Examples of such scenarios are:

• Due to bandwidth constraints the use of vector quan-
tization (VQ) is popular (Linde et al., 1980). Such
quantization can be viewed as adding noise to the in-
put. One can dynamically switch VQ schemes while
maintaining the average bandwidth rate.

• Due to power constraints, mobile devices often use
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lower than possible sampling rate. A feature’s accu-
racy is often related to the sampling rate (Anderson,
2011), and therefore low sampling rate results in low
accuracy. One can employ non-uniform sampling rate.

• Due to memory constraints, it is common practice
to use sliding windows in spectral features calcula-
tion which causes spectral features to be inaccurate
(Anderson, 2011). One may dynamically choose the
length of the window to use.

• Due to computation constraints, features that require
averaging are calculated using only part of the data
(for example acquiring word frequencies from only
part of the text). This causes these features to be in-
accurately estimated. One can dynamically choose
which part of the data to use.

Resources are usually allocated passively, such that all
samples are acquired in the same way. We propose to ac-
tively allocate the resources across samples while maintain-
ing the global resource constraints. In this way “easy” de-
cisions require less resources. Therefore allowing to invest
more resources in the “harder” cases. Figure 1 illustrates
this approach in the case of support vector machine (SVM)
classification. The figure shows the optimal resource al-
location for the case of Gaussian noise (high amount of
resources results in low noise). Far away from the deci-
sion boundary, few resources are needed, since even with
large uncertainty the correct result is clear. Surprisingly,
very near the decision boundary few resources are needed
also. This is since the error will be close to 0.5 even when
a lot of resources are allocated. Therefore, most of the re-
sources should be allocated to samples which fall between
those two extremes.

In this paper we propose a method for allocating resources
in thedecision makingphase. We assume that special effort
is made such that the training data is of the highest quality.
During the test phase, however, resources are limited and
should be allocated sparingly. This is often the case in ap-
plications where the number of samples to be classified is
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Figure 1.Illustration of optimal allocation for the case of SVM
classification. Bigger circles indicates less resources and there-
fore more uncertainty

larger by several orders of magnitude from the training set
size.

The contributions of this paper are threefold. First, we
present a general model for problems of resource allocation
in classification problems. To the best of our knowledge,
this formulation is novel and such a problem has not been
investigated before. Second, we define the resource alloca-
tion optimization problem and propose an efficient method
for solving it. Lastly, we derive a bound on the error that
results from not knowing the data distribution.

Related works Our approach shares the motivation
with active classification (Heckerman et al., 1994). In
active classification, a decision tree is used to ac-
quire features on need. This tree is constructed such
that the total cost is balanced with classification ac-
curacy. Joint learning of the classifier and associ-
ated decision tree was considered (Greiner et al., 1996;
Ji and Carin, 2007; Xu et al., 2014). In addition, simi-
lar schemes where features are also actively acquired dur-
ing the learning phase (also known as budgeted learn-
ing) were investigated (Melville et al., 2004). Recent
work had also explored a sequential approach where at
each step a decision about which feature to acquire next
has to be made. Both greedy (Gao and Koller, 2011;
Saar-Tsechansky et al., 2009) and Dynamic programming
algorithms (Kanani and McCallum, 2012) were consid-
ered. There is also a growing research interest in recent
years in classifiers cascades (Vasconcelos and Saberian,
2010) where decisions are made sequentially and each
stage employs more resources than its predecessor.

Our work differs from the above in several aspects. First,

our model separates the system from the disturbance. This
allows to better introduce prior knowledge about the distur-
bance structure. Second, we consider the decision space to
be continuous and not discrete. This allows us to use new
techniques. Our approach does not include heuristics and
has little computational requirements in the decision mak-
ing phase. Third, we propose a general probabilistic frame-
work with a theoretical analysis of the overall classification
scheme.

Another related field is that of active learning (Settles,
2010). In active learning, features are acquired for
“free”, however the learner can choose which labels to
acquire. Choosing which label to acquire may result in
a substantial improvement in the learning performance
(Freund et al., 1997). Situations in which the label’s quality
can be controlled have also been investigated (Sheng et al.,
2008). A related problem is that of active class selection
(Lomasky et al., 2007) in which labels are known, however
acquiring the data has a cost. As opposed to active learn-
ing, we are concerned with the quality of the features and
not with the quality of the labels.

Other related work includes several methods that have
been proposed in order to incorporate the knowledge
that data are noisy in learning schemes; for exam-
ples (Xu et al., 2009), , (Trafalis and Gilbert, 2007),
(El Ghaoui and Lebret, 1997). While these methods pro-
vide a way to deal with existing uncertainty, they do not try
to actively manage it.

The paper is structured as follows: Section 2 formally de-
fines the problem at hand. The main result of this paper
is given in Section 3, where a general method to derive
an optimal resource allocation is presented alongside an
example. Section 4 explores the situation where the data
distribution is unknown and provides a performance bound
on the error resulting from the need to learn the distribu-
tion. Section 5 gives a taste of the method potential using
simulation results on both a toy data set and real-life data.
Section 6 concludes this paper with some final thoughts.

2. Model Formulation

We assume that samples(x, y) ∈ (χ ⊂ R
d, {−1, 1}) are

generated i.i.d. from some joint distribution with a marginal
density functionp(x). We assume thatχ is closed and
bounded. The data quality management (DQM) process
is illustrated in Figure 2. A sample undergoes some coarse
feature acquisition which produces a low quality feature
vector x̃. We denote the resulting marginal density func-
tion p̃(x̃). We assumẽx is also inχ. Both the underlying
data model and the coarse acquisition model are known,
namelyp(x), p̃(x̃) and p̃(x̃|x) are assumed known. This
feature vector is then re-acquired using resources allocated
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Figure 2.Data flow in Data quality management

using a pre-learned quality functionr(x̃) to produce the
feature vectorx. This feature vector is then classified using
a binary classifierh(x). Bothh(x) andr(x̃) are previously
learned using high quality training data. While learning
h(x) can be done using any learning algorithm, the main
result of this paper is a method to deriver(x̃). We assume
that the model that connects the allocated resourcesr(x̃)
with the resulting disturbance inx is known. This assump-
tion is quite reasonable. Examples include the influence of
sampling rate on temporal features, sampling time of spec-
tral features, power in communication and radar and many
more (Anderson, 2011).

Denote byP+(x) = P(Y = h(X)|X = x) andP−(x) =
P(Y 6= h(X)|X = x) the posterior performance measures
of h. In addition,∆P (x) = P+(x) − P−(x). The er-
ror which results from the disturbanceδ generated usingr
resources can be stated as:

G(x, r) , ∆P (x)P(h(x+ δ(r)) 6= h(x)),

G(x̃, r) , Ex(G(x, r)|x̃).

The partial derivatives inr is denoted as

gx(r) = g(x, r) =
−∂G(x, r)

∂r
,

g(x̃, r) = Ex(g(x, r)|x̃).

We assume that noise decreases performance; formally this
assumption states thatG(x̃, r) is positive. We further as-
sume thatg(x, r) is a positive continuous function and
gx(r) is strictly decreasing for everyx ∈ χ (and there-
fore,gx(r) is also positive continuous and strictly decreas-
ing). This mild assumption holds for many common distri-
butions of disturbance.

We wish to find optimal allocation for the available re-
sources constraints in the sense that classification results
will be most similar to those obtained from optimal quality
data. Namely solve the problem

minr(x̃) L(r(x̃)) = Ex̃G(x̃, r(x̃))
s.t. Ex̃(r(x̃)) ≤ β

. (1)

Whereβ denotes the resource “budget” allocated. The
maximal possible change rate is denoted bygmax =
maxx∈χ g(x, 0).

An example Consider the special case of a linear SVM
(Hsu et al., 2003), such thath(x) = sign(w⊤x + b). As
before, the data are corrupted by some noise. Assume that
the noise is Gaussian with mean 0 and variancer−1, where
r denotes the resources allocated to the acquisition process.
For simplicity, we assumeh(x) is a proper classifier. Now
the error resulting from the disturbance is,

G(x, r) = P(h(x+ δ(r)) 6= h(x)) = Φ(|w⊤x+ b|
√
r),

whereΦ denotes the cumulative distribution function of the
standard normal distribution. Further,

gx(r) =
|w⊤x+ b|√

2πr
e

−(w⊤x+b)2r

2 .

3. Finding the Optimal Resource Allocation

We now move on to state the main result of this paper. The
next theorem shows that the optimal resource allocation can
be derived by solving an equations set that is equivalent to
problem (1).

Theorem 1. If for every x̃ ∈ χ , p̃(x̃) > 0. Then for some
λ > 0 a unique solution for problem (1) is given by

r(x̃) =

{

0 g(x̃, 0) ≤ λ

g−1
x̃ (λ) g(x̃, 0) > λ

β =
∫

χ

p̃(x)r(x)dx
. (2)

Whereg−1 denote the inverse function ofg. Note that solv-
ing this equations set will provide the desiredλ.

Proof. The proof consists of four parts. First, we will show
that a solution exists. Second, we will show that (2) is well
defined. Third, we will show that (2) meets the necessary
conditions for an optimum (the Euler equation; for more in-
formation see (Gelfand et al., 2000). Finally, we will show
that no other solution can solve the Euler equation. Since
the problem is written now only in terms of̃x, for ease of
reading, we will use throughout the proofx instead ofx̃
and ing(x, r) instead ofg(x̃, r).

Part 1 SinceL(r(x)) is bounded and continuous, in or-
der to show that a solution exists it suffices to show that the
set of possible solutions{r(x)} can be bounded. Denote by
r̂(x) the optimum of (1) and assume by contradiction that
it is not bounded. Namely, that for every chosenα > 2β

∆x = P(r̂(x) > α) > 0.

On the other hand, from the second part of equation (2) it
can be seen that∆x < β

α
.
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Define a new quality function

r̃(x) =

{

0 r̂(x) > α

r̂(x) + ∆xα r̂(x) ≤ α
. (3)

It is clear that (3) meets the resource constraints. Now,

∆L , L(r̂)− L(r̃) = E[G(x, r̂(x))−G(x, 0); r̂(x) > α]+
E[G(x, r̂(x))−G(x, r̂(x) + ∆xα); r̂(x) ≤ α] >
−∆x+ E[G(x, r̂(x))−G(x, r̂(x) + ∆xα); r̂(x) ≤ 2β] >
−∆x+ E[g(x, r̂(x) + ∆xα)∆xα; r̂(x) ≤ 2β] >
−∆x+ 1

2gmin(3β)∆xα,

where gmin(r) = minx∈χ g(x, r). The last inequality
holds sinceg(x, r) is decreasing inr and sinceE(r̂(x)) =
β implies thatP(r̂(x) < 2β) > 1

2 . Clearly, forα big
enough∆L > 0 which contradict the assumption thatr̂

is the optimum.

Part 2 We will now show that (2) is well defined, mean-
ing that for everyβ > 0 a unique solution for (2) ex-
ists. We start by noting that sincegx(r) is strictly de-
creasing with bounded integral theng−1

x (λ) is defined for
λ ∈ (0 gx(0)]. Moreover,g−1

x (λ) is strictly decreasing in
λ and lim

λ→0
g−1
x (λ) = ∞.

We define the following sets:

I+(λ) = {x| g(x, 0) ≥ λ},
I−(λ) = {x| g(x, 0) < λ}.

We further define

β(λ) =

∫

χ

p(x)r(x)dx =

∫

I+(λ)

p(x)g−1
x (λ)dx.

The following limits are easy to show:

lim
λ→gmax

β(λ) = lim
λ→gmax

∫

I+(λ)

p(x)g−1
x (λ)dx = 0,

lim
λ→0

β(λ) = lim
λ→0

∫

I+(λ)

p(x)g−1
x (λ)dx = ∞.

If β(λ) is strictly decreasing inλ than, for everyβ there
will be a uniqueλ which meet the constraintβ(λ) = β. In
order to show thatβ(λ) is strictly decreasing we assume,
without loss of generality, that̃λ < λ. From the definition
of I+(λ) it is obvious thatI+(λ) ⊆ I+(λ̃). Moreover,

r(x) =

{

0 ≤ r̃(x) g(x, 0) ≤ λ

g−1
x (λ) < g−1

x (λ̃) = r̃(x) g(x, 0) > λ > λ̃
.

Now,

β(λ) =

∫

χ

p(x)r(x)dx =

∫

I+(λ)

p(x)r(x)dx <

∫

I+(λ)

p(x)r̃(x)dx ≤
∫

I+(λ̃)

p(x)r̃(x)dx = β(λ̃),

andβ(λ) is strictly decreasing inλ .

Part 3 For the next part of the proof we note that from
calculus of variations (Gelfand et al., 2000) it is known that
the optimum must satisfy the Euler equation. The Euler
equation for problem (1) is given by

if r(x) = 0 then g(x, 0) ≤ λ

if r(x) > 0 then g(x, r(x)) = λ

β =
∫

χ

p(x)r(x)dx.
(4)

It is easy to verify that a solution to (2) solves equations
(4).

Part 4 It is now left to show that no other solution can
solve (4). Since we have already shown thatβ(λ) is strictly
decreasing showing that every solution of the Euler equa-
tion is of the form (2) will prove the theorem. In order to
show that, we will note the following set of conditions: If
g(x, 0) > λ then from the first condition in (4)r(x) > 0.
Using the second condition yieldsr(x) = g−1(λ). If
g(x, 0) < λ then g(x, r(x)) ≤ g(x, 0) < λ. Using
the second condition in (4) yieldsr(x) = 0 Finally, if
g(x, 0) = λ thenr(x) = 0. This is since that ifr(x) > 0
theng(x, r(x)) < g(x, 0) = λ which is a contradiction to
the second condition in (4).

Remark 1. The assumption that̃p(x) > 0 is technical
and can be relaxed. Wheñp(x) = 0 the resources allo-
cated have no meaning and can receive any value. This
may causer(x) to be non-continuous inx, that complicates
the problem technically. It can be defined that whenever
p̃(x) = 0, r(x) = 0 to avoid technicalities.

Remark 2. The assumption thatχ is bounded is also tech-
nical and can be replaced with milder conditions. It is used
only to ensure thatE(r(x)) exists and finite wherer is the
optimal allocation given by (2).

Revisiting the example shown earlier (linear classifier with
Gaussian noise) we demonstrate how Theorem 1 can be
used to derive the optimal resource allocation for a specific
model. Experimental results matching this model can be
found in Section 5.

As a reminder,gx(r) =
|w⊤x+b|√

2πr
e

−(w⊤x+b)2r

2 .

We assume that the coarse measurementx̃ is corrupted by
some Gaussian noise with varianceR2. Using (2) it is not
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difficult to show that the optimal resource allocation can be
obtained by solving the equations set:

λ =
∫

y∈χ

1√
2πR

exp |y−x̃|2
2R2

|w⊤y+b|√
r(x̃)

e
−(w⊤y+b)2r(x̃)

2 dy

β = Ex̃[r(x̃)]
.

Note that knowing the correctλ allows the calculation of
r(x̃), therefore a solution to the equations set can be found
using single variable search methods. Note also that con-
trary to the assumptions made earlierx̃ is not bounded.
This however, is of little practical implication as explained
by Remark 2.

4. Unknown Data Distribution

Let us now turn our attention to the more practical case
where the classifierh is known but, the data distribution
is unknown. The model should be learned from a finite
training sample of coarsely acquired data{X̃i, Yi}i=1,...,N .
Note that although the distributions are unknown, the loss
functionsG(x, r) andG(x̃, r) are known. We propose to
approximate the uncertainty functionalr(x) by usingK
Radial basis functions (RBF) such that

r(x) =

K
∑

i=1

αiφi(x),

where {φi}i=1,...,K = φ(|x − xi|) for some set
{xi}i=1,...,K . We assume thatφi(x) is bounded from be-
low by some constantφmin > 0 almost everywhere. Note
that this assumption always holds ifx is bounded. Since
r(x) is always positive we can limit ourselves to choosing
the vectorα such that∀i αi ≥ 0. Now (1) can be substi-
tuted by:

min(α1,...,αK) Remp(r(x)) =
1
N

N
∑

i=1

Ḡ(X̃i,
K
∑

j=1

αjφj(X̃i))

s.t β(r) = 1
N

N
∑

i=1

K
∑

j=1

αjφj(X̃i) ≤ β,

αi ≥ 0 ∀i ∈ {1, . . . ,K}.
(5)

Sinceφj(x) > 0 andG is convex, problem (5) is con-
vex and can be solved using conventional methods. We
will define the hypothesis spaceHN,K as the set of vec-
tors {α1, . . . , αK} for which there exists a sampleS =
(Xi, Yi)i=1,...,N such that{α1, . . . , αK} solves (5).

We wish now to bound the generalization error that results
from the need to learn the distributions. For that purpose
we will use the Rademacher complexity that measures the
complexity of a hypothesis space with respect to a certain
training set. The generalization error can be bounded using
the Rademacher complexity (we use the same notation as
Surhone et al., 2010). We will therefore establish a bound

on the Rademacher complexity. We also establish a bound
on the actual average resource consumption. The actual
resource consumption can differ from the constrains since
it depends on the coarse data{X̃i}i=1,...,N . In cases where
the constraints are rigid proper slacks should be taken.

Denote bŷrS(x) the solution of (5) for sampleS and

l(Xi) = Ḡ(Xi,

K
∑

j=1

αjφj(Xi)).

The bound can be stated as:

Theorem 2. For every natural numberN > 0, and every
sampleS = (Xi, Yi)i=1,...,N the Radamacher complexity
is bounded by

R(l ◦HN,K , S) ≤ β

φmin

ḡmax

√

2 logK

N
. (6)

Moreover∀ǫ > 0, and for any other sampleS′

P(|βS′

(r̂S(x))− β|) > ǫ) ≤ e−2N(
ǫφmin

β
)2 . (7)

Where

βS′

(r̂S(x)) =
1

N

N
∑

i=1

r̂S(X
S′

i )

Proof. The proof is rather standard, the set of possible hy-
potheses is bounded and Radamacher calculus is used to
derive the desired bound on the generalization error. From
(5) it is clear that||α||1 ≤ β

φmin
.

We note that for everyα, γ > 0

|Ḡ(x, α)− Ḡ(x, γ)| < g(x, 0)|α− γ| < ḡmax|α− γ|.

Therefore,

R(l ◦HN,K , S) ≤ ḡmaxR(l′ ◦HN,K , S),

where

l′ =
K
∑

j=1

αjφj(Xi) =< α, (φ1(Xi), . . . , φK(Xi)) > .

< ◦, ◦ > is used to denote the inner product.

The problem can now be stated as an L1 regression problem
and it is known (Surhone et al., 2010) that

R(l′ ◦HN,K , S) ≤
β

φmin

max
i

|(φ1(Xi), . . . , φK(Xi))|∞
√

2 logK

N
≤

β

φmin

√

2 logK

N
,
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which conclude the proof of the first part of the theorem .

The bound onβ(r̂(x)) is derived using Hoeffding’s in-
equality noticing thatβ(r̂(x)) is bounded between0 and

β
φmin

.

Remark 3. In most cases̄G(x̃, r) is unknown, in contrary
to the assumptions made. It can however be approximated
without knowing the distribution ofx . The approxima-
tion uses the fact that the relation betweenx̃ andx is local.
Therefore, in most cases one can omit the prior and assume
that x = x̃ − δ where the distribution ofδ is known. In
a similar fashion∆P (x) can be assumed to equal1 over
all the features space. This causes the algorithm to “waste”
more resources on some samples than it should but in cases
where the classifier is good this effect is small.

This approximation had been used in the simulation pre-
sented in Section 5 and provided good results.

5. Simulation Results

We tested our method on three data-sets. The first is a syn-
thetic toy data-base. The second is the IRIS database from
the UCI repository, in this database noise was added arti-
ficially. The third is a speaker verification corpus. This
simulates a real-life scenario where noise is the result of re-
ducing recording’s length. In all tests our method (DQM)
provided significant benefit over uniform allocation of re-
sources

Toy database We created a toy-data set composed of
3000 linearly separable samples inR4, generated such that
the distance from the separator is uniformly distributed be-
tween 0 to 3. The coarse samplesx̃ were generated from
the raw samples by adding zero mean Gaussian noise with
standard deviation 0.33. Measurement noise was taken to
be Gaussian with zero mean and variance[0.332+r(x̃)]−1,
wherer(x̃) is the resources allocated to samplex̃. The
problem is therefore similar to the problem presented ear-
lier.

The method was then tested with a variety of resource bud-
gets and compared to uniformly distributing the resources
between samples. Figure 3 shows the performance mea-
sured, averaging over 100 consecutive runs. Note that in
each run the noise generated for both resource allocation
schemes is uncorrelated. The figure shows the classifica-
tion error as a function of the noise variation. For DQM the
noise variation refers to the variation associated with the
average resource consumption. On each run we have cal-
culated the ratio between the error for uniform allocation
and the error for DQM (this ratio is known as lift). Figure
3 shows the lift for a total resource budget which matches
an average variation of 0.08. It can be seen that the benefit
of using DQM is significant. The average lift is 1.31 with
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Figure 3.Performance on toy database

standard deviation of 0.17.

The improvement is however much lower for very high and
very low resource budgets. In the former, since there is
little room for improvement and in the latter, since little
resources do little benefit no matter how they are divided.

IRIS dataset We tested our method also on the well
known “IRIS” data-set taken from the UCI data reposi-
tory (Bache and Lichman, 2013). The data-set contains 3
classes of 50 instances each, where each class refers to a
type of iris plant. There are 4 features which are the length
and width of the sepal and the petal. We used this data-set
to solve the binary classification problem of distinguishing
Iris Virginica from all the rest. This problem is not lin-
early separable. We have chosenr(x) to be the bandwidth
needed to transfer the picture of the iris. The quantization
noise generated from the picture resolution is proportional
to the LSB (least significant bit) in each axis, which is in-
versely proportional to

√

r(x). Therefore the setting match
the setting that was presented on the toy data-set. Tests
were conducted again with coarse acquisition standard de-
viation of 0.33. Since the data set is rather small, error was
calculated by averaging over 20 different generated noise
vectors. This creates the equivalent of 3000 items dataset.
All experiments were repeated 100 times. Figure 4 shows
the performance measured averaging over the 100 consec-
utive runs. Figure 4 shows lift values for a total resource
budget that matches an average variation of 0.08. The ben-
efit of using DQM is smaller than in the toy dataset. The
average lift is 1.09 with standard deviation of 0.07. The re-
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duced benefit is due to the structure of this particular data-
set. Samples in this data-set reside in fairly tight clusters
with similar distances from the divider. This causes the
optimal solution to be close to uniformly allocation of re-
sources.

Speaker identification In the two experiments shown so
far artificial noise was added to the features. In order
to test the method on a more realistic setting we further
tested it on the task of speaker identification. Speaker iden-
tification classifiers often use short-time spectral features
(Bimbot et al., 2004). Such feature’s “noise level” is re-
lated to the length of the voice recordings used. Speaker
identification had been studied extensively and is required
for many applications (Bimbot et al., 2004). Due to the
high computational cost required to extract the acoustic
features, resources are often a concern. For example, imag-
ine a mobile application that records an activity log of your
day, whenever you meet someone it will open the micro-
phone and try to recognize the other speakers in the con-
versation. This should be done using as little power as pos-
sible. Since the dominant part of computation resources
used is for the recording and extraction of acoustic fea-
tures, using shorter recordings means less power. Both re-
sources used for recording and resources used for extrac-
tion of acoustic features are proportional to the length of
the recording used.

We used the MIT Mobile Device Speaker Verification Cor-
pus (Ram Woo and Hazen, 2006). This corpus contains
short 2-words recordings collected using mobile devices in

variable environment conditions. We have investigated the
problem of distinguishing one speaker (for which we have
54 recordings) from all the other speakers (2160 “impos-
tors” recording of 40 different speakers). For each sample,
features extracted from the full recording (≈ 3sec) were re-
garded as “perfect”. We refer to the difference between fea-
tures generated using part of the recording to the “perfect”
features as noise. Resources are controlled using a “sam-
pling factor” which is inversely proportional to the portion
of recording used. For example, a sampling factor of 2
means that only the first half of the recording is processed.

We implemented a simple text independent speaker iden-
tification engine based on SVM classification. SVM
is known to provide good performance in this task
(Fenglei and Bingxi, 2001). Mel-frequency scale cepstral
coefficient (MFCC) are extracted from each recording1.
This is done using a 25msec window with 10msec inter-
val. Those coefficients are time-averaged, resulting in a
vector of 13 features. The classifier is trained using the
“perfect” features. The “noise” was modelled as Gaussian
with mean0 and standard deviationσ ∝

√
s− 1 wheres is

the sampling factor. This modelling was done empirically
and Figure 5 shows that this is quite reasonable. It can be
seen that each feature reacts differently to the reduction in
the amount of data. However, the distance from the divid-
ing hyperplane roughly obeys this model. Notice that since
the noise is not spherical the model used depend on the di-
viding hyperplane. Since the differences are not large, in
practice one may use the same model for all dividing hy-
perplanes (persons to be identified).

From the database, 100 sets of samples were randomly cho-
sen, each containing all 54 “positive” samples as well as
1000 “impostor” samples. For each set, an SVM classifier
was trained using the maximal amount of data available.
Then, coarse acquisition was preformed using 1/3 of the
available data. The classifier performance was evaluated
for different sampling factors. Resources were allocated
both uniformly and by DQM. Averages and standard devi-
ations was taken over the 100 datasets.

The results obtained can be seen in Figure 6. The figure
also presents the lift values for a resource budget corre-
sponding to processing half of the data. The average lift in
this setting is 1.204 with standard deviation of 0.1 . It can
be seen that the method provided significant benefit when
there are enough resources to “make a difference”. As can
be seen on Figure 6, the method may provide≈ 20% re-
source reduction for the same desired performance level.
Two observations are worth mentioning:

• When noise level is low, performance may improve
by adding more noise. This is due to the fact that,

1We used HTK MFCC matlab package
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Figure 5.The effect of using a portion of the recording on the
features values. Noise level as a function of sampling factor

contrary to the assumption, the classifier is not proper.
With small amount of noise some samples “suffer”
while other benefit, resulting in indifference to noise.
When noise is significant this effect is negligible.

• While “noise” is assumed to be zero mean, as can be
seen in Figure 5, in practice it is not. In low noise en-
vironments this bias is not negligible resulting in un-
expected influence of the sampling factor on the clas-
sifier performance. This can possibly be compensated
by incorporating some bias correction into the classi-
fier. This bias may be the result of unvoiced segments
in the recording, an issue that can be addressed by pre-
processing.

6. Conclusion

In this work we presented a novel setting where the data’s
quality can be controlled by active allocation of resources
to each sample. We believe that in many scenarios, care-
ful allocation of resources can substantially improve per-
formance. The improvement will be larger in cases where
there is much diversity in classification “difficulty”. How-
ever, scenarios in which the needed accuracy is more or
less uniform will show little improvement. Such diversity
is arguably common in real-life problems where systems
are designed to meet performance in the worst case, while
the average case requires much fewer resources.

There are two natural directions we would like to suggest
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Figure 6.Performance in speaker verification task

for further research:

• We have chosen the loss function to be the expected
error. One can use any other loss function. This can be
beneficial, for example, in cases where the data-set is
small and therefore the actual error may differ signifi-
cantly from the expectation. As long as the loss func-
tion is continuous, strictly decreasing inr and convex
in r, the results presented in this paper should hold.

• We have takeñx to be some coarse measurement ofx.
This can be substituted by any other measurement as
long as the relationshipp(x|x̃) is known. Note that̃x
andx do not even need to be within the same space.
As an example, recall from the previous section the
mobile activity log application with speaker recogni-
tion capability. In the model presented earlier, a short
recording was used as a coarse measurement. Instead,
x̃ may be the location of the user. Different locations
will exhibit different class distributions and different
background noise levels. Similar methods to the one
presented can be used to deriver(x̃).

ACKNOWLEDGMENTS

This work was partially supported by the Israel Science
Foundation (ISF under contract 920/12)



Dynamic Sensing: Better Classification under Acquisition Constraints

References

T. W. Anderson.The statistical analysis of time series, vol-
ume 19. John Wiley & Sons, 2011.

K. Bache and M. Lichman. UCI ma-
chine learning repository, 2013. URL
http://archive.ics.uci.edu/ml.

F. Bimbot, J.-F. Bonastre, C. Fredouille, G. Gravier,
I. Magrin-Chagnolleau, S. Meignier, T. Merlin,
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