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Abstract
We consider the problem of ranking n items from
stochastically sampled pairwise preferences. It
was shown recently that when the underlying
pairwise preferences are acyclic, several algo-
rithms including the Rank Centrality algorithm,
the Matrix Borda algorithm, and the SVM-
RankAggregation algorithm succeed in recov-
ering a ranking that minimizes a global pair-
wise disagreement error (Rajkumar and Agarwal,
2014). In this paper, we consider settings where
pairwise preferences can contain cycles. In such
settings, one may still like to be able to recover
‘good’ items at the top of the ranking. For exam-
ple, if a Condorcet winner exists that beats ev-
ery other item, it is natural to ask that this be
ranked at the top. More generally, several tour-
nament solution concepts such as the top cycle,
Copeland set, Markov set and others have been
proposed in the social choice literature for choos-
ing a set of winners in the presence of cycles.
We show that existing algorithms can fail to per-
form well in terms of ranking Condorcet winners
and various natural tournament solution sets at
the top. We then give alternative ranking algo-
rithms that provably rank Condorcet winners, top
cycles, and other tournament solution sets of in-
terest at the top. In all cases, we give finite sam-
ple complexity bounds for our algorithms to re-
cover such winners. As a by-product of our anal-
ysis, we also obtain an improved sample com-
plexity bound for the Rank Centrality algorithm
to recover an optimal ranking under a Bradley-
Terry-Luce (BTL) condition, which answers an
open question of Rajkumar and Agarwal (2014).
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1. Introduction
There has been much interest in recent years in design-
ing algorithms for aggregating pairwise preferences to rank
a set of items (Fürnkranz & Hüllermeier, 2010; Ailon,
2011; Lu & Boutilier, 2011; Jiang et al., 2011; Jamieson &
Nowak, 2011; Negahban et al., 2012; Osting et al., 2013;
Wauthier et al., 2013; Busa-Fekete et al., 2014a;b; Rajku-
mar & Agarwal, 2014). Indeed, the need for aggregating
pairwise preferences arises in many domains where fully
ordered preferences may be hard to obtain, e.g. in customer
surveys, recommender systems, sports team rankings etc.

In many such settings, particularly those related to applica-
tions such as customer surveys and recommender systems,
it is common to assume that the pairwise comparisons fol-
low some (unknown) underlying statistical model. An im-
portant question that arises then is, as we observe more and
more data from the underlying statistical model, do the al-
gorithms used converge to a ‘good’ ranking solution?

Recently, Rajkumar & Agarwal (2014) showed that when
the underlying pairwise preferences are acyclic, several al-
gorithms including the Rank Centrality (RC), Matrix Borda
(MB) and SVM-RankAggregation (SVM-RA) algorithms
can converge to an optimal ranking solution in terms of
minimizing a pairwise disagreement error. However, in
practice, pairwise preferences often contain cycles. In such
settings, minimizing the pairwise disagreement error is typ-
ically NP-hard, but one may still want to converge to a
ranking that places ‘good’ items at the top.

In this paper, we take ‘good’ items to refer to Condorcet
winners (which beat all other items) when they exist, and
more generally, to tournament solution sets such as top cy-
cles and Copeland and Markov sets, which have been used
to define ‘winners’ in the computational social choice liter-
ature (Moulin, 1986; De Donder et al., 2000; Laslier, 1997;
Brandt et al., 2015). We show that when preferences con-
tain cycles, the RC, MB and SVM-RA algorithms can fail
to rank such ‘good’ items at the top; we then propose three



Ranking from Stochastic Pairwise Preferences: Recovering Condorcet Winners and Tournament Solution Sets at the Top

Table 1. Ranking behavior of various algorithms for ranking from stochastic pairwise preferences under various conditions on the un-
derlying statistical model. Here PBTL is the class of preferences following a Bradley–Terry–Luce model, PLN the class of preferences
following a certain ‘low-noise’ model, PDAG the class of acyclic preferences, and PCW the class of preferences that admit a Condorcet
winner; it is known that PBTL ⊂ PLN ⊂ PDAG ⊂ PCW (see Section 2.3 and Figures 1 and 2). The first three algorithms were analyzed
with respect to pairwise disagreement in (Rajkumar & Agarwal, 2014). Results established in this paper are highlighted in gray.

Algorithm Minimizes Ranks Ranks Ranks Ranks
pairwise disagreement? Condorcet winner top cycle Copeland set Markov set
PBTL PLN PDAG at top (in PCW)? at top (in P)? at top (in P)? at top (in P)?

Rank Centrality X × × × × × ×
Matrix Borda X X × × × × ×
SVM-RankAggregation X X X × × × ×
Matrix Copeland X X X X X X ×
Unweighted Markov × × × X X × X
Parametrized Markov X × × X X × X

PTC(k)
n =

{
P ∈ Pn : |TC(P)| = k

}
PCW
n =

{
P ∈ Pn : P has a Condorcet winner

}
= PTC(1)

n

PDAG
n =

{
P ∈ Pn : GP = ([n], EP) is a DAG

}
PLN
n =

{
P ∈ Pn : i �P j =⇒

∑n
k=1 pki >

∑n
k=1 pkj

}
PBTL
n =

{
P ∈ Pn : ∃w ∈ Rn+ s.t. pij =

wj

wi+wj
∀i 6= j

}
Figure 1. Definitions of various conditions on P.

new algorithms, namely the Matrix Copeland, Unweighted
Markov, and Parametrized Markov algorithms, that prov-
ably rank such good items at the top (see Table 1 for a sum-
mary). In all cases, we provide explicit sample complexity
bounds for these algorithms to recover (with high probabil-
ity) a ranking that places the desired elements at the top. As
a by-product of our analysis of the Parametrized Markov al-
gorithm, we also obtain a tighter sample complexity bound
for the RC algorithm, thereby answering an open question
of Rajkumar & Agarwal (2014).

2. Preliminaries and Background
2.1. Problem Setup

Let [n] = {1, . . . , n} denote the set of n items to be ranked,
and

(
[n]
2

)
= {(i, j) ∈ [n] × [n] : i < j} the set of

(
n
2

)
pairs that can be compared. We assume that there is an
underlying (unknown) probability distribution µ ∈ ∆(n

2)
such that each time a comparison is to be made, a pair
(i, j) is selected with probability µij , and that for each
i < j, there is an (unknown) parameter pij ∈ [0, 1] such
that when items i and j are compared, item j ‘beats’ (or is
preferred to) item i with probability pij . For each i < j,
define pji = 1 − pij ; also define pii = 0 for every i. De-
note by P = [pij ] the resulting (unknown) pairwise prefer-
ence matrix. Given a finite sample of pairwise comparisons
S = ((i1, j1, y1), . . . , (im, jm, ym)) ∈

((
[n]
2

)
× {0, 1}

)m
drawn according to (µ,P) as above (where pairs (ik, yk)

Figure 2. Relationships between various conditions on P.

are drawn iid according to µ, and given (ik, jk), yk ∼
Bernoulli(pik,jk)), the goal is to construct a ranking or per-
mutation σ ∈ Sn that ranks ‘good’ elements at the top.
Most algorithms we consider operate on an empirical pair-
wise comparison matrix P̂ constructed from S as follows:

p̂ij =


m

(1)
ij /mij if i < j and mij > 0

1−
(
m

(1)
ji /mji

)
if i > j and mji > 0

0 otherwise,

(1)

where mij =
∑m
k=1 1(ik = i, jk = j) ;

m
(1)
ij =

∑m
k=1 1(ik = i, jk = j, yk = 1) .

Binary Relation and Tournament Induced by P. We
will assume throughout that the matrix P does not involve
ties, i.e., pij 6= 1

2 for all i, j, and will find it convenient to
define the binary relation �P on [n] as follows:

i �P j ⇐⇒ pij <
1
2 for all i, j ∈ [n] .

We will also define the edge set associated with P as
EP = {(i, j) ∈ [n]× [n] : i �P j} ,

and the induced graph GP =
(
[n], EP

)
. Note that under

the assumption pij 6= 1
2 for all i, j, the graph GP is always

a complete directed graph, i.e., a tournament.

2.2. Measuring Ranking Performance

We will consider several notions of ‘goodness’ of a ranking
with respect to the underlying pairwise preferences P.
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Pairwise Disagreement. Define the pairwise disagree-
ment (PD) error of a permutation σ ∈ Sn w.r.t. P as

erPD
P [σ] =

∑
i6=j

1(pij <
1
2 ) · 1(σ(i) > σ(j)) .

The pairwise disagreement error measures the number of
pairs on which σ disagrees with P, and is a natural measure
of overall ranking performance; a variant of this was stud-
ied in (Rajkumar & Agarwal, 2014). In general, however,
even if P is known directly, identifying an optimal rank-
ing w.r.t. PD error is computationally hard (it corresponds
to the NP-hard minimum feedback arc set problem). Thus
one can hope to recover an optimal ranking w.r.t. PD er-
ror only under certain restrictive conditions on P; indeed,
all conditions studied in (Rajkumar & Agarwal, 2014) as-
sumed GP is acyclic.

In this paper, we are interested in algorithms that can ensure
‘good’ elements are ranked at the top even when the graph
GP contains cycles; we formalize the notion of ‘good’ be-
low in terms of Condorcet winners, top cycles, and other
tournament solution sets (see also Figure 3).

Condorcet Winners. An element i ∈ [n] is said to be
a Condorcet winner w.r.t. P if it beats all other elements
under P, i.e., if i �P j ∀j 6= i. A Condorcet winner does
not always exist, but when it does, it is unique, and it is then
natural to want this element to be ranked at the top. When
a Condorcet winner exists, we will denote it by CW(P).

Top Cycles. More generally, one can ask that elements of
the top cycle of P be ranked at the top. The top cycle of P,
denoted TC(P), is defined as the smallest set of elements
W ⊆ [n] such that every element inW beats every element
not in W under P, i.e. such that i �P j ∀i ∈ W, j /∈ W .
A Condorcet winner corresponds to a top cycle of size 1,
i.e. when |TC(P)| = 1, we have TC(P) = {CW(P)}.
The top cycle is also referred to as the Smith set in voting
theory literature (Smith, 1973).

Copeland and Markov Sets. The top cycle is one form
of tournament solution set, which selects a set of elements
considered to be ‘winners’ in a tournament (Laslier, 1997;
Brandt et al., 2015). One can also consider other notions of
tournament solution sets associated with P (or more specif-
ically, associated with the tournament GP induced by P),
and ask that elements of the desired tournament solution
set be ranked at the top. Two such tournament solution sets
that we will be interested in are the Copeland set and the
Markov set, both of which are ‘score-based’ solution sets
that select all elements maximizing a certain ‘score’. The
Copeland set of P, denoted CO(P), selects elements with
maximal out-degree in the (unweighted) tournament GP:
CO(P) = argmaxi∈[n] d(i), where d(i) =

∑
j 1(i �P j).

The Markov set of P, denoted MA(P), selects elements
with highest stationary probability under a certain Markov
chain on the tournament GP: MA(P) = argmaxi∈[n] πi,

Figure 3. Left: A tournament on n = 4 nodes in which there are
cycles but node 1 is a Condorcet winner. Middle: A tournament
on n = 4 nodes in which there is no Condorcet winner. Here the
set of nodes {1, 2, 3} forms a top cycle of size 3; in this case this
set also corresponds to the Copeland and Markov sets. Right: A
tournament on n = 5 nodes in which the top cycle {1, 2, 3, 4} is
a strict superset of the Copeland set {1, 3} and Markov set {1}.

where π is the stationary probability vector of the Markov
chain P̃ defined as p̃ij = 1

n for all (i, j) : j �P i and
p̃ii = 1−

∑
j 6=i p̃ij for all i. It is known that the Copeland

and Markov sets are refinements of the top cycle, i.e. that
CO(P) ⊆ TC(P) and MA(P) ⊆ TC(P), and that these
containments can be strict (see Figure 3 for illustrations).

2.3. Conditions on the Pairwise Preference Matrix P

As noted above, we are interested in understanding the
ranking behavior of various algorithms under various con-
ditions on the pairwise preference matrix P. Let Pn denote
the set of all such matrices on n items not involving ties:

Pn =
{
P ∈ [0, 1]n×n : pij = 1− pji ∀i 6= j ;

pij 6= 1
2 ∀i, j ; pii = 0 ∀i

}
.

For each k ∈ [n], define PTC(k)
n to be the set of preference

matrices P in Pn that have a top cycle of size k.1 Clearly,
PTC(1)
n is the set of preference matrices in Pn that have a

Condorcet winner; we will also denote this by PCW
n . Next,

definePDAG
n to be the set of preference matrices P inPn for

which the directed graphGP induced by the binary relation
�P is acyclic,2 and define PLN

n to be the set of matrices
in Pn satisfying the ‘low-noise’ (LN) condition (Rajkumar
& Agarwal, 2014). Finally, define PBTL

n to be the set of
preference matrices inPn that follow a Bradley-Terry-Luce
(BTL) model. Formal definitions of all these sets are given
in Figure 1. It can be verified that PTC(1)

n , . . . ,PTC(n)
n

form a partition of Pn, and that

PBTL
n ⊂ PLN

n ⊂ PDAG
n ⊂ PCW

n = PTC(1)
n ,

with each containment above being strict (see Figure 2).
When n is clear from context, we will write P , PBTL, etc.

3. Related Work and Existing Results
As noted above, there has been much work in recent years
on developing algorithms for ranking a set of items from

1Note that under a strict tournament (where there are no ties),
there cannot be a top cycle of size 2, i.e. PTC(2)

n = ∅.
2The DAG condition is equivalent to the ‘generalized low-

noise’ (GLN) condition studied in (Rajkumar & Agarwal, 2014).
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pairwise preferences; below we discuss three specific al-
gorithms that form the backdrop to our work. Before do-
ing so, we point out that our work differs from that of
(Brandt & Fischer, 2007), where any ranking algorithm
that given P ∈ Pn produces a score vector f ∈ Rn is
considered to induce a corresponding tournament solution
TS(P) = argmaxi∈[n] fi; in particular, Brandt & Fischer
study properties of the tournament solution induced in this
manner by PageRank scores. Our work also differs from
(Braverman & Mossel, 2009; Wauthier et al., 2013), where
pairs are sampled only once and the conditions on P are
significantly stronger than those assumed here.

Three representative ranking algorithms studied in recent
years that are most related to our work are the Rank Cen-
trality (RC) algorithm (Negahban et al., 2012), the Ma-
trix Borda (MB) algorithm (Rajkumar & Agarwal, 2014;
Borda, 1781), and the SVM-RankAggregation (SVM-RA)
algorithm (Rajkumar & Agarwal, 2014). RC produces a
ranking by sorting the stationary probabilities of a Markov
chain constructed from pairwise data. MB ranks items
based on the average probability of an item being pre-
ferred over the rest of the items. SVM-RA constructs a bi-
nary classification dataset from the pairwise data and ranks
items based on the maximum margin hyperplane for this
dataset. Detailed descriptions of these algorithms are given
in the appendix; below we summarize results of (Rajkumar
& Agarwal, 2014) which establish convergence of these al-
gorithms to an optimal permutation w.r.t. PD error within
PBTL, PLN, and PDAG, respectively (see Table 2 for nota-
tion).3

Theorem 1 (Rank Centrality minimizes PD error in PBTL).
Let µmin > 0. Let P ∈ PBTL

n . Let π be the stationary
probability vector of the Markov chain P defined as pij =
pij
n ∀i 6= j and pii = 1 −

∑
j 6=i pij ∀i, and let rmin =

mini,j:πi 6=πj
|πi − πj |. Let δ ∈ (0, 1]. If

m ≥ max
( 9216n

r2minµ
2
min

1

p2min

( 1

pmin
− 1
)3

ln
(16n2

δ

)
, Bµ

)
,

then with probability at least 1−δ (over S), the permutation
σ̂RC produced by running the RC algorithm on P̂ satisfies

σ̂RC ∈ argminσ∈Sn erPD
P [σ] .

Theorem 2 (Matrix Borda minimizes PD error in PLN).
Let µmin > 0. Let P ∈ PLN

n . Let f∗i = 1
n

∑n
k=1 pki ∀i,

and let rmin = mini,j:f∗
i 6=f∗

j
|f∗i − f∗j |. Let δ ∈ (0, 1]. If

m ≥ max
( 1152

r2minµ
2
min

ln
(4n2

δ

)
, Bµ

)
,

then with probability at least 1−δ (over S), the permutation
σ̂MB produced by running the MB algorithm on P̂ satisfies

σ̂MB ∈ argminσ∈Sn erPD
P [σ] .

3We note that the form of the PD error considered in (Rajku-
mar & Agarwal, 2014) is slightly different from that considered
here, but within PDAG both have the same sets of minimizers.

Table 2. Useful quantities associated with µ and P.
µmin mini<j µij

Bµ 3
(

12
µ2
min

+ 3
)
ln
(

12
µ2
min

+ 3
)

pmin mini 6=j pij

γmin mini6=j
∣∣pij − 1

2

∣∣
γTC mini∈TC(P),j /∈TC(P)

∣∣pij − 1
2

∣∣
Theorem 3 (SVM-RA minimizes PD error in PDAG). Let
µmin > 0. Let P ∈ PDAG

n . Let α ∈ Rn be such that i �P

j =⇒
∑n
k=1 αkpki >

∑n
k=1 αkpjk,4 and let rαmin =

mini6=j
|
∑n

k=1 αk(Pki−Pkj)|
‖α‖2 . Let δ ∈ (0, 1]. If

m ≥ max
( 2048n

(rαmin)
2µ2

min

ln
(16n3

δ

)
,

128

γ2
minµ

2
min

ln
(8n2

δ

)
, Bµ

)
,

then with probability at least 1−δ (over S), the permutation
σ̂SVM-RA produced by running SVM-RA on P̂ satisfies

σ̂SVM-RA ∈ argminσ∈Sn erPD
P [σ] .

We will make use of the following result of (Rajkumar &
Agarwal, 2014) on concentration of entries of P̂ around P:

Lemma 4. Let µmin > 0 and P ∈ Pn. Fix any i 6= j. Let
0 < ε < 4

√
2. If m ≥ max

(
128

ε2µ2
min

ln( 4
δ ), Bµ

)
, then with

probability at least 1− δ (over S), |pij − p̂ij | < ε .

4. Performance of RC, MB and SVM-RA
Algorithms Under Cyclic Preferences

It is easy to see that for P ∈ PCW
n ,

σ̂ ∈ argminσ∈Sn erPD
P [σ] =⇒ σ̂−1(1) = CW(P) .

Therefore it follows from Theorems 1–3 that (when given
a sufficiently large sample, with high probability) the RC
algorithm ranks the Condorcet winner at the top for P ∈
PBTL; the MB algorithm does so for P ∈ PLN; and the
SVM-RA algorithm does so for P ∈ PDAG. However, as
the following examples show, outside PDAG, these algo-
rithms can fail to rank the Condorcet winner, top cycle, or
Copeland or Markov sets at the top (in fact RC and MB can
fail to do so even in PLN \ PBTL and PDAG \ PLN, respec-
tively; see Examples 6–7 in the supplementary material).

Example 1 (For P ∈ PCW \PDAG, RC, MB and SVM-RA
algorithms can fail to rank the Condorcet winner/Copeland
set/Markov set at the top). Let n = 7, and consider

P =


0 0.49 0.49 0.49 0.49 0.49 0.49

0.51 0 0.1 0.1 0.1 0.1 0.1
0.51 0.9 0 0.4 0.4 0.6 0.6
0.51 0.9 0.6 0 0.4 0.6 0.4
0.51 0.9 0.6 0.6 0 0.4 0.6
0.51 0.9 0.4 0.4 0.6 0 0.4
0.51 0.9 0.4 0.6 0.4 0.6 0

 .
4Such an α always exists by equivalence of the DAG and GLN

conditions (Rajkumar & Agarwal, 2014).
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The tournament induced by P is shown in Figure 4 (left).
It can be verified that P ∈ PCW \ PDAG, with CW(P) = 1
and correspondingly CO(P) = MA(P) = {1}. However
the permutations σRC, σMB and σSVM-RA produced by run-
ning RC, MB and SVM-RA on the above preference matrix
P do not rank item 1 at the top; instead, it can be verified
that σ−1RC (1) = σ−1MB(1) = 2 and σ−1SVM-RA(1) = 7.

Example 2 (For P /∈ PCW, RC, MB and SVM-RA algo-
rithms can fail to rank the top cycle/Copeland set/Markov
set at the top). Let n = 6, and consider

P =


0 0.3 0.7 0.4 0.45 0.45
0.7 0 0.3 0.4 0.45 0.45
0.3 0.7 0 0.4 0.45 0.45
0.6 0.6 0.6 0 0.1 0.1
0.55 0.55 0.55 0.9 0 0.6
0.55 0.55 0.55 0.9 0.4 0

 .
The tournament induced by P is shown in Figure 4 (mid-
dle). It can be verified that P ∈ PTC(3), with TC(P) =
{1, 2, 3} = CO(P) = MA(P). However the permutations
σRC, σMB and σSVM-RA produced by running RC, MB and
SVM-RA on the above matrix P do not rank these tourna-
ment solution sets at the top; indeed, it can be verified that
σRC = σMB = (4 1 2 3 6 5) and σSVM-RA = (4 2 6 1 3 5).

The above examples lead us to consider alternative rank-
ing algorithms that rank Condorcet winners, top cycles, and
Copeland/Markov sets at the top even when the underlying
preference matrix P induces a cyclic tournament. Proofs
of all results can be found in the supplementary material.

5. Recovering Condorcet Winners, Top Cycles
and Copeland Sets at the Top

Let us start by considering the Copeland set. Recall that
this is defined as the set of items with maximal out-degree
in the underlying preference-induced tournament GP. A
natural approach to ranking the Copeland set at the top
would therefore be to order items by their observed out-
degrees in the empirical comparison matrix P̂; as this em-
pirical matrix approaches the true preference matrix P, one
would expect items in the Copeland set to appear at the top.
The corresponding algorithm is shown in Algorithm 1; we
term this the Matrix Copeland (MC) algorithm due to its
similarity to the Copeland voting rule (Copeland, 1951).
The following result shows this algorithm indeed ranks the
Copeland set at the top for any preference matrix and also
minimizes the pairwise disagreement error when the pref-
erence matrix is acyclic:
Theorem 5 (Matrix Copeland ranks Copeland set at top
for a general P and minimizes PD error if P ∈ PDAG). Let
µmin > 0. Let P ∈ Pn and let δ ∈ (0, 1]. If

m ≥ max
( 512

γ2
minµ

2
min

ln
(4n2

δ

)
, Bµ

)
,

then with probability at least 1−δ (over S), the permutation
σ̂MC produced by running the MC algorithm on P̂ satisfies

Algorithm 1 Matrix Copeland (MC) Algorithm

Input: Pairwise comparison matrix P ∈ [0, 1]n×n

satisfying the following conditions:
(i) for all i 6= j: pij + pji = 1 or pij = pji = 0

(ii) for every i: pii = 0

• For i = 1 to n: f i = 1
n

∑n
j=1 1(pji >

1
2 )

Output: Permutation σMC ∈ argsort(f)

σ̂MC(i) < σ̂MC(j) for all i ∈ CO(P), j /∈ CO(P) .

Moreover, if P ∈ PDAG, then

σ̂MC ∈ argminσ∈Sn erPD
P [σ]

In fact, as the following result shows, the MC algorithm
also recovers the top cycle (and therefore the Condorcet
winner whenever it exists) at the top:
Theorem 6 (Matrix Copeland ranks top cycle at top). Let
µmin > 0. Let P ∈ PTC(k)

n for some k ∈ [n − 1]. Let
δ ∈ (0, 1]. If

m ≥ max
( 512

γ2
TCµ

2
min

ln
(4n2

δ

)
, Bµ

)
,

then with probability at least 1−δ (over S), the permutation
σ̂MC produced by running the MC algorithm on P̂ satisfies

σ̂MC(i) < σ̂MC(j) for all i ∈ TC(P), j /∈ TC(P) .

While the MC algorithm is good for recovering the
Copeland set and the top cycle or the Condorcet winner
when it exists, as the following example illustrates, it does
not necessarily rank the Markov set at the top:

Example 3 (Matrix Copeland can fail to rank Markov set
at top). Let n = 8, and consider

P =


0 0.51 0.4 0.6 0.6 0.6 0.4 0.4

0.49 0 0.49 0.49 0.6 0.6 0.49 0.49
0.6 0.51 0 0.6 0.4 0.6 0.6 0.4
0.4 0.51 0.4 0 0.6 0.4 0.4 0.4
0.4 0.4 0.6 0.4 0 0.4 0.6 0.6
0.4 0.4 0.4 0.6 0.6 0 0.4 0.4
0.6 0.51 0.4 0.6 0.4 0.6 0 0.4
0.6 0.51 0.6 0.6 0.4 0.6 0.6 0

 .
The tournament induced by P is shown in Figure 4 (right).
It can be verified that MA(P) = {5}. However the permu-
tation σMC produced by running the MC algorithm on the
above matrix P does not rank item 5 at the top; indeed, it
can be verified that σMC = (2 4 6 5 1 7 3 8).

6. Recovering Condorcet Winners, Top Cycles
and Markov Sets at the Top

The Matrix Copeland algorithm considered above can be
viewed as running the Matrix Borda algorithm on a trans-
formed input matrix H where hij = 1(pij >

1
2 ) ∀i 6= j,

which thresholds the preferences pij at 1
2 to ‘amplify’ them

to 0 or 1, and has the effect of emphasizing more preferred
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Figure 4. Tournaments induced by the preferences matrices in Examples 1–3. An edge from one group of nodes to another indicates
that the graph contains edges from all nodes in the first group to all those in the second group. Left: Here n = 7 and TC(P) =
CO(P) = MA(P) = {1}. Middle: Here n = 6 and TC(P) = CO(P) = MA(P) = {1, 2, 3}. Right: Here n = 8 and
TC(P) = {1, 2, 3, 4, 5, 6, 7, 8}, CO(P) = {2, 4, 6}, and MA(P) = {5}.

elements more strongly. As we saw above, this yielded de-
sirable properties in terms of ranking Condorcet winners,
top cycles and Copeland sets (though not Markov sets) at
the top, while also maintaining the PD optimality proper-
ties of the MB algorithm in PLN (in fact, MC recovers a
PD-optimal ranking for all P in the larger set PDAG).

In order to recover Markov sets at the top, one might con-
sider running the Rank Centrality algorithm, which ranks
items according to the stationary vector associated with a
certain Markov chain associated with the input matrix, on
a similarly transformed matrix. Below we start by consid-
ering in Section 6.1 the Unweighted Markov (UM) ranking
algorithm, which does exactly this: it runs the RC algo-
rithm on the same transformed matrix H described above.
As we will see below, this algorithm indeed ranks Con-
dorcet winners, top cycles and Markov sets (though not
Copeland sets) at the top. Unfortunately, however, as we
will see, the UM algorithm fails to maintain the PD opti-
mality properties of the RC algorithm in PBTL.

In Section 6.2, we propose instead the Parametrized
Markov (PM) algorithm, which runs the RC algorithm on
a matrix H

c
obtained by applying a soft transformation

parametrized by a real number c ≥ 1 to the input matrix
P. This also amplifies the probabilities in the input matrix,
but not to the extremes of 0 and 1 (the hard transform H
above corresponds to c =∞). We will see that for suitable
choices of c, the resulting PM algorithm can be made to
both rank Condorcet winners, top cycles and Markov sets
at the top, and maintain the PD optimality properties of the
RC algorithm in PBTL. As a by-product of our analysis,
we also obtain an improved sample complexity bound for
the RC algorithm to recover a PD-optimal ranking, thus an-
swering an open question of Rajkumar & Agarwal (2014).

6.1. Unweighted Markov Algorithm

The UM algorithm is shown in Algorithm 2. We first show
this algorithm indeed recovers the Markov set at the top:
Theorem 7 (Unweighted Markov ranks Markov set at top).
Let µmin > 0. Let P ∈ Pn. Let δ ∈ (0, 1]. If

m ≥ max
( 512

γ2
minµ

2
min

ln
(4n2

δ

)
, Bµ

)
,

then with probability at least 1−δ (over S), the permutation

Algorithm 2 Unweighted Markov (UM) Algorithm

Input: Pairwise comparison matrix P ∈ [0, 1]n×n

satisfying the following conditions:
(i) for all i 6= j: pij + pji = 1 or pij = pji = 0

(ii) for every i: pii = 0

• Define H ∈ [0, 1]n×n as

hij =

{
1(pij >

1
2 ) if i 6= j

0 otherwise.

• Run Rank Centrality algorithm on input matrix H;
obtain stationary probability vector π

Output: Permutation σUM ∈ argsort(π)

σ̂UM produced by running the UM algorithm on P̂ satisfies

σ̂UM(i) < σ̂UM(j) for all i ∈ MA(P), j /∈ MA(P) .

In fact, as with the MC algorithm, the UM algorithm also
recovers the top cycle (and therefore the Condorcet winner
whenever it exists) at the top:
Theorem 8 (Unweighted Markov ranks top cycle at top).
Let µmin > 0. Let P ∈ PTC(k)

n for some k ∈ [n − 1]. Let
δ ∈ (0, 1]. If

m ≥ max
( 512

γ2
minµ

2
min

ln
(4n2

δ

)
, Bµ

)
,

then with probability at least 1−δ (over S), the permutation
σ̂UM produced by running the UM algorithm on P̂ satisfies

σ̂UM(i) < σ̂UM(j) for all i ∈ TC(P), j /∈ TC(P) .

Again, as with the MC algorithm, the following example
shows that while UM is good for recovering the Markov set
and the top cycle or the Condorcet winner when it exists, it
does not necessarily rank the Copeland set at the top:
Example 4 (Unweighted Markov can fail to rank Copeland
set at top). Let n = 8, and consider again the matrix P
considered in Example 3. It can be verified that CO(P) =
{2, 4, 6}. However the permutation σUM produced by run-
ning the UM algorithm on P does not rank this set at the
top; indeed, it can be verified that σUM = (5 2 4 6 7 3 8 1).

Unfortunately, however, unlike the MC algorithm, the UM
algorithm fails to maintain the PD optimality properties of
the RC algorithm in PBTL:
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Example 5 (Unweighted Markov can fail to minimize PD
error in PBTL). Let n = 3, and consider

P =

[
0 0.4 0.25
0.6 0 0.33
0.75 0.67 0

]
.

It can be verified that P ∈ PBTL (consider the score vector
w = (3, 2, 1)>), and that the PD error is uniquely mini-
mized by σ = (1 2 3). However the permutation σUM pro-
duced by running the UM algorithm on P is σUM = (1 3 2),
and therefore this does not minimize the PD error.

Next we consider an alternative algorithm that will achieve
the best properties of both the UM and RC algorithms.

6.2. Parametrized Markov Algorithm

We now consider the Parametrized Markov (PM) ranking
algorithm shown in Algorithm 3, which effectively applies
the RC algorithm to a matrix H

c
obtained by applying a

‘soft’ transform gc : [0, 1]→[0, 1], parametrized by c ≥ 1,
to the entries of the input matrix P:

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

p

g
c
(p
)

 

 

c = 1
c = 2
c = 5
c = 50
c = ∞

Figure 5. The function gc.

gc(p) =
pc

pc + (1− p)c
.

See Figure 5 for an illustra-
tion. With c = 1, one re-
covers the RC algorithm; with
c = ∞, one recovers the UM
algorithm. The PM algorithm
can therefore be viewed as
interpolating between these two extremes. As we show
below, with a suitable choice of c, the PM algorithm gives
the best of both worlds: as with RC, it minimizes the
PD error in PBTL; and as with UM, it ranks Condorcet
winners, top cycles, and Markov sets at the top.

6.2.1. PM ALGORITHM MINIMIZES PD ERROR IN PBTL

We first show that for any choice of 1 ≤ c < ∞, the PM
algorithm minimizes the PD error in PBTL:
Theorem 9 (Parametrized Markov minimizes PD error in
PBTL). Let µmin > 0. Let P ∈ PBTL

n . Let rmin =
mini6=j,k 6=i,j |pik−pjk|. Let δ ∈ (0, 1]. Let 1 ≤ c <∞. If

m ≥ max
( 512

min(r2min, γ
2
min)µ

2
min

ln
(4n2

δ

)
, Bµ

)
,

then with probability at least 1−δ (over S), the permutation
σ̂PM produced by running the PM algorithm on P̂ satisfies

σ̂PM ∈ argminσ∈Sn erPD
P [σ] .

The proof of Theorem 9 in fact establishes PD-optimality
of the PM algorithm (and therefore the RC algorithm,
which is a special case with c = 1) for a slightly larger
set of preference matrices than PBTL, namely, for P satis-
fying the restricted low-noise (RLN) property, defined as

Algorithm 3 Parametrized Markov (PM) Algorithm

Input: Pairwise comparison matrix P ∈ [0, 1]n×n

satisfying the following conditions:
(i) for all i 6= j: pij + pji = 1 or pij = pji = 0

(ii) for every i: pii = 0

Parameter: c ≥ 1

• Define H
c ∈ [0, 1]n×n as

h
c

ij =

{
gc(pij) if i 6= j

0 otherwise.

• Run Rank Centrality algorithm on input matrix H
c
;

obtain stationary probability vector πc

Output: Permutation σPM ∈ argsort(πc)

PRLN
n =

{
P ∈ Pn : ∀ i 6= j 6= k : i �P j =⇒ pkj < pki

}
.

It is not hard to show that PBTL
n ⊂ PRLN

n ⊂ PLN
n . The

proof of Theorem 9 then follows from the following three
observations: (a) for P ∈ PRLN

n , running the RC algorithm
on P yields a PD-optimal permutation; (b) for large enough
sample size, if P is in PRLN

n , then with high probability
so is P̂; and (c) the RLN property is preserved by the gc
transform (see supplementary material for details).

Remark (Improved sample complexity bound for RC al-
gorithm). As noted above, the sample complexity bound in
Theorem 9 holds for any 1 ≤ c < ∞, and so in particular
it holds for the RC algorithm. Comparing this with the pre-
vious bound of (Rajkumar & Agarwal, 2014) in Theorem 1,
we see that the bound in Theorem 9 is in general consider-
ably tighter; in particular, it removes an extraneous factor
of n present in the earlier bound. This answers in the affir-
mative an open question of (Rajkumar & Agarwal, 2014).

6.2.2. FOR SUITABLE c, PM ALGORITHM RECOVERS
MARKOV SETS AND TOP CYCLES AT THE TOP

We now show that for sufficiently large (but finite) c, which
can be chosen based on the observed empirical comparison
matrix P̂, the PM algorithm also recovers Markov sets and
top cycles (and therefore Condorcet winners) at the top:
Theorem 10 (Parametrized Markov ranks Markov set at
top). Let µmin > 0. Let P ∈ Pn. Let β2(P̂) =
π̂max − maxk/∈MA(P̂) π̂k where π̂ is obtained by running

UM on P̂. Let δ ∈ (0, 1]. Let α̂min = mini�Pj
p̂ji
p̂ij

. If

c ≥ ln(4n/β2(P̂))
ln(α̂min)

and

m ≥ max
( 512

γ2
minµ

2
min

ln
(4n2

δ

)
, Bµ

)
,

then with probability at least 1−δ (over S), the permutation
σ̂PM produced by running the PM algorithm on P̂ satisfies

σ̂PM(i) < σ̂PM(j) for all i ∈ MA(P), j /∈ MA(P) .
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Figure 6. Experimental results. See text for details.

Theorem 11 (Parametrized Markov ranks top cycle at top).
Let µmin > 0. Let P ∈ PTC(k)

n for some k ∈ [n − 1]. Let
α̂min = mini�Pj

p̂ji
p̂ij

. Let δ ∈ (0, 1]. If c ≥ (n+1) ln(4n)
ln(α̂min)

and
m ≥ max

( 512

γ2
minµ

2
min

ln
(4n2

δ

)
, Bµ

)
,

then with probability at least 1−δ (over S), the permutation
σ̂PM produced by running the PM algorithm on P̂ satisfies

σ̂PM(i) < σ̂PM(j) for all i ∈ TC(P), j /∈ TC(P) .

The proofs of Theorems 10–11 make use of the Cho-Meyer
perturbation bound for Markov chains (Cho & Meyer,
2001) to bound the difference between the stationary vector
πc and π. (see supplementary material for details).

7. Experiments
We conducted experiments to compare the performance
of different algorithms, including existing algorithms (RC,
MB, SVM-RA) and the proposed algorithms (MC, UM,
PM), both in terms of minimizing PD error and recovering
‘good’ items at the top (the parameter c for PM algorithm
was chosen as the maximum of the values prescribed by
Theorems 10 and 11). In all our experiments, we gener-
ated 100 training samples S (as described in Section 2.1)
from an underlying preference matrix P of interest (using
a uniform distribution µ on pairs) each of a number of sizes
m, ran the various algorithms on the samples, and for each
algorithm, counted the fraction of times (out of 100) that
the returned permutation satisfied a desired property, such
as PD error minimization or top cycle recovery at the top.
PD error minimization. For this we used two acyclic
preference matrices: a matrix P ∈ PBTL

10 generated from
a score vector w drawn uniformly from [0, 1]10, and the
matrix P ∈ (PDAG

5 \PLN
5 ) described in (Rajkumar & Agar-

wal, 2014). The results are shown in the first two plots in
Figure 6. As expected, for the first P, all algorithms except

UM recover an optimal ranking w.r.t. PD error, while for
the second P, only SVM-RA and MC do so.

Condorcet winner and top cycle recovery. For this we
used two preference matrices with cycles: the matrix P ∈
PCW
7 \ PDAG

7 described in Example 1 (see also Figure 4,
left), and the matrix P ∈ PTC(3)

6 ⊂ (P6 \ PCW
6 ) described

in Example 2 (see also Figure 4, middle). The results are
shown in the 3rd and 4th plots in Figure 6. In this case, only
the new algorithms considered in this paper (MC, UM, PM)
recover the Condorcet winner and the top cycle at the top.
Copeland set recovery. For this we used the cyclic prefer-
ence matrix P ∈ (P8 \ PCW

8 ) described in Example 3 (see
also Figure 4, right). The results are shown in the 5th plot in
Figure 6. As expected, only the MC algorithm successfully
recovers the Copeland set at the top.
Markov set recovery. For this we again used the cyclic
matrix P ∈ (P8 \PCW

8 ) described in Example 3, for which
MA(P) 6= CO(P). The results are shown in the 6th plot
in Figure 6. As expected, in this case only the UM and PM
algorithms correctly recover the Markov set at the top.

8. Conclusion
In this paper, we investigated convergence properties of al-
gorithms for ranking from pairwise preferences when pref-
erences can contain cycles. When a globally optimal rank-
ing is hard to compute, it is natural to ask that ‘good’ items,
such as Condorcet winners or suitable tournament solution
sets, be ranked at the top. We showed that several ranking
algorithms developed in recent years fail in this respect,
and designed new algorithms that rank Condorcet winners,
top cycles, Copeland and Markov sets at the top, while re-
taining or improving guarantees of previous algorithms for
acyclic preferences. Future work includes exploring alter-
native complexity parameters for our bounds and consider-
ing similar objectives in an active ranking setting.
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Eyke. PAC rank elicitation through adaptive sampling
of stochastic pairwise preferences. In Proceedings of the
28th AAAI Conference on Artificial Intelligence, 2014b.

Cho, Grace E. and Meyer, Carl D. Comparison of pertur-
bation bounds for the stationary distribution of a Markov
chain. Linear Algebra and its Applications, 335(1–3):
137–150, 2001.

Copeland, A. H. A ‘reasonable’ social welfare function. In
Seminar on Mathematics in Social Sciences, University
of Michigan, 1951.

De Donder, Philippe, Le Breton, Michel, and Truchon,
Michel. Choosing from a weighted tournament. Mathe-
matical Social Sciences, 40(1):85–109, 2000.

Fürnkranz, Johannes and Hüllermeier, Eyke. Preference
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