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Before we give the appendix material, we note the following: In general, all the algorithms described (both previous
algorithms and those proposed in this paper) can be run either on a true preference matrix P as input (wherePij+Pji = 1 for
all i 6= j) or on an empirical preference matrix P̂ as input (where there might be some (i, j) pairs for which P̂ij = P̂ji = 0).
The notation P used in describing the algorithms allows for both possibilities. All the theorems we give apply to the
empirical preference matrix and therefore use the notation P̂; on the other hand, the counter-examples we give in Examples
show that even if the corresponding algorithms are run on the true matrix P, the algorithms can fail to satisfy the desired
property, and therefore use the notation P.

A. Supplement to Section 3 (Related Work and Existing Results)
For completeness, here we include descriptions of the Rank Centrality (RC), Matrix Borda (MB) and SVM-
RankAggregation (SVM-RA) algorithms that form the backdrop to our work. For the SMV-RA algorithm, we will need
the following definition:

Definition 12 (P-Induced Dataset (Rajkumar & Agarwal, 2014)). Let P ∈ [0, 1]n×n satisfy the following conditions:
(i) for all i 6= j: pij + pji = 1 or pij = pji = 0 and (ii) for every i: pii = 0. Define the P-induced dataset SP =
{vij , zij}i<j:pij+pji=1 as consisting of the vectors vij = (pi − pj) ∈ Rn for every pair (i, j) such that i < j and
pij + pji = 1, where pi denotes the i-th column of P, together with binary labels zij = sign(pji − pij) ∈ {±1}.

Algorithm 4 Rank Centrality (RC) Algorithm ((Negahban et al., 2012))

Input: Pairwise comparison matrix P ∈ [0, 1]n×n satisfying the following conditions:
(i) for all i 6= j: pij + pji = 1 or pij = pji = 0

(ii) for every i: pii = 0

Construct an empirical Markov chain with transition probability matrix P̆ as follows:

p̆ij =

{
1
npij if i 6= j

1− 1
n

∑
k 6=i pik if i = j.

Compute π, the stationary probability vector of P̆
Output: Permutation σRC ∈ argsort(π)

Algorithm 5 Matrix Borda (MB) Algorithm ((Rajkumar & Agarwal, 2014))

Input: Pairwise comparison matrix P ∈ [0, 1]n×n satisfying the following conditions:
(i) for all i 6= j: pij + pji = 1 or pij = pji = 0

(ii) for every i: pii = 0

For i = 1 to n: f i = 1
n

∑n
k=1 pki

Output: Permutation σMB ∈ argsort(f)

B. Supplement to Section 4 (Performance of Rank Centrality, Matrix Borda and
SVM-RankAggregation Algorithms under Preferences with Cycles) and Example 3

Additional details for Examples 1–3. For completeness, we first give here the permutations output by different algorithms
for the preference matrices given in Examples 1, 2 and 3. For the PM algorithm, the value of the parameter c is chosen as
the maximum of the values prescribed by Theorem 10 and 11.
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Algorithm 6 SVM-RankAggregation (SVM-RA) Algorithm ((Rajkumar & Agarwal, 2014))

Input: Pairwise comparison matrix P ∈ [0, 1]n×n satisfying the following conditions:
(i) for all i 6= j: pij + pji = 1 or pij = pji = 0

(ii) for every i: pii = 0

Construct P-induced dataset SP (see Definition 12)

If SP is linearly separable by hyperplane through origin, then
train hard-margin linear SVM on SP; obtain α ∈ Rn

else
train soft-margin linear SVM (with any suitable value for regularization parameter) on SP; obtain α ∈ Rn

For i = 1 to n: f i =
∑n
k=1 αkpki

Output: Permutation σSVM-RA ∈ argsort(f)

For the matrix in Example 1, we have the following:

σRC = (2 1 6 3 4 7 5)

σMB = (2 1 6 3 4 7 5)

σSVM-RA = (7 6 2 1 5 4 3)

σMC = (1 2 6 3 4 7 5)

σUM = (1 2 3 4 5 6 7)

σPM = (1 2 6 7 3 4 5)

For the matrix in Example 2, we have the following:

σRC = (4 3 1 2 6 5)

σMB = (4 1 2 3 6 5)

σSVM-RA = (4 2 6 1 3 5)

σMC = (1 2 3 4 6 5)

σUM = (1 2 3 4 5 6)

σPM = (1 2 3 6 5 4)

For the matrix in Example 3, we have the following:

σRC = (4 6 5 7 1 2 3 8)

σMB = (4 6 5 7 1 2 3 8)

σSVM-RA = (4 6 5 2 1 7 3 8)

σMC = (2 4 6 5 1 7 3 8)

σUM = (5 2 4 6 7 3 1 8)

σPM = (5 4 6 2 7 3 1 8)

We next give additional examples showing that the MB algorithm can fail to rank the Condorcet winner/Copeland
set/Markov set at the top even in PDAG \ PLN, and the RC algorithm can fail to do so even in PLN \ PBTL.

Example 6 (MB algorithm can fail to rank the Condorcet winner/Copeland set/Markov set at the top even in PDAG \PLN).
Let n = 3, and consider

P =

 0 0.4 0.4
0.6 0 0.1
0.6 0.9 0


Here CW(P) = 1,CO(P) = MA(P) = {1}, but the permutation σMB produced by running MB on P is σMB = (2 1 3).
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Example 7 (RC algorithm can fail to rank the Condorcet winner/Copeland set/Markov set at the top even in PLN \ PBTL).
Let n = 8, and consider

P =



0 0.49 0.3095 0.3 0.3 0.3 0.3 0.3
0.51 0 0.1 0.49 0.3 0.3 0.3 0.3

0.6905 0.9 0 0.2 0.1 0.3 0.3 0.3
0.7 0.51 0.8 0 0.1 0.3 0.3 0.3
0.7 0.7 0.9 0.9 0 0.3 0.3 0.3
0.7 0.7 0.7 0.7 0.7 0 0.3 0.3
0.7 0.7 0.7 0.7 0.7 0.7 0 0.3
0.7 0.7 0.7 0.7 0.7 0.7 0.7 0


Here CW(P) = 1, CO(P) = MA(P) = {1}, but the permutation σRC produced by running the RC algorithm on P is
σRC = (2 1 3 4 6 5 7 8).

C. Proofs of Results in Sections 5–6
The overall strategy followed by our proofs is largely similar to that of (Rajkumar & Agarwal, 2014): namely, that the
empirical pairwise comparison matrix P̂ concentrates around the true pairwise preference matrix P, and that when P̂
becomes sufficiently close to P, the specific algorithm satisfies the desired property. However the details differ considerably
depending on the algorithm and property of interest. The proofs for the Matrix Copeland (MC) and Unweighted Markov
(UM) algorithms are relatively straightforward; the proofs for the Parametrized Markov (PM) algorithm, on the other hand,
require additional tools. In particular, as noted in the main text, the proof of Theorem 9 involves reasoning about a new
property of preference matrices that we term the restricted low-noise (RLN) property; the proofs of Theorems 10–11 make
use of the Cho-Meyer perturbation bound for Markov chains. Details follow.

C.1. Proof of Theorem 5

Proof. Let m satisfy the given assumption. Then by Lemma 4, we have with probability at least 1− δ, the following event
holds:

|pij − p̂ij | <
γmin

2
for all i, j.

Under this event, we have for all i, j : pij >
1
2 ⇐⇒ p̂ij >

1
2 , and therefore GP = GP̂, thus giving for all i ∈ [n]:

f̂i =
1

n

n∑
j=1

1(p̂ij <
1
2 ) =

1

n

n∑
j=1

1(pij <
1
2 ) =

d(i)

n
.

The first claim follows. To prove the second claim, note that if P ∈ PDAG, we have for any i, j, i �P j =⇒ d(i) > d(j).
The claim follows.

C.2. Proof of Theorem 6

Proof. Let m satisfy the given assumption. Then by Lemma 4, we have with probability at least 1− δ, the following event
holds:

|pij − p̂ij | <
γTC

2
for all i, j.

Under this event, we have for all i ∈ TC(P), j /∈ TC(P), p̂ij < 1
2 (and therefore the edge (i, j) is present GP̂), thus

giving

for all i ∈ TC(P): f̂i =
1

n

n∑
j=1

1(p̂ij <
1
2 ) ≥ n−|TC(P)|

n and (2)

for all j /∈ TC(P): f̂j =
1

n

n∑
i=1

1(p̂ji <
1
2 ) ≤ n−|TC(P)|−1

n (since p̂jj = 0) (3)

Thus under the above event, we have f̂i > f̂j for all i ∈ TC(P), j /∈ TC(P). The claim follows.
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C.3. Proof of Theorem 7

Proof. Let m satisfy the given assumption. Then by Lemma 4, we have with probability at least 1− δ, the following event
holds:

|pij − p̂ij | <
γmin

2
for all i, j. (4)

Under this event, we have for all i, j : pij >
1
2 ⇐⇒ p̂ij >

1
2 , and therefore GP = GP̂; it is easy to verify that in this case,

the Markov chain ˘̂
H constructed by the UM algorithm is the same as the Markov chain P̃ used to define the Markov set

MA(P), and therefore their corresponding stationary distributions π̂ and π are also the same. The claim follows.

C.4. Proof of Theorem 8

Proof. Let m satisfy the given assumption. Then by Lemma 4, we have with probability at least 1− δ, the following event
holds:

|pij − p̂ij | <
γmin

2
for all i, j. (5)

Under this event, we have for all i, j : p̂ij >
1
2 ⇐⇒ pij >

1
2 . In particular, we have for all i ∈ TC(P), j /∈ TC(P),

p̂ij <
1
2 , and thus the Markov chain ˘̂

H constructed by the UM algorithm satisfies

˘̂
hij =

{
0 if i ∈ TC(P), j /∈ TC(P)
1
n if i /∈ TC(P), j ∈ TC(P) .

(6)

This implies in particular that the stationary distribution π̂ of ˘̂
H satisfies

π̂i = 0 for all i /∈ TC(P) .

Moreover, for all i, j ∈ TC(P), we have p̂ij > 1
2 ⇐⇒ pij >

1
2 as above, and therefore the items in TC(P) form a

recurrent class in the above Markov chain; this implies that

π̂i > 0 for all i ∈ TC(P) .

Thus under the above event, we have π̂i > π̂j for all i ∈ TC(P), j /∈ TC(P). The claim follows.

C.5. Auxiliary Results Needed for Proof of Theorem 9

Theorem 9 claims that for P ∈ PBTL, the PM algorithm using any 1 ≤ c <∞ (for sufficiently large sample size, with high
probability) recovers an optimal permutation w.r.t. PD error. As noted earlier, we will prove the result of Theorem 9 for a
slightly larger set of preference matrices than PBTL, namely for all P satisfying the restricted low-noise (RLN) property,
defined as follows:

PRLN
n =

{
P ∈ Pn : ∀ i 6= j 6= k : i �P j =⇒ pkj < pki

}
.

We will show below the following three results:

(i) PBTL ⊆ PRLN (Proposition 13).

(ii) For any 1 ≤ c <∞, PRLN is closed under gc, i.e. P ∈ PRLN =⇒ Hc = gc(P) ∈ PRLN (Proposition 14).

(iii) For any P ∈ PRLN, the permutation σRC produced by running the RC algorithm on P satisfies
σRC ∈ argminσ∈Sn erPD

P [σ] (Theorem 15).

These results will imply that for any P ∈ PRLN (and therefore in particular for any P ∈ PBTL) and any 1 ≤ c < ∞, the
permutation σPM produced by running the PM algorithm on P (i.e. the RC algorithm on Hc = gc(P)) satisfies

σPM ∈ argminσ∈Sn
erPD

Hc [σ] .
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Moreover, since pij > 1
2 ⇐⇒ gc(pij) >

1
2 , we have argminσ∈Sn

erPD
Hc [σ] = argminσ∈Sn

erPD
P [σ], which further gives that

for P and c as above,

σPM ∈ argminσ∈Sn
erPD

P [σ] .

We will then be able to argue that for sufficiently large sample size m, when P̂ is sufficiently close to P, the permutation
σ̂PM returned by running the PM algorithm on P̂ will also minimize the PD error w.r.t. P, which will prove Theorem 9.

Proposition 13. PBTL
n ⊆ PRLN

n .

Proof. We have,

P ∈ PBTL
n =⇒ there exists w ∈ Rn+ : for all i 6= j , pij =

wj
wi + wj

=⇒ for any i, j, if pij < pji, then wi > wj

=⇒ for any i, j, for any k 6= {i, j}, pik =
wk

wi + wk
> pjk =

wk
wj + wk

=⇒ P ∈ PRLN
n .

This proves the claim.

Proposition 14. Let P ∈ PRLN
n . Let 1 ≤ c < ∞ and define Hc as hcij = gc(pij) for all i 6= j and hcii = 0 for all i. Then

Hc ∈ PRLN
n .

Proof. Let i, j ∈ [n]. We have,

i �Hc j =⇒ hcij < hcji

=⇒
pcij

pcij + pcji
<

pcji
pcji + pcij

=⇒ pij < pji

=⇒ pki > pkj for all k 6= {i, j} (since P ∈ PRLN)

=⇒ pki + 1− pjkpik > pkj + 1− pjkpik for all k 6= {i, j}
=⇒ pkipjk > pikpkj for all k 6= {i, j}

=⇒ pik
pki

<
pkj
pjk

for all k 6= {i, j}

=⇒

(
pik
pki

)c
<

(
pkj
pjk

)c
for all c ≥ 1, for all k 6= {i, j}

=⇒ gc(pki) > gc(pkj) for all c ≥ 1, for all k 6= {i, j}
=⇒ hcki > hcjk for all c ≥ 1, for all k 6= {i, j}

Thus we have Hc ∈ PRLN
n .

Theorem 15. Let P ∈ PRLN
n . Then the permutation σRC produced by running the Rank Centrality algorithm on P satisfies

σRC ∈ argminσ∈Sn erPD
P [σ].

Proof. Let P̆ be the Markov chain constructed from P by the Rank Centrality algorithm and let π be its stationary distri-
bution. Fix any i, j such that i �P j. Assume for the sake of contradiction that πi ≤ πj . We have from the stationary
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distribution equations,

πi =

n∑
k=1

πkp̆ki

=
∑

k 6={i,j}

πkp̆ki + πip̆ii + πj p̆ji

=
∑

k 6={i,j}

πk
pki
n

+ πi(1−
∑
k 6=i

p̆ik) + πj
pji
n

=
∑

k 6={i,j}

πk
pki
n

+ πi

( 1

n
+
∑
k 6=i

pki
n

)
+ πj

pji
n

Similarly we have

πj =
∑

k 6={i,j}

πk
pkj
n

+ πj

( 1

n
+
∑
k 6=j

pkj
n

)
+ πi

pij
n

Notice that the equations for πi and πj are of the form

πi = a1 + b1πi + c1πj

πj = a2 + b2πj + c2πi

where

a1 =
∑

k 6={i,j}

πk
pki
n
, b1 =

1

n
+
∑
k 6=i

pki
n
, c1 =

pji
n

a2 =
∑

k 6={i,j}

πk
pkj
n
, b2 =

1

n
+
∑
k 6=j

pkj
n
, c2 =

pij
n
.

Since P ∈ PRLN and i �P j, we have that a1 ≥ a2, b1 > b2 and c1 > c2. Observe that 0 < b1, b2 ≤ 1. We claim that
neither b1 nor b2 can be exactly equal to 1. To see this, first consider b2. We have b2 = 1 only if pkj = 1 for all k 6= j. But
as i �P j, we have pij < pji and so this cannot happen. Thus b2 < 1. Next consider b1. We have b1 = 1 only if pki = 1
for all k 6= i. When this happens, it is easy to see that CW(P) = i and so πi = 1 and πj = 0 for all j 6= i. This contradicts
our assumption that πi ≤ πj . So in what follows, assume 0 < b1, b2 < 1. In that case, we have

πi =
a1

1− b1
+

c1
1− b1

πj

>
a2

1− b2
+

c2
1− b2

πi (as P ∈ PRLN and by our assumption that πi ≤ πj)

= πj

which contradicts the assumption that πi ≤ πj . Thus, we must have that

for any i, j, i �P j =⇒ πi > πj .

The claim follows.

C.6. Proof of Theorem 9

Proof. Let m satisfy the given assumption. Then by Lemma 4, we have with probability at least 1− δ, the following event
holds:

|pij − p̂ij | <
min(γmin, rmin)

2
for all i, j . (7)
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Under this event, we have

for all i, j: p̂ij >
1
2 =⇒ pij >

1
2 (since |p̂ij − pij | < γmin

2 for all i, j)

=⇒ pki > pkj for all k 6= {i, j} (since P ∈ PBTL ⊆ PRLN from Proposition 13)

=⇒ p̂ki > p̂kj for all k 6= {i, j} (since |p̂km − pkm| <
rmin

2
for all k,m) .

Thus under the above event, we have P̂ ∈ PRLN, and therefore by Proposition 14 we have that the matrix Ĥc constructed
by the PM algorithm satisfies Ĥc ∈ PRLN, and by Theorem 15 that

σ̂PM ∈ argminσ∈Sn erPD
Ĥc [σ] . (8)

Since under the above event we also have

for all i, j : pij >
1
2 ⇐⇒ p̂ij >

1
2 ⇐⇒ ĥcij >

1
2 ,

it follows that under this event, argminσ∈Sn erPD
Ĥc

[σ] = argminσ∈Sn erPD
P [σ] and therefore

σ̂PM ∈ argminσ∈Sn erPD
P [σ] .

This proves the result.

C.7. Auxiliary Results Needed for Proofs of Theorems 10–11

The first result we will need for proving Theorems 10–11 is the following perturbation bound for Markov chains:

Theorem 16 ((Cho & Meyer, 2001; Seneta, 1988)). Let R and R′ be the transition probability matrices of finite Markov
chains having unique stationary distributions π and π′ respectively. Then

‖π − π′‖1 ≤
‖R−R′‖∞

1− τ(R)
,

where 1− τ(R) = mini 6=j
∑n
k=1 min{rik, rjk}.

We will use the above theorem to show the following two results:

(i) For any P and sufficiently large c, the permutation σPM produced by running the PM algorithm on P satisfies
σPM(i) < σPM(j) for all i ∈ MA(P), j /∈ MA(P) (Theorem 19).

(ii) For any P and sufficiently large c, the permutation σPM produced by running the PM algorithm on P satisfies
σPM(i) < σPM(j) for all i ∈ TC(P), j /∈ TC(P) (Theorem 20).

In proving these results, we will make use of Theorem 16 to bound the difference between the stationary probability vectors
π and πc of the Markov chains associated with the matrices Hc = gc(P) and H = g∞(P). For this, we will find the
following two lemmas useful:

Lemma 17. Let P ∈ Pn. Let H = g∞(P), with hij = 1(pij > 1/2), and let H̆ be the Markov chain transition matrix
corresponding to H as constructed by the Rank Centrality algorithm applied to H. Then

1− τ(H̆) ≥ 1

n
.
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Proof. We have,

1− τ(H̆) = min
i 6=j

n∑
k=1

min{h̆ik, h̆jk}

= min
i 6=j

( ∑
k 6={i,j}

min{h̆ik, h̆jk}+ min{h̆ii, h̆ji}+ min{h̆ij , h̆jj}
)

= min
i 6=j

( ∑
k 6={i,j}

min{h̆ik, h̆jk}+ h̆ji + h̆ij

)
(since h̆ii ≥ h̆ij , h̆ji for all i 6= j)

= min
i 6=j

( ∑
k 6={i,j}

min{h̆ik, h̆jk}+ h̆ji + h̆ij

)
= min

i 6=j

( ∑
k 6={i,j}

min{h̆ik, h̆jk}+
1

n

)
(since h̆ji + h̆ij =

1

n
for all i 6= j)

≥ 1

n
.

Lemma 18. Let P ∈ Pn and 1 ≤ c < ∞. Let Hc = gc(P) and H = g∞(P), and let H̆c, H̆ be the Markov chain
transition matrices corresponding to Hc and H as constructed by the Rank Centrality algorithm applied to Hc and H. Let
αmin = mini 6=j:i�Pj

pji
pij

. Let ε > 0. If c ≥ ln(2/ε)
ln(αmin)

, then

‖H̆c − H̆‖∞ < ε

Proof. Consider any i 6= j. If pij < 1
2 , we have

|h̆cij − h̆ij | =
|gc(pij)− 1(pij >

1
2 ))|

n
=
gc(pij)

n
=

1

n(1 + (
pji
pij

)c)
.

Similarly if pij > 1
2 , we have

|h̆cij − h̆ij | =
|gc(pij)− 1(pij >

1
2 )|

n
=
|gc(pij)− 1|

n
=

1

n(1 + (
pij
pji

)c)
.

In both cases, we have

|h̆cij − h̆ij | ≤
1

n(1 + αcmin)
.

Let c satisfy the given assumption. Then we have for all i 6= j,

|h̆cij − h̆ij | ≤
ε

2n
.

Moreover, for all i, we have

|h̆cii − h̆ii| =
∣∣∣∑
k 6=i

(h̆cik − h̆ik)
∣∣∣ ≤∑

k 6=i

|h̆cik − h̆ik| ≤
ε

2
.

Thus

‖H̆c − H̆‖∞ = max
i

∑
k

|h̆cik − h̆ik| ≤ max
i

(
|h̆cii − h̆ii|+

∑
k 6=i

|h̆cik − h̆ik|

)
≤ ε

2
+

(n− 1)ε

2n
< ε .
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Theorem 19. Let P ∈ Pn. Let H = g∞(P), and let H̆ be the Markov chain transition matrix corresponding to H

as constructed by the Rank Centrality algorithm applied to H. Let π be the stationary probability vector of H̆. Let
β2(P) = maxi∈[n] πi − maxk/∈MA(P) πk and αmin = mini,j:i�Pj

pji
pij

. If c ≥ ln(4n/β2(P))
ln(αmin)

, then the permutation σPM

produced by running the PM algorithm on P satisfies

σPM(i) < σPM(j) for all i ∈ MA(P), j /∈ MA(P) .

Proof. Let c satisfy the given assumption. Let H̆c be the Markov chain transition matrix corresponding to Hc = gc(P)

as constructed by the Rank Centrality algorithm applied to Hc. Let πc be the stationary probability vector of H̆c. By
Lemma 18, we have

‖H̆c − H̆‖∞ ≤
β2(P)

2n
.

By Theorem 16 and Lemma 17, it then follows that

‖πc − π‖∞ ≤ ‖πc − π‖1 ≤
β2(P)

2
.

By definition of β2(P) and MA(P), this implies in particular that

πci > πcj for all i ∈ MA(P), j /∈ MA(P) .

The claim follows.

Theorem 20. Let P ∈ Pn. Let αmin = mini,j:i�Pj
pji
pij

. If c ≥ (n+1) ln(4n)
ln(αmin)

, then the permutation σPM produced by the
running the PM algorithm on P satisfies

σPM(i) < σPM(j) for all i ∈ TC(P), j /∈ TC(P) .

Proof. Let c satisfy the given assumption. Let H̆c and H̆ be the Markov chain transition matrices corresponding to
Hc = gc(P) and H = g∞(P) as constructed by the Rank Centrality algorithm applied to Hc and H. Let πc,π be the
stationary probability vectors of H̆c, H̆. By Lemma 18, we have

‖H̆c − H̆‖∞ ≤
1

2nn+1
.

By Theorem 16 and Lemma 17, it then follows that

‖πc − π‖∞ ≤ ‖πc − π‖1 ≤
1

2nn
.

By definition of H, we have that πi > 0 if and only if i ∈ TC(P). Now, define

πTC
max = max

i∈TC(P)
πi

πTC
min = min

i∈TC(P)
πi ,

and let
m0 ∈ argmini∈TC(P) πi .

If |TC(P)| = 1, then clearly m0 is the unique Condorcet winner and πm0 = 1, with πj = 0 for j 6= m0; in this case

πTC
min = 1 ≥ 1

nn
.

If |TC(P)| > 1, then it must be the case that m0 �P m1 for some m1 ∈ TC(P) (otherwise m0 /∈ TC(P)). From the
stationary equations, we have that

πTC
min = πm0

=

n∑
k=1

πkh̆km0
≥ πm1

h̆m1m0
≥ πm1

n
(from definition of H̆ and since m0 �P m1).
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If |TC(P)| = 2, then πm1
= πmax ≥ 1

n , which again gives

πTC
min ≥

1

n2
≥ 1

nn
.

One can similarly show that regardless of the size of TC(P), we have

πTC
min ≥

1

nn
.

Thus the above result gives us

‖πc − π‖∞ ≤
πTC
min

2
.

By definition of πTC
min, this implies in particular that

πci > πcj for all i ∈ TC(P), j /∈ TC(P) .

The claim follows.

C.8. Proof of Theorem 10

Proof. Let c and m satisfy the given assumptions. Applying Theorem 19 to P̂, we have that σ̂PM satisfies

σ̂PM(i) < σ̂PM(j) for all i ∈ MA(P̂), j /∈ MA(P̂) .

Now by Lemma 4, we have with probability at least 1− δ, the following event holds:

|pij − p̂ij | <
γmin

2
for all i, j. (9)

Under this event, we have

for all i, j : pij >
1
2 ⇐⇒ p̂ij >

1
2 . (10)

Thus under the above event, we have MA(P̂) = MA(P). The claim follows.

C.9. Proof of Theorem 11

Proof. Let c and m satisfy the given assumptions. Applying Theorem 20 to P̂, we have that σ̂PM satisfies

σ̂PM(i) < σ̂PM(j) for all i ∈ TC(P̂), j /∈ TC(P̂) .

Now by Lemma 4, we have with probability at least 1− δ, the following event holds:

|pij − p̂ij | <
γmin

2
for all i, j. (11)

Under this event, we have

for all i, j : pij >
1
2 ⇐⇒ p̂ij >

1
2 . (12)

Thus under the above event, we have TC(P̂) = TC(P). The claim follows.


