Supplementary Materials for Bayesian Multiple Target Localization

To support the proof of Theorem 1 and 2, we need to fol-
lowing lemma, which provides an expression for the ex-
pected entropy after additional questions. First of all, we
introduce some notations. For any pair of random variables
W,V, we define H(W||V') to be the random variable tak-

ing the value
.

for each V' = v, assuming the conditional density func-
tion p(w|v) exists. And H(W|V') is the formal conditional
entropy.

p(w|v) log p(w|v) dw (D

In addition, for any random variables W, V, U, we define
I(W;V]|U) to be the random variable taking the value

for each U = u, assuming the conditional density functions
exist. And I(W;V|U) is the formal conditional mutual
information.

Lemma 1. Under any policy 7, for alln > 0,

E[H(pn-‘rl)le:n] - H(pn) - 1(97 Xn+1 ||X1n) (3)

Moreover,
N—1
E[H(pn)] = H(po) = Y 1(6; X i1 X1n). ()
n=0

Proof. First of all, we prove the recursive relation (3).
H(p,,) is the entropy of the posterior distribution of 6,
which is random through its dependence on the past
history Xi.,, hence we can rewrite it as H(p,) =
H(9||X1n> Slmllarly’ H(pn-i-l) = H(9||X1:n+1) =
H(0||X1.n, Xn+1).- Since all three terms in (3) are
0(X1.,)-measurable random variables, it suffices to prove
(3) holds for any fixed history X.,, = 1., i.€.

E[H(e‘lena Xn+1)|x1:n] -

H(9|x1n)—l
&)

(9; Xn+1 “rlzn)~

Using information theoretic arguments, we have

E[H(0|| X1:n, Xnt1)|21:0] (62)
= H(0|Xpt1,21:0) (6b)
= H(0, Xpy1|r1:0) — H(Xnt1]21:0) (6¢0)
= H(0|r1.:0) + H(Xp4110, 21:0) — H(Xpt1]21:0)
(6d)
= H(0|z1:n) — 1(0; Xns1]21:m) (6e)

where (6b) comes from the definition of conditional en-
tropy and (6¢), (6d) come from the chain rule for condi-
tional entropy. (6e) holds due to the relationship between
entropy and mutual information. This proves (5).

Now, taking the expectation over X7.,, on both sides of (3),

EE[H (pnt1)|X1:n]] = E[H (pn)]—E [H(Xpni1 [ X1:0)] -

(N
Note that E[E[H (pp+1)|X1.n]] = E[H(pn+1)] by the
iterated conditioning property of conditional expectation.
Moreover, E [I(0; Xp11|X1:0)] = 1(60; Xnt1]|X1:0) ac-
cording to the definition of conditional entropy in (2).
Hence, (7) is equivalent to

Applying (8) iteratively forn = N — 1,...,0, we obtain
(4), which concludes the proof. O]

Proof of Theorem 1

Proof. According to Lemma 1, it suffices to prove that
1(0; X 1| X1m) < Cf < log(k + 1) for all n > 0 under
any valid policy 7. Since X, 1 depends on 6 only through
Zp+1, we have

I(ea Xn+1 ‘Xl:n) - I(Zn-i-l; Xn+1 ‘Xl:n)

= H(Xn+1‘X1:n) - H(Xn+1|Zn+17X1:n)

= H(Xn—&-l‘Xl:n) - H(Xn+1|Zn+1)-

€))

Also, we have

k
H(Xn1|Xim) = H <Z7r(2)f(z)> ;o (10)

z=0
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where 7(z) denotes the marginal distribution of Z,, 1, and
f(+|2) is the conditional probability density (mass) function
of X,,4+1 given Z, 1. Moreover,

k
H(Xni1Zns1) = S m()H (FC12) . (1)
z=0

Substituting (10) and (11) into (9) gives
1(0, Xn+1|X1:n)

k k
e <Z7r(z) f(-z)) SR DH ()

2=0 z=0

k k (12)
< sng (Z Q(Z)f(~|2)> > 4()H (f(-]2))

z2=0 2=0
= Ck7

where ¢(-) is any probability mass function over
{0,...,k}.

To see the second inequality, we note that the channel ca-
pacity C', is bounded from above by the capacity of a noise-
less channel, i.e.

Ck < 1(Zn1, Znir) = H(Zpyr).  (13)

Since Z,, 1 is a discrete random variable over {0, ..., k},
the maximum possible value for the entropy H(Z, 1)
is obtained when X, ;; has a uniform distribution over
{0,...,k}. Therefore, H(Z,11) < log(k + 1), which
completes the proof. [

Proof of Theorem 2

Proof. We first show that the noiseless answers 7., are iid
under the dyadic policy. Let U; ; be iid Bernoulli(1/2) ran-
dom variables and let V; be iid Uniform(0,2~~1). Then
T, = Z;\f:l 271U; j+V; are iid Uniform(0, 1). By the in-
version method for simulation, Q(7;) = F, ! (T;) provides
a random variable that has cdf F{, and so is equal in distri-
bution to 6;. Because T; is independent across ¢, and 6; is
independent across ¢, the vector (Q(T;) : ¢ = 1,...,k) is
equal in distribution to #. Each Z,,, considered as a func-
tion of 6, is equal in distribution to Uy ,, + ...+ Uy, . More-
over, the vector (Z, : n = 1,...,N) is equal in distribu-
tion to the vector (Uy ,+...+ Uy : n=1,..., N), which
is iid across n. Thus, Z;.n are iid.

Now, according to Lemma 1, it suffices to prove that un-
der the dyadic policy, I(6; Xp41|X1.n) = Dy for all
n > 0. Under the dyadic policy, the noiseless answer
Zn+1 ~ Bin (k, 1) and is independent of the previous his-
tory Xi., (this is a consequence of the independence of
Zp+1 from Z3., shown above). Hence, the marginal distri-
bution function of Z,41 is m(z) = (¥) . The remainder
of the proof is similar to the proof of Theorem 1. O

To support the proof of Theorem 3, we introduce here some
additional notation and derive an explicit formula for the
posterior distribution after observing noiseless answers.

Consider a fixed n, where 1 < n < N. For each binary
sequence s = {s1,..., S}, define

C. = ( N Aj) ﬂ( N A§> [supp(fo).
1<j<n;s;=1 1<j<n;s;=0

(14)

The collection {Cs : Cs # 0,5 € {0,1}"} provides a
partition of the support of fy. A history of n questions pro-
vides information on which sets C contain which targets
among 01 k.

We will think of a sequence of binary sequences
s ... s®) as a sequence of codewords indicating the
sets in which each of the targets 6;.; reside, i.e, indicat-
ing that 6 is in Cy(1), 05 is in C,(2), etc. We may consider
each binary sequence sV, ..., s(*) to be a column vector,
and place them into an n x k binary matrix, S. This bi-
nary matrix then codes the location of all k targets, and is a
codeword for their joint location.

Moreover, to characterize the location of the random vector
0 = (61.;) in terms of its codeword S, define Cs C R to
be the Cartesian product

Cs=Cia) X -+ x Cym. (15)

To be consistent with a noiseless answer Z;, we must have
exactly Z; targets located in the question set A; for each
1 < 7 < n. This can be described in terms of a constraint

on the matrix S as sgl) 4+ 4+ S;k) = Zj, i.e., that the sum
of the j'" row in the matrix S is Z;. Thus, the set of all
possible joint codewords that are consistent with {Z;.,, =

21.n, t describing 0., is
E, ={S|sW,...,s® e {0,1}*,cM,...,c #£¢,

s 4 sl = 2 forall 1 < j < n}.
(16)

Now, we present the explicit characterization of the poste-
rior distribution in the following lemma.
Lemma 2. The posterior distribution given a sequence of
noiseless answers Z1., = z1., is

po(ur.k)

pu(urg) = — ==, forur € |J Cs, (17)
po( U Cs)

SekE,
SeE,

where for a measurable set A, po(A) denotes the integral
J 4 po(u1:k) duy.k. Moreover,

po( U Cs) = > fo(Co) - fo(Cym),  (18)

S€eE, SEE,
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where fo(C)) denotes the integral [, o fo(u) du.

Proof of Theorem 3

Proof. First, we prove the result for noiseless answers. Un-
der the dyadic policy, we partition (0, 1] into 2%V subin-
tervals at time N. Now let’s consider the event {0; €
C|Z1.ny = #1.n}, where C is one of such subintervals.

Let’s denote the support of the posterior distribution

pn(u.x) by D = |J Cs. Moreover, denote the collec-
S€eEN
tion of matrices S € En that are consistent with the event

{92 S C|ZLN = ZI:N} by EN(C) Note that po(Cs) =
Fo(Cs) fo(Cu) - .. fo(Cymy) = 27Nk under the dyadic
policy.  For simplicity, define Do = Usep, () Cs-
Therefore, using Lemma 2, we can compute the probability
of P(0; € C|Z1.n = z1.N) a8

P(0, € C|Zi.n = z1:n)

= / P (u1:k) dut.g
u1.x€Dc

— / po(u1:x)
ulzkEDc Z fO(CS(1)>fO(CS(2>) c -fO(CS(k))
SeEnN

1
- Z 2Nk|EN|

dul:k

po(u1:k) dutg

SeEn(C) u1.x€Cs
BN (C)]
|En|
19)
where |En(C)|,|En| denote the cardinalities of

En(C), En, respectively.  Consider the construction
of the IV x k binary matrix S € E'n. The only requirement
it needs to satisfy is that the sum of nth row is equal to
zn. Hence, we can construct the matrix row by row. Note
that in step n, there are (zkn ) ways to specify the nonzero
entries in the n** row, forn = 1,2,..., N. Thus, by the

product rule,

Sk
ENER <Z ) (20)

n=1 n

Using combinatorial techniques, we have

N
v =TT (-

n
n=1

1
5 )1{0§zn—sn§k—1}~ (21)

Combining (19), (20) and (21) together and using the fact

that 61,05, ..., 0y are exchangeable,

1]_\1[ ( k—1 1
[1 (., s, ) 0<zn—sn<h-1}
n=1

T (5)

_ IJ_V[ -, if s, =1

B 1— 2 ifs, =0’
(22)

P, € C|Zi.x = 21:N) =

fori=1,2,...,k.
Equivalently,

P(0; € ClZi.n = z1.N) = ﬁ (%)Sn (1 — %)1_% )
n=1 -

Now we extend this result to the case with noisy answers.
Firstly, we have

P(6; € Clzi.n) = Y P(6; € C, z1.x|a1.n)

Z1:N

=Y P(0; € Clz1:n, 21:8) P(21:n|21.8)

Z1:N

= Z P(0; € C|z1.n)P(21.N]|71:N)-

(24)

Under the dyadic policy, Z1, ..., Zy are conditionally in-
dependent given the noisy observations x1, ..., xy. Thus,
P(z1.n|z1.N) = HnN:1 P(z,|x1.n). Moreover, due to the
special structure of the dyadic policy, Z,, is independent
of Z; forall j # n,j = 1,..., N, thus implying Z,, is
independent of X; for all j # n,j7 = 1,...,N. Hence,
P(zy|z1.8) = P(zn|zn). Therefore, P(z1.n5|z1.n) =
Hf:[:l P(zp|2y). According to (23), we have

P(Gl S C‘JZLN)

N
= (H(i:)s(l - Z]:)ls> P(z1.n]71.N8)

z1.N \n=1
N . p N
= TG = I Plenle)
z1.Nn n=1 n=1 (25)
N
- Z (H(Zl)sn(l - ?)ISHP(Zn|In)>
z1:N \n=1

T3 G- = ptadan)

2n=0
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Furthermore, according to the definition of e,,, we have

K

Zn Sn “n 1—s, .

S P(z|z,) = & if s, =1
_ zn=0 k nltn) — L n — -

SE (=) P(zala,) =1— %, ifs, =0.

en\ 5 en 1—sp,

(7)) (-7

(26)

Substituting (26) into (25) proves the first claim in Theorem
3.

Finally,
k
EIN(C)|z1.n] =Y P(6; € Clay.n) = kP(6; € Clar.n),
i=1
27
and we complete the proof. O

Now, we prove the claim made in Section 4 regarding the
approximation ratio in the noiseless case.

Lemma 3. H(Bin(k, %))/ log(k+1) > %

Proof. H(Bin(k,3)) = H(Zf=1 B;), where B; are iid
Bernoulli(1). By Theorem 1 in (?), (but expressing en-
tropy in base 2 instead of base e),

22H(Bin(k,%)) > £92H(BY) _ 41
This implies that H(Bin(k, §)) > 3 log(4k) and

H(Bin(k. 1))
log(k + 1)

1 log(4k) < 1
= 2logk+1) ~ 2

Detailed implementation of the EP Algorithm

A detailed implementation of the Entropy Pursuit (EP) al-
gorithm is presented below.

Algorithm 1 Implementation of EP

1: Obtain noisy observations x1, ..., TN

2: Generate Fn.

3: Create matrix D with dimension 2" x |Ex|. Each row in D
corresponds to one pixel C, each element in the row repre-
sents the number of instances in C' as per each S € Ey.

4: for S; € En do

5:  Update Column_i of D with the number of instances at
each pixel C as per S;;
6: end for
7. m=0,D® =D, EY = Ex.
8: repeat
9:  for each pixel C' do
10: Foreachu =0, ..., k, evaluate
P(N(C) = ulz1:n)
_HSe E\™ : codes for C appear u times in S} )
BV
(28)
11: Evaluate
H(N(O)lr.0)
k
==Y P(N(C) = ulz1) log(P(N(C) = ulz1:n));
) (29)
12:  end for

13:  C* = argmax, H(N(C)|z1:n);
14:  Query the oracle and obtain Answer(cw,f) = Oracle(C™);
15:  for S; € E{™ do

16: if S; is incompatible with Answerg'i) then
17: Remove S; from Eg\,m>;

18: Remove Column; from D™

19: end if

20:  end for

21  m=m+l;

22: until H(Oc+|z1:0) =0

23: The unique columns of D™ give the estimated instances
joint location .




