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Abstract
Gaussian vector autoregressive (VAR) processes
have been extensively studied in the literature.
However, Gaussian assumptions are stringent for
heavy-tailed time series that frequently arises in
finance and economics. In this paper, we de-
velop a unified framework for modeling and es-
timating heavy-tailed VAR processes. In partic-
ular, we generalize the Gaussian VAR model by
an elliptical VAR model that naturally accommo-
dates heavy-tailed time series. Under this model,
we develop a quantile-based robust estimator for
the transition matrix of the VAR process. We
show that the proposed estimator achieves para-
metric rates of convergence in high dimensions.
This is the first work in analyzing heavy-tailed
high dimensional VAR processes. As an applica-
tion of the proposed framework, we investigate
Granger causality in the elliptical VAR process,
and show that the robust transition matrix estima-
tor induces sign-consistent estimators of Granger
causality. The empirical performance of the pro-
posed methodology is demonstrated by both syn-
thetic and real data. We show that the proposed
estimator is robust to heavy tails, and exhibit su-
perior performance in stock price prediction.
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1. Introduction
Vector autoregressive models are widely used in analyzing
multivariate time series. Examples include financial time
series (Tsay, 2005), macroeconomic time series (Sims,
1980), gene expression series (Fujita et al., 2007; Opgen-
Rhein & Strimmer, 2007), and functional magnetic reso-
nance images (Qiu et al., 2015).

Let X1, . . . ,XT P Rd be a stationary multivariate time
series. We consider VAR models1 such that

Xt “ AXt´1 `Et for t “ 2, . . . , T,

where A is the transition matrix, and E2, . . . ,ET are la-
tent innovations. The transition matrix characterizes the
dependence structure of the VAR process, and plays a fun-
damental role in forecasting. Moreover, the sparsity pattern
of the transition matrix is often closely related to Granger
causality. In this paper, we focus on estimating the transi-
tion matrix in high dimensional VAR processes.

VAR models have been extensively studied under the Gaus-
sian assumption. The Gaussian VAR model assumes that
the latent innovations are i.i.d. Gaussian random vectors,
and are independent from past observations (Lütkepohl,
2007). Under this model, there is vast literature on estimat-
ing the transition matrix under high dimensional settings.
These estimators can be categorized into regularized esti-
mators and Dantzig-selector-type estimators. The former

1For simplicity, we only consider order one VAR models in
this paper. Extensions to higher orders can be obtained using the
same technique as in Chapter 2.1 of Lütkepohl (2007).



Robust Estimation of VAR Processes

can be formulated by

Âreg :“ argmin
MPRdˆd

lpY ´MXq ` PρpMq, (1.1)

where Y :“ pX1, . . . ,XT´1q P RdˆpT´1q, X :“
pX2, . . . ,XT q P RdˆpT´1q, lp¨q is a loss function, and
Pρp¨q is a penalty function with penalty parameter ρ. Com-
mon choices of the loss function include least squares loss
and negative log-likelihood (Hamilton, 1994). For the
penalty function, various `1 penalties (Wang et al., 2007;
Hsu et al., 2008; Shojaie & Michailidis, 2010) and ridge
penalty (Hamilton, 1994) are widely used. Theoretical
properties of `1 penalized estimators are studied in Narki
& Rinaldo (2011), Song & Bickel (2011), and Basu &
Michailidis (2013).

In parallel to the penalized minimum loss estimators, Han
& Liu (2013) proposed a Dantzig-selector-type estimator,
which is formulated as the solution to a linear program-
ming problem. In contrast to the `1 regularized estimators,
consistency of the Dantzig-selector-type estimator do not
rely on restricted eigenvalue conditions. These conditions
do not explicitly account for the effect of serial dependence.
Moreover, the Dantzig-selector-type estimator weakens the
sparsity assumptions required by the `1 regularized estima-
tors.

Although extensively studied in the literature, Gaussian
VAR models are restrictive in their implications of light
tails. Heavy-tailed time series frequently arise in finance,
macroeconomics, signal detection, and statistical physics,
to name just a few (Feldman & Taqqu, 1998). For analyz-
ing these data, more flexible models and robust estimators
are desired.

In this paper, we develop a unified framework for model-
ing and estimating heavy-tailed VAR processes. In partic-
ular, we propose an elliptical VAR model that allows for
heavy-tailed processes. The elliptical VAR model covers
the Gaussian VAR model as a special case. Under this
model, we show that the transition matrix is closely related
to quantile-based scatter matrices. The relation serves as
a quantile-based counterpart of the Yule-Walker equation2

(Lütkepohl, 2007). Motivated by this relation, we propose
a quantile-based robust estimator of the transition matrix.
The estimator falls into the category of Dantzig-selector-
type estimators, and enjoys similar favorable properties as
the estimator in Han & Liu (2013). We investigate the
asymptotic behavior of the estimator in high dimensions,
and show that although set in a more general model, it
achieves the same rates of convergence as the Gaussian-
based estimators. The effect of serial dependence is also
explicitly characterized in the rates of convergence.

2The Yule-Walker equation connects the transition matrix with
the covariance matrix and the lag-one autocovariance matrix of
the process.

As an application of the framework developed in this pa-
per, we investigate Granger causality estimation under the
elliptical VAR process. We show that just as in Gaussian
VAR models, Granger causality relations are also captured
by the sparsity patterns of the transition matrix. The robust
transition matrix estimator developed in this paper induces
sign-consistent estimators of these relations.

2. Background
In this section, we introduce the notation employed in this
paper, and provide a review on elliptical distributions and
robust scales. Elliptical distributions provide a basis for our
model, while robust scales motivate our methodology.

2.1. Notation

Let v “ pv1, . . . , vdq
T be a d-dimensional real vector, and

M “ rMjks P Rd1ˆd2 be a d1 ˆ d2 matrix with Mjk as
the pj, kq entry. Denote by vI the subvector of v whose
entries are index by a set I Ă t1, . . . , du. Similarly, denote
by MU,V the submatrix of M whose entries are indexed
by U Ă t1, . . . , d1u and V Ă t1, . . . , d2u. Let MU,˚ “

MU,t1,...,d2u. For 0 ă q ă 8, we define the vector `q
norm of v as }v}q :“ p

řd
j“1 |vj |q

1{q , and the vector `8
norm of v as }v}8 :“ maxdj“1 |vj |. Let the matrix `max

norm of M be }M}max :“ maxjk |Mjk|, the matrix `8
norm be }M}8 :“ maxj

řd
k“1 |Mjk|, and the Frobenius

norm be }M}F :“
b

ř

jkM
2
jk. Let X “ pX1, . . . , Xdq

T

and Y “ pY1, . . . , Ydq
T be two random vectors. We write

X
d
“ Y if X and Y are identically distributed. We use

0,1, . . . to denote vectors with 0, 1, . . . at every entry.

2.2. Elliptical Distribution

Definition 2.1 (Fang et al. (1990)). A random vector
X P Rd follows an elliptical distribution with location
µ P Rd and scatter S P Rdˆd if and only if there exists
a nonnegative random variable ξ P R, a rank k matrix
R P Rdˆk with S “ RRT, a random vector U P Rk inde-
pendent of ξ and uniformly distributed in the k dimensional
sphere, Sk´1, such that

X
d
“ µ` ξRU . (2.1)

In this case, we denote X „ ECdpµ,S, ξq. S is called the
scatter matrix, and ξ is called the generating variate.
Remark 2.2. (2.1) is often referred to as the stochastic rep-
resentation of the elliptical random vector X . Of note, by
Theorem 2.3 in Fang et al. (1990) and the proof of Theorem
1 in Cambanis et al. (1981), Definition 2.1 is equivalent if
we replace “ d

“” with simply ““”.
Proposition 2.3 (Theorems 2.15 and 2.16 in Fang et al.
(1990)). Suppose X „ ECdpµ,S, ξq and rankpSq “ k.
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Let B P Rpˆd be a matrix and ν P Rp be a vector. Denote
l “ rankpBSBTq. Then, we have

ν `BX „ ECppν `Bµ,BSBT, ξ
?
Bq,

whereB „ Betapl{2, pk´lq{2q follows a Beta distribution
if k ą l, and B “ 1 if k “ l.

2.3. Robust Scales

Let X P R be a random variable with a sequence of obser-
vations X1, . . . , XT . Denote F as the distribution function
of X . For a constant q P r0, 1s, we define the q-quantiles
of X and tXtu

T
t“1 to be

QpX; qq “ QpF ; qq :“ inftx : PpX ď xq ě qu,

Q̂ptXtu
T
t“1; qq :“ Xpkq where k “ min

!

t :
t

T
ě q

)

.

Here Xp1q ď ¨ ¨ ¨ ď XpT q are the order statistics of the
sample tXtu

T
t“1. We sayQpX; qq is unique if there exists a

unique x such that PpX ď xq “ q. We say Q̂ptXtu
T
t“1; qq

is unique if there exists a unique X P tXtu
T
t“1 such that

X “ Xpkq. Following Rousseeuw & Croux (1993), we
define the population and sample quantile-based scales as

σQpXq :“ Qp|X ´ X̃|; 1{4q,

σ̂QptXtu
T
t“1q :“ Q̂pt|Xs ´Xt|u1ďsătďT ; 1{4q,

(2.2)

where X̃ is an independent copy of X . σ̂QptXtu
T
t“1q

can be computed using OpT log T q time and OpT q storage
(Rousseeuw & Croux, 1993).

3. Model
In this paper, we model the time series of interest by an
elliptical VAR process.

Definition 3.1. A sequence of observationsX1, . . . ,XT P

Rd is an elliptical VAR process if and only if the following
conditions are satisfied:

1. X1, . . . ,XT follow a lag-one VAR process

Xt “ AXt´1 `Et, for t “ 2, . . . , T, (3.1)

where A P Rdˆd is the transition matrix, and
E2, . . . ,ET P Rd are latent innovations.

2. tpXT
t ,E

T
t`1q

Tu
T´1
t“1 are stationary and absolutely

continuous elliptical random vectors:
ˆ

Xt

Et`1

˙

„ EC2d

´

0,

ˆ

Σ 0
0 Ψ

˙

, ξ
¯

, (3.2)

where Σ and Ψ are positive definite matrices, and ξ ą
0 with probability 1.

Remark 3.2. The elliptical VAR process in Definition
3.1 can be generated by an iterative algorithm following
Rémillard et al. (2012). In detail, by the property of el-
liptical distributions, the density function of pXT

t ,E
T
t`1q

T

can be written by hpx, eq “ 1{
a

|Σ||Ψ|gpxTΣ´1x `
eTΨ´1eq for some function g, and the density function of
Xt and the conditional density function of Et`1 given Xt

can be written by

h1pxq “
1

a

|Σ|
g1px

TΣ´1xq

and h2pe | xq “
1

a

|Ψ|
g2pe

TΨ´1eq,

where g1 and g2 are defined by

g1prq“

ż

Rd

gp}z}22`rqdz and g2prq“
gpr`xTΣ´1xq

g1pxTΣ´1xq
.

The elliptical VAR process X1, . . . ,XT can be generated
by the following algorithm:

1. GenerateX1 from h1pxq.
2. For t “ 2, . . . , T ,

(a) generate Et from h2pe |Xt´1q;
(b) setXt “ AXt´1 `Et.

Remark 3.3. By definition, it follows that an elliptical
VAR process is a stationary process. A special case of the
elliptical VAR process is the Gaussian VAR process. An
elliptical VAR process is Gaussian VAR if (3.2) is replaced
by

ˆ

Xt

Et`1

˙

„ N2d

´

0,

ˆ

Σ 0
0 Ψ

˙

¯

.

The elliptical VAR process generalizes the Gaussian VAR
process in two aspects. First, the elliptical model gener-
alizes the Gaussian model by allowing heavy tails. This
makes robust methodologies necessary for estimating the
process. Secondly, the elliptical VAR model does not re-
quire that the observations are independent from future la-
tent innovations.

Next, we show that there exists an elliptical random vector
L “ pXT

1 , . . . ,X
T
T ,E

T
2 , . . . ,E

T
T q

T such that the two con-
ditions in Definition 3.1 are satisfied. To this end, letL0 :“
pXT

1 ,E
T
2 , . . . ,E

T
T q

T „ ECTdp0,diagpΣ,Ψ, . . . ,Ψq, ζq
and define

L “ pXT
1 , . . . ,X

T
T ,E

T
2 , . . . ,E

T
T q

T :“ BL0, (3.3)
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where

B :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

I 0 0 ¨ ¨ ¨ 0
A I 0 ¨ ¨ ¨ 0
A2 A I ¨ ¨ ¨ 0

¨ ¨ ¨

AT´1 AT´2 AT´3 ¨ ¨ ¨ I
0 I 0 ¨ ¨ ¨ 0
0 0 I ¨ ¨ ¨ 0

¨ ¨ ¨

0 0 0 ¨ ¨ ¨ I

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

P Rp2T´1qdˆTd.

By Proposition 2.3, L is an elliptical random vector. The
next Lemma gives sufficient and necessary conditions for
L to satisfy the two conditions in Definition 3.1.

Lemma 3.4. 1. L „ ECp2T´1qdp0,Ω, ζq satisfies Con-
dition 1. Partition the scatter Ω according to the di-
mensions of tXtu

T
t“1 and tEtuTt“2:

Ω :“

ˆ

ΩX ΩXE

ΩT
XE ΩE

˙

. (3.4)

We have

ΩE “

¨

˚

˝

Ψ 0
. . .

0 Ψ

˛

‹

‚

P RpT´1qdˆpT´1qd. (3.5)

2. L satisfies Condition 2 if and only if the following
equations hold:

ΩX “

¨

˚

˚

˝

Σ Σ12 ¨ ¨ ¨ Σ1T

ΣT
12 Σ ¨ ¨ ¨ Σ2T

¨ ¨ ¨

ΣT
1T ΣT

2T ¨ ¨ ¨ Σ

˛

‹

‹

‚

P RTdˆTd,

(3.6)

Σ “ AΣAT `Ψ, (3.7)

Σt,t`u “ ΣpATqu, (3.8)

and pΩXEqIjIk“

#

0, if j ď k;

Aj´k´1Ψ, if j ą k,
(3.9)

for t “ 1, . . . , T ´ 1, u “ 1, . . . , T ´ t, j “ 1, . . . , T ,
and k “ 2, . . . , T ´ 1. Here ΩXE “ rpΩXEqIjIk s is
a partition of ΩXE into d ˆ d matrices, where Il :“
tpl ´ 1qd` 1, . . . , ldu for l “ 1, . . . , T .

Lemma 3.4 is a consequence of Proposition 2.3. Detailed
proof is collected in the supplementary material. Lemma
3.4 shows that there exists an elliptical random vector
L “ pXT

1 , . . . ,X
T
T ,E

T
2 , . . . ,E

T
T q

T that satisfies the two
conditions in Definition 3.1. On the other hand, the algo-
rithm in Remark 3.2 generate a unique sequence of random
vectorsX1, . . . ,XT ,E2, . . . ,ET . Therefore, we immedi-
ately have the following proposition.

Proposition 3.5. Let X1, . . . ,XT be an elliptical VAR
process with latent innovations E2, . . . ,ET . Then L “

pXT
1 , . . . ,X

T
T ,E

T
2 , . . . ,E

T
T q

T is an absolutely continuous
elliptical random vector.

Denote Σ1 :“ Σt,t`1. We call Σ a scatter matrix of the
elliptical VAR process, and Σ1 a lag-one scatter matrix.
For any c ą 0, since L „ ECdp0,Ω, ζq implies L „

ECdp0, cΩ, ζ{
?
cq, cΣ and cΣ1 are also scatter matrix and

lag-one scatter matrix of the elliptical VAR process.

Next, we show that the scatter matrix and lag-one scatter
matrix are closely related to the robust scales defined in
Section 2.3. In particular, we show that the robust scale σQ

motivates an alternative definition of the scatter matrix and
lag-one scatter matrix.

Let X1, . . . ,XT be an elliptical VAR process with Xt “

pXt1, . . . , Xtdq
T. We define

RQ “ rRQ
jks and RQ

1 “ rpR
Q
1 qj1k1s, (3.10)

where the entries are given by

RQ
jj :“ σQpX1jq

2, for j “ 1, . . . , d,

RQ
jk:“

1

4

”

σQpX1j`X1kq
2´σQpX1j´X1kq

2
ı

, for j‰k,

pRQ
1 qj1k1 :“

1

4

”

σQpX1j1 `X2k1q
2 ´ σQpX1j1 ´X2k1q

2
ı

,

for j1, k1 “ 1, . . . , d.

The next theorem shows that RQ and RQ
1 are scatter matrix

and lag-one scatter matrix of the elliptical VAR process.

Theorem 3.6. For the elliptical VAR process in Definition
3.1, we have

RQ “ mQΣ and RQ
1 “ mQΣ1, (3.11)

where mQ is a constant.

The proof of Theorem 3.6 exploits the summation stability
of elliptical distributions and Proposition 2.3. Due to space
limit, the detailed proof is collected in the supplementary
material. Combining Lemma 3.4 and Theorem 3.6, we ob-
tain the following theorem.

Theorem 3.7. For the elliptical VAR process in Definition
3.1, let RQ and RQ

1 be defined as in (3.10). Then, we have

RQ
1 “ RQAT. (3.12)

(3.12) serves as a quantile-based counterpart as the Yule
Walker equation VarpX1q “ CovpX1,X2qA

T. Theorem
3.7 motivates the robust estimator of A introduced in the
next section.
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4. Method
In this section, we propose a robust estimator for the transi-
tion matrix A. We first introduce robust estimators of RQ

and RQ
1 . Based on these estimators, the transition matrix

A can be estimated by solving an optimization problem.

LetX1, . . . ,XT be an elliptical VAR process. We define

R̂Q :“ rR̂Q
jks and R̂Q

1 :“ rpR̂Q
1 qjks,

where the entries are given by

R̂Q
jj :“ σ̂QptXtju

T
t“1q

2, for j “ 1, . . . , d,

R̂Q
jk:“

1

4

”

σ̂QptXtj`Xtku
T
t“1q

2´σ̂QptXtj´Xtku
T
t“1q

2
ı

,

for j‰k P t1, . . . , du,

pR̂Q
1 qjk :“

1

4

”

σ̂QptXtj `Xt`1,ku
T´1
t“1 q

2´

σ̂QptXtj ´Xt`1,ku
T´1
t“1 q

2
ı

, for j, k “ 1, . . . , d.

Motivated by Theorem 3.7, we proposed to estimate A by

Â “ argminMPRdˆd

ř

jk |Mjk|

s.t. }R̂QMT ´ R̂Q
1 }max ď λ.

(4.1)

The optimization problem (4.1) can be further decomposed
into d subproblems (Han & Liu, 2013). Specifically, the
j-th row of Â can be estimated by

Âj˚ “ argminvPRd }v}1

s.t. }R̂Qv ´ pR̂Q
1 q˚j}8 ď λ.

(4.2)

Thus, the d rows of A can be estimated in parallel. (4.2)
is essentially a linear programming problem, and can be
solved efficiently using the simplex algorithm.

Remark 4.1. Since σ̂Q can be computed usingOpT log T q
time (Rousseeuw & Croux, 1993), the computational com-
plexity of R̂Q and R̂Q

1 are Opd2T log T q. Since T ! d in
practice, R̂Q and R̂Q

1 can be computed almost as efficiently
as their moment-based counterparts

Ŝ“
1

T

T
ÿ

t“1

XtX
T
t and Ŝ1“

1

T ´ 1

T´1
ÿ

t“1

XtX
T
t`1, (4.3)

which have Opd2T q complexity and are used in Han & Liu
(2013).

5. Theoretical Properties
In this section, we present theoretical analysis of the pro-
posed transition matrix estimator. Due to space limit, the
proofs of the results in this section are collected in the sup-
plementary material.

The consistency of the estimator depends on the degree of
dependence over the process X1, . . . ,XT . We first intro-
duce the φ-mixing coefficient for quantifying the degree of
dependence.

Definition 5.1. Let tXtutPZ be a stationary process. De-
fine F0

´8 :“ σpXt : t ď 0q and F8n :“ σpXt : t ě nq
to be the σ-fileds generated by tXtutď0 and tXtutěn, re-
spectively. The φ-mixing coefficient is defined by

φpnq :“ sup
BPF0

´8
,APF8n ,PpBqą0

|PpA | Bq ´ PpAq|.

Let tXtutPZ be an infinite elliptical VAR process in the
sense that any contiguous subsequence of tXtutPZ is an el-
liptical VAR process. For brevity, we also call tXtutPZ
an elliptical VAR process. Let φjpnq, φ`jkpnq, φ

´
jkpnq,

ψ`j1k1pnq, and ψ´j1k1pnq be the φ-mixing coefficients of
tXtjutPZ, tXtj ` XtkutPZ, tXtj ´ XtkutPZ, tXtj1 `

Xt`1,k1utPZ, and tXtj1 ´ Xt`1,k1utPZ, respectively. Here
j, k, j1, k1 P t1, . . . , du but j ‰ k. Define

Φpnq“ sup
j,k,j1,k1

tφjpnq, φ
`
jkpnq, φ

´
jkpnq, ψ

`
j1k1pnq, ψ

´
j1k1pnqu,

and ΘpT q :“
řT
n“1 Φpnq. Φ and Θ characterize the degree

of dependence over the multivariate process tXtutPZ.

Next, we introduce an identifiability condition on the dis-
tribution function ofX1.

Condition 1. Let X̃1 “ pX̃11, . . . , X̃1dq
T and X̃2 “

pX̃21, . . . , X̃2dq
T be independent copies of X1 and X2.

Let Fj , F`jk, F´jk, G`j1k1 , and G´j1k1 be the distribution

functions of |X1j ´ X̃1j |, |X1j ` X1k ´ X̃1j ´ X̃1k|,
|X1j ´X1k ´ X̃1j ` X̃1k|, |X1j1 `X2k1 ´ X̃1j1 ´ X̃2k1 |,
and |X1j1 ´ X2k1 ´ X̃1j1 ` X̃2k1 |. We assume that there
exist constants κ ą 0 and η ą 0 such that

inf
|y´QpF ;1{4q|ďκ

d

dy
F pyq ě η

for any F P tFj , F`jk, F
´
jk, G

`
j1k1 , G

´
j1k1 : j ‰ k and j, k,

j1, k1 “ 1, . . . , d.u.

Then next lemma presents the rates of convergence for R̂Q

and R̂Q
1 .

Lemma 5.2. Let tXtutPZ be an elliptical VAR process sat-
isfying Condition 1. Let X1, . . . ,XT be a sequence of ob-
servations from tXtutPZ. Suppose that log d{T Ñ 0 as
T Ñ 8. Then, for T large enough, with probability no
smaller than 1´ 8{d2, we have

}R̂Q ´RQ}max ď rpT q, (5.1)

}R̂Q
1 ´RQ

1 }max ď r1pT q, (5.2)
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where the rates of convergence are defined by

rpT q “ max
! 2

η2

”

c

8p1` 2ΘpT qq log d

T
`

4ΘpT q

T

ı2

,

4σQ
max

η

”

c

8p1` 2ΘpT qq log d

T
`

4ΘpT q

T

ı)

, (5.3)

r1pT q “ max
! 1

η2

”

c

16p1` 2ΘpT qq log d

T
`

8ΘpT q

T

ı2

,

2τQmax

η

”

c

16p1` 2ΘpT qq log d

T
`

8ΘpT q

T

ı)

. (5.4)

Here σQ
max :“ maxtσQpX1jq, σ

QpX1j`X1kq, σ
QpX1j´

X1kq : j ‰ k P t1, . . . , duu, τQmax :“ maxtσQpX1j `

X2kq, σ
QpX1j ´X2kq : j, k P t1, . . . , duu.

Based on Lemma 5.2, we can further deliver the rates
of convergence for Â under the matrix `max norm and
`1 norm. We start with some additional notation. For
α P r0, 1q, s ą 0, and MT ą 0 that may scale with T ,
we define the matrix class

Mpα, s,MT q :“

!

M P Rdˆd : max
1ďjďd

d
ÿ

k“1

|Mjk|
α ď s, }M}1 ďMT

)

.

Mp0, s,MT q is the set of sparse matrices with at most
s non-zero entries in each row and bounded `1 norm.
Mpα, s,MT q is also investigated in Cai et al. (2011) and
Han & Liu (2013).

Theorem 5.3. Let tXtutPZ be an elliptical VAR process
satisfying Condition 1, and X1, . . . ,XT be a sequence
of observations. Suppose that log d{T Ñ 0 as T Ñ 8,
the transition matrix A P Mpα, s,MT q, and RQ is non-
singular. Define

rmaxpT q “ max
! 2

η2

”

c

16p1`2ΘpT qq log d

T
`

8ΘpT q

T

ı2

,

4 maxpσQ
max, τ

Q
maxq

η

”

c

16p1` 2ΘpT qq log d

T
`

8ΘpT q

T

ı)

.

If we choose the tuning parameter

λ “ p1`MT qrmaxpT q

in (4.1), then, for T large enough, with probability no
smaller than 1´ 8{d2, we have

}Â´A}max ď 2}pRQq´1}1p1`MT qrmaxpT q, (5.5)

}Â´A}8ď4s
”

2}pRQq´1}1p1`MT qrmaxpT q
ı1´α

. (5.6)

Remark 5.4. If we assume that η ě C1 and
σQ
max, τ

Q
max, }pR

Qq´1}1 ď C2 for some absolute constants

C1, C2 ą 0, the rates of convergence in Theorem 5.3 re-
duces to

}Â´A}max “ OP

ˆ

MT

c

ΘpT q log d

T

˙

,

}Â´A}8 “ OP

„

s

ˆ

MT

c

ΘpT q log d

T

˙1´α

.

Here ΘpT q “
řT
n“1 Φpnq characterizes the degree of se-

rial dependence in the process tXtutPZ. If we further as-
sume polynomial decaying φ-mixing coefficients

Φpnq ď 1{n1`ε for some ε ą 0, (5.7)

we have ΘpT q ď
ř8

n“1 1{n1`ε ă 8 and the
rate of convergence are further reduced to }Â ´

A}max “ OP pMT

a

log d{T q and }Â ´ A}8 “

OP rspMT

a

log d{T q1´αs, which are the parametric rates
obtained in Han & Liu (2013) and Basu & Michailidis
(2013). Condition (5.7) has been commonly assumed in
the time series literature (Pan & Yao, 2008)

6. Granger Causality
In this section, we demonstrate an application of frame-
work developed in this paper. In particular, we discuss the
characterization and estimation of Granger causality under
the elliptical VAR model. We start with the definition of
Granger causality.

Definition 6.1 (Granger (1980)). Let tXtutPZ be a station-
ary process, where Xt “ pXt1, . . . , Xtdq

T. For j ‰ k P
t1, . . . , du, tXtkutPZ Granger causes tXtjutPZ if and only
if there exists a measurable set A such that

PpXt`1,j P A | tXsusďtq ‰ PpXt`1,j P A | tXs,zkusďtq,

for all t P Z, where Xs,zk is the subvector obtained by
removing Xsk fromXs.

For a Gaussian VAR process tXtutPZ, we have that
tXtkutPZ Granger causes tXtjutPZ if and only if the
pj, kq entry of the transition matrix is non-zero (Lütkepohl,
2007). In the next theorem, we show that a similar property
holds for the elliptical VAR process.

Theorem 6.2. Let tXtutPZ be an elliptical VAR process
with transition matrix A. Suppose Xt has finite second
order moment, and VarpXtk | Xs,zkusďt ‰ 0 for any k P
t1, . . . , du. Then, for j ‰ k P t1, . . . , du, we have

1. If Ajk ‰ 0, then tXtkutPZ Granger causes tXtjutPZ.
2. If we further assume that Et`1 is independent of
tXsusďt for any t P Z, we have that tXtkutPZ
Granger causes tXtjutPZ if and only if Ajk ‰ 0.
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The proof of Theorem 6.2 exploits the autoregressive struc-
ture of the processX1, . . . ,XT , and the properties on con-
ditional distributions of elliptical random vectors. We refer
to the supplementary material for the detailed proof.

Remark 6.3. The assumption that VarpXtk |Xs,zkusďt ‰

0 requires thatXtk cannot be perfectly predictable from the
past or from the other observed random variables at time
t. Otherwise, we can simply remove tXtkutPZ from the
process tXtutPZ, since predicting tXtkutPZ is trivial.

Assuming that Et`1 is independent of tXsusďt for any
t P Z, the Granger causality relations among the processes
ttXjtutPZ : j “ 1, . . . , du is characterized by the non-zero
entries of A. To estimate the Granger causality relations,
we define Ã “ rÃjks, where

Ãjk :“ ÂjkIp|Âjk| ě γq,

for some threshold parameter γ. To evaluate the consis-
tency between Ã and A regarding sparsity pattern, we de-
fine function signpxq :“ Ipx ą 0q ´ Ipx ă 0q. For a
matrix M, define signpMq :“ rsignpMjkqs.

The next theorem gives the rate of γ such that Ã recovers
the sparsity pattern of A with high probability.

Theorem 6.4. Assume that the conditions in Theorem 5.3
holds, and A PMp0, s,MT q. If we set

γ “ 2}pRQq´1}1p1`MT qrmaxpT q,

then, with probability no smaller than 1 ´ 8{d2, we have
signpÃq “ signpAq, provided that

min
tpj,kq:Ajką0u

|Ajk| ě 2γ. (6.1)

Theorem 6.4 is a direct consequence of Theorem 5.3. We
refer to the supplementary material for a detailed proof.

7. Experiments
In this section, we demonstrate the empirical performance
of the proposed transition matrix estimator using both syn-
thetic and real data. In addition to the proposed robust
Dantzig-selector-type estimator (R-Dantzig), we consider
the following two competitors for comparison:

1. Lasso: an `1 regularized estimator defined in (1.1)
with lpY ´ MXq “ }Y ´ MX}2F and PρpMq “

ρ
ř

jk Mjk.
2. Dantzig: the estimator proposed in Han & Liu (Han

& Liu, 2013), which solves (4.1) with R̂Q and R̂Q
1

replaced by Ŝ and Ŝ1 defined in (4.3).

Lasso is solved using R package glmnet. Dantzig and R-
Dantzig are solved by the simplex algorithm.

7.1. Synthetic Data

In this section, we demonstrate the effectiveness of R-
Dantzig under synthetic data. To generate the time series,
we start with an initial observation X1 and innovations
E2, . . . ,ET . Specifically, we consider three distributions
for pXT

1 ,E
T
2 , . . . ,E

T
T q

T:

Setting 1: a multivariate Gaussian distribution: Np0,Φq;
Setting 2: a multivariate t distribution with degree of free-

dom 3, and covariance matrix Φ;
Setting 3: an elliptical distribution with log-normal gen-

erating variate, logNp0, 2q, and covariance matrix Φ.

Here the covariance matrix Φ is block diagonal: Φ “

diagpΣ,Ψ, . . . ,Ψq P RTdˆTd. We set d “ 50 and
T “ 25. Using pXT

1 ,E
T
2 , . . . ,E

T
T q

T, we can generate
pXT

1 , . . . ,X
T
T q

T by

pXT
1 , . . . ,X

T
T q

T “ GpXT
1 ,E

T
2 , . . . ,E

T
T q

T,

where G is given by

G :“

¨

˚

˚

˚

˚

˝

I 0 0 ¨ ¨ ¨ 0
A I 0 ¨ ¨ ¨ 0
A2 A I ¨ ¨ ¨ 0

¨ ¨ ¨

AT´1 AT´2 AT´3 ¨ ¨ ¨ I

˛

‹

‹

‹

‹

‚

P RTdˆTd.

By Proposition 2.3, pXT
1 , . . . ,X

T
T q

T follows a multivariate
Gaussian distribution in Setting 1, a multivariate t distri-
bution in Setting 2, and an elliptical distribution in Setting
3 with the same log-normal generating variate.

We generate the parameters A and Σ following Han &
Liu (2013). Specifically, we generate the transition ma-
trix A using the huge R package, with patterns band, clus-
ter, hub, and random. We refer to Han & Liu (2013) for
a graphical illustration of the patterns. Then we rescale A
so that }A}2 “ 0.8. Given A, we generate Σ such that
}Σ}2 “ 2}A}2. Using (3.7), we set Ψ “ Σ´AΣAT.

Table 1 presents the errors in estimating the transition ma-
trix and their standard deviations. The tuning parameters
λ and ρ are chosen by cross validation. The results are
based on 1,000 replicated simulations. We note two ob-
servations: (i) Under the Gaussian model (Setting 1), R-
Dantzig has comparable performance as Dantzig, and out-
performs Lasso. (ii) In Settings 2-3, R-Dantzig pro-
duces significantly smaller estimation errors than Lasso
and Dantzig. Thus, we conclude that R-Dantzig is robust
to heavy tails.

Figure 1 plots the prediction errors εs against sparsity s
for the three transition matrix estimators. We observe that
R-Dantzig achieves smaller prediction errors compared to
Lasso and Dantzig.
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Table 1. Averaged errors and standard deviations in estimating the transition matrix under the matrix Frobenius norm (`F ), `max norm,
and `8 norm. The results are based on 1,000 replications.

Lasso Dantzig R-Danzig

`F `max `8 `F `max `8 `F `max `8

Setting 1

band 4.26(0.74) 0.60(0.25) 2.15(0.38) 3.24(1.07) 0.49(0.22) 1.10(0.07) 3.65(0.01) 0.50(0.03) 1.06(0.05)
cluster 3.04(0.65) 0.52(0.19) 1.82(0.35) 2.25(0.39) 0.41(0.11) 1.00(0.58) 2.47(0.01) 0.44(0.01) 1.13(0.04)
hub 2.77(0.61) 0.66(0.05) 2.53(0.22) 1.87(0.01) 0.64(0.02) 1.87(0.02) 1.90(0.01) 0.65(0.01) 1.90(0.06)
random 2.71(0.01) 0.47(0.01) 1.08(0.02) 2.58(0.36) 0.48(0.19) 1.21(0.83) 2.74(0.01) 0.47(0.01) 1.19(0.08)

Setting 2

band 9.53(0.58) 1.11(0.22) 10.45(1.29) 3.72(0.19) 0.52(0.10) 1.18(0.66) 3.62(0.01) 0.47(0.02) 0.84(0.08)
cluster 8.52(0.38) 1.00(0.13) 9.24(1.16) 2.58(0.22) 0.46(0.03) 1.24(0.27) 2.57(0.27) 0.44(0.01) 1.09(0.50)
hub 8.20(0.28) 0.97(0.09) 8.53(1.02) 3.87(0.01) 0.78(0.03) 3.30(0.02) 1.88(0.01) 0.64(0.01) 1.90(0.06)
random 8.65(0.19) 0.98(0.10) 9.55(1.42) 2.79(0.07) 0.56(0.01) 1.35(0.15) 2.72(0.02) 0.48(0.01) 1.12(0.10)

Setting 3

band 9.43(0.25) 1.07(0.16) 10.83(1.16) 3.79(0.18) 0.52(0.02) 1.16(0.01) 3.69(0.11) 0.49(0.04) 1.14(0.45)
cluster 8.59(0.34) 0.94(0.10) 9.70(0.98) 2.66(0.10) 0.44(0.02) 1.51(0.22) 2.55(0.11) 0.43(0.01) 1.32(0.26)
hub 8.16(0.35) 0.95(0.10) 8.79(0.88) 2.51(0.11) 0.66(0.03) 2.34(0.15) 2.01(0.23) 0.64(0.01) 2.07(0.30)
random 8.81(0.43) 1.04(0.12) 9.31(1.25) 2.71(0.13) 0.47(0.01) 1.28(0.16) 2.55(0.10) 0.46(0.01) 1.04(0.29)

7.2. Real Data

In this section, we exploit the VAR model in stock price
prediction. We collect adjusted daily closing prices3 of 435
stocks in the S&P 500 index from January 1, 2003 to De-
cember 31, 2007. This gives us T “ 1, 258 closing prices
of the 435 stocks. Let Xt be a vector of the 435 closing
prices on day t, for t “ 1, . . . , T . We model tXtu

T
t“1

by a VAR process, and estimate the transition matrix using
Lasso, Dantzig, and R-Dantzig. Let Âs be an estimate of
the transition matrix with sparsity s4. We define the predic-
tion error associated with Âs to be

εs :“
1

T ´ 1

T
ÿ

t“2

}Xt ´ ÂsXt´1}2.

8. Conclusion
In this paper, we developed a unified framework for mod-
eling and estimating heavy-tailed VAR processes in high
dimensions. Our contributions are three-fold. (i) In model
level, we generalized the Gaussian VAR model by an ellip-
tical VAR model to accommodate heavy-tailed time series.
The model naturally couples with quantile-based scatter
matrices and Granger causality. (ii) Methodologically, we
proposed a quantile-based estimator of the transition ma-
trix, which induces an estimator of Granger causality. Ex-
perimental results demonstrate that the proposed estimator

3The adjusted closing prices account for all corporate actions
such as stock splits, dividends, and rights offerings.

4s P r0, 1s is defined to be the fraction of non-zero entries in
Âs, and can be controlled by the tuning parameters λ and ρ.
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Figure 1. Prediction errors in stock prices plotted against the spar-
sity of the estimated transition matrix.

is robust to heavy tails. (iii) Theoretically, we showed that
the proposed estimator achieves parametric rates of con-
vergence in matrix `max norm and `8 norm. The theory
explicitly captures the effect of serial dependence, and im-
plies sign-consistency of the induced Granger causality es-
timator. To our knowledge, this is the first work on mod-
eling and estimating heavy-tailed VAR processes in high
dimensions. The methodology and theory proposed in this
paper have broad impact in analyzing non-Gaussian time
series. The techniques developed in the proofs have inde-
pendent interest in understanding robust estimators under
high dimensional dependent data.
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