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A. Technical Proofs
A.1. Supporting Lemmas

Lemma A.1. Let { X;}+cz be an absolutely continuous sta-
tionary process with ¢-mixing coefficient ¢(n). Define U-
statistic

2

Ur(K,) = T(T7—1)

Y Ku(Xs, Xy), (A

1<s<t<T

for kernel function K, (z,y) := I(|z — y| < u). Let X1 be
an independent copy of X1, and G(u) := P(|X; — X;| <
w) be the distribution function of | X1 — X|. Then, we have

207

[EUr(Ky) = Gu)] < ==

for any u > 0, where ¢ = ZZ:1 o(n).

Proof. Denote G (u) := P(|Xs — Xi| < u) to be the
distribution function of | X; — X;| fors < ¢t. Let M > 0
be a constant and

—Mza(hiz < e <a((Jh) < e <a2h) =M

be a sequence of real numbers satisfying

() _ )y ¢
e (@7 —a) <
lim max (o —a™)) =0 (A2)

h—o0 —h<k<h

Given X, € [a,g}i)l,a;h)], we have that | X, — Xy| < u

h (h)

implies X; € [a))_; —u,qa; ’ + u]. Thus, we have

P(|X,s — X¢| < u, X, € [-M, M)
= > P(IX,— Xy <u| X, €[apa, ar])P(X € ar, ax])
—h<k<h
< Y P(Xp e [al) —ual” +u] | X, € [ap—1,az])
—h<k<h

IP(XS € [ak,l, ak]). (A3)

On the other hand, given X € [a,(chjl, a,(ch)], we have X, €

[a’gh) —u, aé-h—)l +u] implies | X5 — X;| < u. Thus, we have

P(| X, — X| < u, X, € [-M, M)])

= > P(IX— Xy <u| Xo€[apa, ar])P(X € ar, ax])
—h<k<h

> 3 P(Xee o —u )y +ul | X, € [ar,ax])
—h<k<h

IP(XS € [ak,l, ak]). (A4)

Now define ¢ := Y, , . P(X; € [0l —u,al” +

ul)P(X, € [ag—r, axl). ¥f = Xy ey P(X € [0 —

u, a,(:i)l +u])P(Xs € [ak—1,ax]), and

. {z/;,f, if P(|X,—X¢| <u, Xye[-M, M])>F;
b=

¢}[L], otherwise.

Note that vF < of. If P(|1X, — Xy| < u, X5 €
[-M, M]) > L, by the definition of 1, and (A.3), we
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have

IP(|Xs — X¢| < u, Xs € [-M, M]) —
<u,Xs€

=P(|XS_X75| ) Ahs [_M7M])_wilzl
< Y IP(xce [af) —waf +u] | X, € [ar1, ax])—

—h<k<h

P(X; € [a,gh) —u, a,(g )1 + u))|P(X, € [ag—1, ar])

< Z IP(X, € ak —u agl) +u] | X5 € [ag—1,ar])—

—h<k<h
P(X; e [al(c )1 - U, a’l(c

+ D |P(Xe e

—h<k<h

+u |PX e[ak 1,ak])
(h)

ak 1_“‘% +ul) —P(X, €

[0l —u,al™| +u])|P(X, € [ar_1,ax])

[ (h) (R)

<o(t—s) + 7g%§h|w) (X; €[ay”, —u,a
P(X; € [a,(ch) — u, a,@l +u))l-

On the other hand, if P(| X5 — X| <

+u])—

have

IP(|Xs — Xl < u, X, € [-M, M]) — ]
=5, —P(1X, Xt\ u, X5 € [-M, M])

Z IP(X, € —u aé )+u]) P(X; e [algh)—u,
—h<k<h

o+l | X, € [ar_1, an])|P(X, € [ax_1, ax])

< Y |P(X € [af” —u,al”) +ul | X, € [ar-1,ar])—

—h<k<h
P(X; € [al") —u,al™| + u])|P(X, € [ar_1,a1])

+ Z !P(Xt € [a,(ch) — u, a,(:i)l +ul)
—h<k<h

[0 = u,al" + u])[P(X, € [ar_1,ax])

<p(t—s)+ _max h|IP’(Xt € [a,(ch) —u, a,(ch)1 +ul)—

— ]P)(Xt €

P(X; e [a,(C )1 —u, a,(C )+ u)l- (A.6)
Thus, combining (A.5) and (A.6), we have
[P(1Xs = Xi| < u, X € [-M, M]) — ]
<o(t—s) + }Ilnaxhﬂ[” Xi € [a,gh) — u, a,(ch)l +ul)—
h h
P(X; € [a”, —u,al"” +u])|.

Let h — oo0. Using (A.2) and the assumption that X is
absolutely continuous, we have

‘ (1Xs — Xi| < u, X, € [-M, M])—

fM P(X, € [a - u,a+ u])dP(Xs = a)| < é(t — 5).
M

(A5)

u, Xs € [-M, M]) <
wh, since wh < 1/1h , by the definition of 15, and (A.4), we

Now, let M — oo, we further obtain

B(X. X, < u)—JIP(XSe[a—t,a—&—t])d]P’(XS:a)
< ¢t —s).

Noting that

JJP’(XS €la—u,a+ul)dP(X, =a)
J.IE”(XS € la—u,a+u))dP(X = a)
—P(|X; - X| <) = Glu),

we have

P(|Xs — X¢| <u) — G(u)’ < ¢(t — s). Hence,
we have

|EUT (¢u) — G(u)|

2
S s — <u)—
1<s<t<T
2
S ot —s)
(Tr-1) 1<s§<T
9 T—1 2%
— e S (T - )olk) = 2L
T(T-1) = T
This completes the proof. O

Lemma A.2. Let { X}tz be a stationary process with ¢-
mixing coefficient p(n), and U (K,,) be defined in (A.1).
Then, for any u > 0, we have

T7?
P{{Ur(Ku) — EUr(Ky.)| = 7} < QBXP{—W}
forany T > 0, where ¢ =

ZZ=1 p(n).

The following lemma is needed for proving Lemma A.2

Lemma A.3. (Kontorovich et al., 2008; Mohri & Ros-
tamizadeh, 2010) Let f : QT — R be a measurable func-

tion that is M -Lipschitz with respect to the Hamming met-
ric for some M > 0:

sup!f(xl,...,xh...,xT)—
Ty, X7, T

flr,....ah, .. xp)| <M.

Then, for a stationary process { X} ez, with ¢-mixing coef-
ficient p(n), we have

P{|f(Xq,...

,Xr)—Ef(X1,...,X7p)| =7}
272
<2ew|~ 257 )

forany T > 0.
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Proof of Lemma A.2. Let

f(l’l,..., ) TUT(

21 |zs— 24| <u).

s<t

since replacing an element in (z1,...,z7), say, x4, by z}
only affects 7' — 1 terms in the summation above, we have

|f(x1’-~-7:17ta~-

Thus, by Lemma A.3, we have

~aZT) 7f(l‘17-~-7x;7~'-a1'T)‘ <2

P{T|Ur(Ky) — EUr(Ky)| = 7}

2

<20~ s )

for any 7 > 0. Replacing 7 with T'7 in the above equation,
we obtain

P{‘UT(Ku) - EUT(Ku)| = T}
<9 [ T2 ]
<2exXp|—s—=
Pl {1+ 2007
This completes the proof. O

Lemma A4. Let {X;}icz be an absolutely continuous
stationary process with ¢-mixing coefficient ¢p(n). Let
Ur(K,) and G(u) be defined as in Lemma A.1. Then, for

any u > 0, we have
Srelan ol
= (=T
2(14+2¢7) T

forT > 2¢7/T and ¢7 = 31+ _, ¢(n).

P{U ()~ G(u)| = 7} <2exp -

Proof. Using Lemma A.1, we have

P{Ur(Ku) — G(u)| = 7}
<P{{Ur(Ku) — BUr(Ky)| + [EUr(Ky) — G(u)| > 7}
297
<P{|Ur(K.) ~ EUr(K,)| > 7 — 2 }.
Applying Lemma A.2 completes the proof. O

Lemma A.5. Let {X;}iez be a stationary process with ¢-

mixing coefficient p(n). Let X1 be an independent copy of
X1, and q € [0,1] be an absolute constant. Suppose the
following assumptions hold:

L Q(X1 — Xil:q) and QU X, — Xilh<scr<riq) are
unique with probability 1.
2. There exist constants k > 0 and n > 0 such that

d
inf —G(y) =,
ly—Q(1X1— X1 ;)| <r AY

where G is the distribution function of | X1 — X,|.

Then, we have

P[@({|Xs — Xilh<s<t<r;9) — Q(| X1 — X1|;Q)| = U]
r 4o\ 2
< 26Xp{*2(1 +267) (77“ - T) } (A7)

when 4¢7/(nT) < u < k. Here ¢ = ZZ=1 o(n).

Proof. We denote by G the empirical distribution func-
tion of {|Xs — X¢|}1<s<t<r. Gr is non-decreasing and
since Q({|Xs — X¢|}1<s<t<7; q) is unique, we have

~ 2

q < Gr{Q({|Xs — Xilhicsat<ri@)} < g+ TT-1)
Denote G (q) = Q(|X1—X1; q). Since Q(| X1 —X1]; q)
is unique, we have G{G~*(q)} = q. Thus, we have

PIQUIX, — Xilhcomieri ) — QX1 — Xiliq) > ]

<P[Gr{Q( {|X ~Xilh<oct<r; @)} = Gr{G ™" (q) +ul]
é}P’[qu T 1) > > Ur{vg-1(g)+u}]
_p[- UTwG e} + GG () + ) >

G{G™Hq) +u} —q~ ﬁ],

where Ur{{)g-1(g)+u} is defined in Lemma A.1. By As-
sumption 2, we have G{G~!(q) + u} — ¢ < n when u < k.
Now, using Lemma A.1, we have

PlQUIXs — X[ 1<swters ) — QX1 — X1l3q) = u]
2

<P[|Ur{tbg-1(g)+u} —G{G~ Yq)+u}| =nu— m]
T ¢

<26XP[—W{”“—ﬁ‘QTT} ]

<Qexp[f@{nu7 4%} ] (A8)

provided that 4¢7/(nT) < uw < k. On the other hand,
using the same technique, we have

P[QUIXs — Xi[h<s<i<riq) — QX1 — X|59) < —u]
<P[Gr{Q({|Xs— Xi[heswrer; )} <Gr{G" (a)—u}]
<PUr 1)+ = GIG (@) —u} = ¢~ G{G () ~ul]
<P[|Ur{vg-1(g)+u} — GIGT (@) — u}| = nu}]
T 2¢r

<2exp{ ~g g (- )} A9
provided that 2¢7/(nT) < u < k. Combining (A.8) and
(A.9) completes the proof. O
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A.2. Proof of Main Results
A.2.1. PROOF OF LEMMA 3.4

Proof. Part 1 of Lemma 3.4 is immediate by the definition
of L and Proposition 2.3.

To prove Part 2, we start with sufficiency. Suppose Equa-
tions (3.6) - (3.9) hold. Since (X, E/ ;)" can be ob-
tained by a linear transformation of L, by Proposition 2.3,

we have
X (Qx]r1,  [2xEln: )
~ EC (0, tit tit , )
<Et+1> 2 <[9XE]£L [l )*
for some random variable £. By (3.6) and (3.5), we have
[Qx]5r, = X and [Qg]n, = P; by (3.9), we have
[QxE]r,1, = 0. Thus, Condition 2 in Definition 3.1 hold.

To prove necessity, suppose that L satisfies Condition 2
in Definition 3.1. By stationarity of {X;}._;, the di-
agonal blocks of Qx equal 3. Thus, we have (3.6).
On the other hand, since L = BLg and Ly ~
ECr4(0,diag(X, ¥, ..., ¥),(), by Proposition 2.3, we
have Q = Bdiag(X, ¥, ..., ¥)BT. Plugging in the defi-
nition of B, we have (3.9). Comparing the leading 7" diag-
onal blocks of Bdiag(X, ¥, ..., ¥)BT with those of Q2x,
we have (3.7). Plugging (3.7) into the off-diagonal blocks
of Bdiag(X, ¥, ..., ¥)BT, we obtain (3.8). This com-
pletes the proof. O

A.2.2. PROOF OF THEOREM 3.6

Proof. To prove Theorem 3.6, we first introduce an equiv-
alent definition of elliptical random vectors. Specifically,
X is an elliptical random vector with location p and scat-
ter S if and only if the characteristic function of X is
Yx(t) = exp(it" u)p(t"St) for some function ¢ (Fang
et al., 1990).

Let R :=
be Yr(t)

(X7, XJ)T and the characteristic function of R
= ¢(t"Ot), where

(x5
(3 %)
Suppose R = (jflT, X:QT)T is an independent copy of R.
The characteristic function of R — R is
Vp_g(t) =Eexp{it’ (R — R)}

—Eexp(it" R)Eexp(it' R) = (&' Ot)2.

Thus, R— R is also an elliptical random vector with scatter

©. Suppose R — R ~ EC24(0,®,v). Let re = rank(©)
be the rank of ®. For any j € {1,...,d}, since X1; — X3,

can be obtained by a linear transformation of R — R, by
Proposition 2.3, we have

X1j = X1j ~ EC1(0,2y;,vVD),

where D ~ Beta(1/2, (re — 1)/2) is a Beta random vari-
able. Thus, we have

(X1, — X1) £ /50D
By the definition of R® 5> e have
R;QJ :Q(|X1J - X1j|; 1/4)2 = Q{(le — )’le)Z; 1/4}
=%;,;Q(*D; 1/4). (A.10)

Now, for j, k,j', k" € {1,...,d} and j # k, let

X;?c = le + Xk, X;k = le — X1k,
Xﬁ = le + X1k, Xj_k = le — X1k,
Y’k/ = le/ + sz/ Y;/_k’ = le/ — ng/,

)A}j’k:’ = le/ —+ X2k’7 }/],_k, = le/ —_ ,)?Qk/.
Apply Proposition 2.3, we have

X, = X ~ BC1(0,%); + Sk + 285, vVD),
X5, — X5 ~ BC1(0, %5 + S — 284, vV D),
ﬂfk/—yﬁk/ ~ EC1(0, B + By +2(X1) o, vV D),
Yka,—f/ka/ ~EC1(0, 2 )+ Bpopr —2(Z1) jowr, vV D).
Using the same technique as in (A.10), we can obtain
QUX =X 1/4) = (B, + Zp+255)Q(v* D3 1/4),
QUX 5, — X1 1/4)% = (5,4 Bk —25;1) Q(*D; 1/4),
QUY i — Yl 1/4) =
(Zjrjr + Bw + 2(20) ) QW D; 1/4),
QUYjw = Yinl:1/4)* =

(Zjrjr + Bpowr — 2(Z1)w)Q(12D; 1/4).

Thus, by the definitions of R?k and (R?) jk» we have

RY = X;:,Q(v*D;1/4) (A.11)
forj #ke{l,...,d}and
(RY) i = (21) 0 Q1> D31/4) (A.12)

for j/,k' € {1,...,d}. Combining (A.10), (A.11), and
(A.12) leads to (3.11) and with m®@ = Q(v2D;1/4). [
A.2.3. PROOF OF THEOREM 5.2
Proof. We first prove (5.1). For brevity, we denote
53 = XN, o = oYX,
aﬁ#:aQ({th"‘th}tTﬂ)aU;%H = oYXy, + X1x),
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G =0 Xy~ Xu}i1), o5p = 0 X1; — Xup),

for j # k € {1,...,d}. By definition, for any u > 0, we
have
~ ~ 2
P(RY —RE| > u) =P(57 — 0 | > u)
<P({GE — o} + 20268 — 0| = u)

IP’(|J 0Q|>\/g)+IP’(|3? a§|>4LQ). (A.13)
9;

The quantiles in the definitions of R? and R are unique
due to Condition 1 and absolute continuity of X;. Hence,

applying Lemma A.5 and noting that a? < crf;zlax, we have
P(RY —RE| > u) <
9 { T ( u  46(T) ) 2 } N
M2\ T T T
T nu 40(T)\2
2exp{ - ( = )o@
P20 \0Q, T A1

when 40(T)/(nT) < /u/2,u/(40%,.) < k. Now, for
the off-diagonal entries, we have

P(RF, — R[> w)

HD(| ijr
2 2

<]P’(|a]k+ 0% > 2u) +P(|ij 0| > 2u).

Using the same technique as in (A.13), we further have

2
ol + B — o] > 4u)

P(R$ —RY| > u)
N U
P(‘Uﬂw jk+|>\/a> +P<|aﬁ+—aﬁ+|>20T>+

Jjk+
~ u
<|ij— jk—|>ﬁ)+P<|aﬁc—_aﬁe—‘>27Q)'
ij_

< o9

ax and

Applying Lemma A.5 and noting that aﬁc +

Uﬁ_ < Uf%ax, we have
P(R$ — RY| > ) <
-y
4eXp{_?(l +§@<T>) <2:§ax - 4@T(T))2}’ (A.15)

when 40(T)/(nT) < vu,u/(202,,) < k. Combining
(A.14) and (A.15), we obtain

d
u) < Y P(RY, —RY|>u)
g, k=1

]P)(HﬁQ - RQHmaX =

< 4d’[exp{ - (1+§@(T))(’7\/§ -5
eXp{ (1+2@ (4:uax_46T(T>)2}]
< 8max{d” exp| - zaiw(” 5]
"
# o~ 51 gey) (108 _4®T(T))21}’
Az(u)

when we have

T) U U U
< a 9 9 < . .
\/g \/E 40191&)( 20—%33( " A1

Setting Ay (u1) = 1/d?, we obtain

7722[\/8(1 + 2®T(T))1ogd . 4®T<T)]2-

Uy =

Setting Ao (u2) = 1/d?, we obtain

409 8(1+20(T))logd 46(T
0y = 18 (RO 200l 40(1))
i T T
Now set u = r(T) = max(uj,us). (A.16) is satisfied

when T is large enough. If u; > wus, since Ay (u) is a non-
increasing function of u, we have As(u1) < As(ug) =
1/d?. Thus, we have

P(|RC—R2|max = r(T)) <8 max{A; (u), Ay (u)} <8/d>.

On the other hand, if u; < ug, we have r(T") = uq. Since
A (u) is a non-increasing function of u, we have A (ug) <
Ai(u1) = 1/d?. Thus, we still have
P(|RO—R2|max = r(T)) <8 max{A; (u), Ay (u)} <8/d>.
This proves (5.1).

To prove (5.2), we employ the same technique as above.
Specifically, denote

o X+ Xow),
X1y~ Xow),

P = 0 ({ Xyt Xt i} 1) s T =
7A']9k,_1= ?Q({th/*Xt_;,_l’k/}tT;%), Tjgk,_iz g

for j/, k' € {1,...,d}. Using the same technique in deriv-
ing (A.15), we can obtain

PR — (RY) | = u) <

T — 40(T — 1)\ 2

46Xp{_2(1+2@(T1f1))<”*/a_ Z;f 11>) j+
4@(T—1))2}

T-1 nu
4 _ _
eXp{ 2(1+26(T—1))<203ax T—1

(A.17)
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when 40(T — 1)/(n(T — 1)) < Vu,u/(202,,) < k.
Hence, we obtain

d

P(RY — RP[max > uw) < ) P(IRE, — R, | > u)
j'k'=1
T 80(T)\2
< 2 - - _ 22\
8max{d eXp[ 4(1+2@(T))(77\/a T ) ]
Bl(u)
T nu 80(T)\2
d? - -
x| 4<1+2@<T>>(2T§ax ) 1)
BQ(U)
when we have
80(T) u
<Au, —=— < k. (A.18)
77T f 27—8@(

Here we used the fact that ©(T' — 1) < O(T) and T — 1 >
T/2 when T > 3. Again, (A.18) can be fulfilled when T is
large enough. Setting By (u3) = 1/d?, we obtain

1 16(1 +20(T))logd 8O(T)72
ug_mw i L SO

Setting By (u4) = 1/d?, we obtain

vy — 2¢§ax [\/16(1 + Q(z)F(T))logd . 8@T(T)].

Let 1 (T') = max(us, uq). Using the same argument as in
deriving (5.1), we may conclude that

P(IR2 — RO max = r1(T)) < 8/d2.

This completes the proof. O

A.2.4. PROOF OF THEOREM 5.3

Proof. We first show that with large probability, A is fea-
sible to the optimization problem (4.1). By Theorem 3.7,
we have AT = (RQ) 1R, Thus, we have
HRQAT - R? Hmax = ”RQ(RQ)_IR? - R?Hmax
=|IR*R®) 'R — RY + R — RP|max
<[[RYRY) ™! — IRY | max + [RF — R max
=[(R? = R A imax + [RT = R max
<IR? = R max | A1 + [RF — R fimax
<HRQ - RQHmaXMT + HR? - R?Hmax-

The last inequality is due to A € M(a, s, Mr). By Lemma
5.2, we have, with probability no smaller than 1 — 8/d?,

IR2AT — R |y <r(T) My + 71(T)

<(1 + Mr)rmax(T) = A.
Next, we prove (5.5). Using AT = (RQ)'RY, we have

|A = Almax = [A = (R 'R max
:“(RQ)_l(RQA - R?)Hmax
=[(R?) " HRPA-RPA+RZ-RZ+ROA -RY)|nax
<IRY (R = RO | A1+
HR? - R?Hmax + HRQA - R?HmaX)~
Since A is feasible to optimization prol;]em (4.1) with
probability no smaller than 1 — 1/d?, and A is the solution
to (4.1), we have |A||; < |A[; with probability no smaller
than 1 — 1/d?. Using Lemma 5.2 and |[RQA — R?Hmax <
A, we further have
”A - AHmax
SIRY) T [r (DAL + r1(T) + (1 + Mr)rmax(T)]
<2”(]‘:{?)_1”1(1 + MT)TmaX(T)a

with probability no smaller than 1—1/d?. This proves (5.5).

To prove (5.6), let \; be a parameter to be defined later, and
denote

d
$1:= max Zmin(|Ajk/)\1|, 1) and S;:={k:|A x| <A1}

1<j<d
IS

It follows that |S;| < s1, where |S;| denote the cardinality
of S;. We have

1A = Al <|Ajselr + [Aysel

A5, —Ajs i (A19)

By the equivalence of (4.1) and (4.2), we have H;&J* [1 <
| A |1 forany j € {1,...,d}, with probability no smaller
than 1 — 1/d?. Thus, we have

A selln =[ Azl — | Ay, 1 < [Ajsxl — [Ajs, ]
=[Ajs,l + 1Ay sl — |1 As; |1

<IAjs; = Ags; [ Agse

Plugging the above equation into (A.19), we obtain
| = Ay ali <2|Ajs: |1 +2]As s~ Ajs, 1 (A20)

When k ¢ S;, we have A, < A;1. Thus, we have
L =M A/
keS;

=M1 )] min(JAjkl/A, 1) < Misio (A2D)
keS;‘

| Aj.se
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Regarding the second term on the right hand side of (A.20),
we have

HAj7Sj JS Hl “A AHmaX|S ‘
<2|(RP) ™ 1(1 + Mz )rmax(T)s1. (A22)
Combining (A.19), (A.21), and (A.22), we have
|A A i< [220 +4] (RE) 71 (14 M) rmax (T)] 1.

Let A; = 2[(R2) ™y (14 M) rmax (T)), we have | A . —

A «|1 < 4)\1s1. By the definition of sy, since « € [0, 1),
we have
d
< (0%
51 < gjafdk_lmqu]k\ /23,1)

< max Z |Ajg | /AT < s/AT.

1<j<d

Hence, we have

|Aj .« — Ajali < 4N

11—«

45 20(RY) (1 + Mr)rmas(T)]
Since the above equation holds for any j € {1,...,d}, we
have (5.6). L]

A.2.5. PROOF OF THEOREM 6.2

Proof. In order to prove Claim 1, we only need to prove
that {Xr}iez doesn’t Granger cause {Xy;}iez implies
A ;. = 0. Suppose for some t € Z, we have

P(Xip15 € A {Xs}s<t) = P(Xiq15 € A { X i ts<t)s

for any measurable set A. The above equation implies
that conditioning on { X \i}s<t» X¢41,5 is independent of
{Xsk}s<t- Hence, we have

Cov(Xit1,5, Xo | { X \n}s<t) = 0.

Plugging X;41,; = 27:1 A
equation, we have

1 Xy + Eyy1 5 into the above

0 = Cov(Ajx X, Xen | { Xk }s<t)+

COV(Z A X, X | {Xs,\k}sgt)‘F
l#k

COV(Et+1,j7 Xtk | {Xs,\k}s<t)~

The second term on the right hand side is 0, since given
{ X\ ko<t Z#k A ;; Xy is constant. Since (2xg);x =0
for j < k, we have Cov(E}+1 5, Xsr) = 0 forany s < t.
Using Theorem 2.18 in Fang et al. (1990), we have the third

term is also 0. Thus, we have A j;, Var(Xi | X\ }s<t) =
0, and hence A j;, = 0. This proves Claim 1.

Given Claim 1, to prove Claim 2, it remains to prove that
A, = 0 implies that {X;x}ez doesn’t Granger cause
{X¢;}iez. Since A j = 0, we have

P(Xip1,j, { Xk fost | { X\ }s<t)

=p(2 Ay X+ By { X sk st | {1 X\ }s<t)
17k

—‘p(Z A X+ Ervrj | { Xk }s<t)
1#k
P({ Xskts<t | {Xs,\k}8<t)-

Here p is the conditional probability density function.
The last equation is because FE,.; is independent of
{Xs}s<t» and the fact that 3}, , Aj;; Xy is constant given
{X,\k}s<t- Hence, we have

P(Xig1j { Xk fo<t | { X\ }s<t)
:p(Xt+1,j | {Xs,\k}sst)p({Xsk}sgt | {Xs,\k}sst)7

and thus

P(Xi15 [ {Xshs<t) = 0(Xig1j [ { X \w)s<t)-

This completes the proof. O

A.2.6. PROOF OF THEOREM 6.4

Proof. Theorem 6.4 is a consequence of Theorem 5.3. In-
detail, if A, > 0, by (6.1), we have A ;; > 2v. By Theo-
rem 5.3, with probability no smaller than 1 —8/ d2, we have
|11jk —A ;| < . Thus, we have ;&jk > ~ with probability
no smaller than 1 — 8/d?. By the definition of A, we have
:&jk=;&'k>’}/>0.

If A, <0, by(6 1), wehave A j, <
5.3, we have AJ g < —y with probablhty no smaller than

1 — 8/d2. By the definition of A, we have Ajk = Ajk <
—y < 0.

—27. Using Theorem

If A i = 0, using Theorem 5.3, we have K]k < 7 with
probability no smaller than 1 — 8 /d?, since IE”(AJ E=7) =
0. By the definition of A, we have A ik = 0. O
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