
Distributional Rank Aggregation, and an Axiomatic Analysis

A. Proofs of results
A.1. Proofs from Section 3.2

A.1.1. PROOF OF PROPOSITION 1

Proof. Consider a distribution which assigns equal weight
to the following permutations: x < y < z, y < z < x, z <
x < y. Then, Px<y = 2/3, Py<z = 2/3, Pz<x = 2/3. If
the ε-Strong Condorcet condition holds, transitivity would
be violated if universality were satisfied. Since transitivity
is implicit in the distributional framework, universality i.e.
the condition that a unique permutation should be returned
must be violated.

A.1.2. PROOF OF PROPOSITION 2

Proof.

ε-Strong Condorcet

⇒ if P : Px<y ≥ 1
2 + ε ; ε > 0, then σ∗P (x) < σ∗P (y)

⇒ for all Q1, Q2 ∈ {P |Px<y = 1
2 + ε}, ε > 0, then

sign
[
σ∗Q1

(x)− σ∗Q1
(y)
]

= sign
[
σ∗Q2

(x)− σ∗Q2
(y)
]

= −1

This last statement is ε-IIA.

A.2. Proofs from Section 3.3

A.2.1. PROOF OF PROPOSITION 3

Proof. Consider a social welfare procedure which decides
σ̃P for a distribution P . Then, let g(σ, P ) = δσ̃P

(σ) in (2),
where δσ′(σ) = 0 if σ = σ′ and ∞ otherwise. This will
return σ∗P = σ̃P and thus using g is equivalent to the social
welfare procedure.

A.2.2. PROOF OF PROPOSITION 4

Proof. By definition, Pareto-efficiency requires that for all
P ∈ {P | ∀ σ : P (σ) > 0;σ(x) < σ(y)}, σ∗P (x) < σ∗P (y).
The statement can be rewritten as: ∀ P : Px<y = 1, i.e. the
argument(σ∗P ) minimizing the objective in Equation 2, has
σ∗P (x) < σ∗P (y), which is equivalent to having:

min
σ:σ(x)<σ(y)

gP (σ) < min
σ:σ(x)>σ(y)

gP (σ)

i.e.. the minimizer σ∗P ∈ {σ : σ(x) < σ(y)}. Also, this
should hold for all distributions P : Px<y = 1, which is
true iff U1(g;x, y) < 0.

A.2.3. PROOF OF PROPOSITION 5

Proof. By definition, IIA requires that for all distribu-
tions P,Q ∈ {P |Px<y = γ}, sign [σ∗P (x)− σ∗P (y)] =
sign

[
σ∗Q(x)− σ∗Q(y)

]
,∀x, y ∈ X . The statement can be

rewritten as: for all P ∈ {P |Px<y = γ}, sign[σ∗P (x) −
σ∗P (y)] should remain constant. i.e. for a fixed γ, for

all P : Px<y = γ, the argument(σ∗P ) minimizing the
objective in Equation 2, should always belong to either
σ : σ(x) > σ(y) or σ : σ(x) < σ(y). Also, we know
that:

σ∗P (x) < σ∗P (y) iff min
σ:σ(x)<σ(y)

gP (σ) < min
σ:σ(x)>σ(y)

gP (σ)

σ∗P (x) > σ∗P (y) iff min
σ:σ(x)<σ(y)

gP (σ) > min
σ:σ(x)>σ(y)

gP (σ)

which is equivalent to,

sign[σ∗P (x)− σ∗P (y)]

= sign

[
min

σ:σ(x)<σ(y)
gP (σ)− min

σ:σ(x)>σ(y)
gP (σ)

]
This means that for g to satisfy IIA,

sign

[
min

σ:σ(x)<σ(y)
gP (σ)− min

σ:σ(x)>σ(y)
gP (σ)

]
is con-

stant for all P ∈ {P |Px<y = γ}. Now, any function has a
constant sign, iff it’s minimum and maximum value have
the same sign.
Thus, g satisfies IIA iff Lγ(g;x, y), Uγ(g;x, y) > 0,
∀γ : 0 ≤ γ ≤ 1 and ∀ x, y ∈ X .

A.2.4. PROOF OF PROPOSITION 6

Proof. By definition, Condorcet Criteria requires that for
all P such that if Px<y > 1

2 ∀ y ∈ X\{x} then σ∗P (x) = 1.
This requirement can be rewritten as: Let P ∈ {P |Px<y =
γy >

1
2 ∀ y ∈ X\{x}}, then σ∗P (x) < σ∗P (y) for all y ∈

X\{x}. We know that:

σ∗P (x) < σ∗P (y) iff min
σ:σ(x)<σ(y)

gP (σ) > min
σ:σ(x)>σ(y)

gP (σ)

Following the argument in proof of Proposition 4, we re-
cover the required statement.

A.2.5. PROOF OF PROPOSITION 7

Proof. By definition, majority rule is satisfied iff for all
P ∈ {P |P 1(x) > 1

2}, then σ∗P (x) = 1. The statement can
be rewritten as: ∀ P : P 1(x) = 1, i.e. the argument(σ∗P )
minimizing the objective in Equation 2, has σ∗P (x) = 1,
which is equivalent to having:

min
σ:σ(x)=1

g(σ, P ) < min
σ:σ(x) 6=1

g(σ, P )

i.e.. the minimizer σ∗P ∈ {σ : σ(x) = 1 . Also, this should
hold for all distributions P : P 1(x) > 1

2 , which is true iff
U1
γ (g; y) < 0 for all γ > 1

2 .

A.3. Proofs from Section 3.4

A.3.1. PROOF OF THEOREM 2

Proof. P is a distribution over Sn which has finitely many
elements and hence can be represented as a finite real val-
ued vector, thus g(σ0, P ) for a fixed σ0 is a multivariate
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function of this vector and the continuity of g(·, P ) is a
well-defined notion.

Now, pick any pair of alternatives x and y. Consider the
quantity

hxy(P ) = min
σ:σ(x)<σ(y)

g(σ, P )− min
σ:σ(x)>σ(y)

g(σ, P ) (5)

Then, hxy(P ) < 0 ⇐⇒ σ∗P (x) < σ∗P (y), as the mini-
mum σ∗P will be chosen from {σ : σ(x) < σ(y)}. Now,
pick two permutations σ1 and σ2 such that σ1(x) < σ1(y)
and σ2(x) > σ2(y).

Consider a family of distributions indexed by 0 ≤ λ ≤ 1.
Let Pλ = λδσ1

+(1−λ)δσ2
, where δ is such that δσ̃(σ) = 1

if σ̃ = σ and 0 otherwise. Note the following:

• Pareto implies, since P0 ≡ δσ2
, hxy(P0) > 0 and sim-

ilarly, P1 ≡ δσ1
and hxy(P1) < 0

• g(σ, P ) is continuous in P for each fixed σ. Now, each
of the two terms on the RHS of (5) are minimizations
over a finite set of σ. The minimization of a finite num-
ber of continuous functions in P yields a continuous
function and so does the subtraction of these two terms.
Thus, hxy is continuous in P and hence in λ.
• The above two statements together imply that for some

0 < λ∗ < 1, hxy(λ∗) = 0. However, this means that
for some pair σ∗1 and σ∗2 , such that σ∗1(x) < σ∗1(y)
and σ∗2(x) > σ∗1(y), g(σ∗1 , P

∗
λ ) = g(σ∗2 , P

∗
λ ) and

this is also the minimum value of g, so that σ∗1 , σ
∗
2 ∈

argminσ g(σ, P ). Since they differ atleast in the rel-
ative position of x and y in the ranking, the ranking
procedure does not return a unique minimizer and thus
does not admit Universality.

A.4. Proofs from Section 4

A.4.1. PROOF OF PROPOSITION 8

Proof. The result is a direct consequence of using the rear-
rangement inequality on Equation (4).

A.5. Proofs from Section 4.1

A.5.1. PROOF OF PROPOSITION 9

Proof. Consider the quantity,

fP (x)− fP (y) =
∑

σ:σ(x)<σ(y)

P (σ)(h(σ(x))− h(σ(y)))

−
∑

σ:σ(x)>σ(y)

P (σ)(h(σ(y))− h(σ(y)))

IIA requires that, for all distributions P ∈ Mγ(x, y) =
{P |Px<y = γ}, sign(σ∗P,`(x) − σ∗P,`(y)) should remain
constant.

Then, any P ∈Mγ(x, y), fP (x)− fP (y) can be lower and
upper bounded by the following, using the definition of Ωh
and ωh:

γωh − (1− γ)Ωh ≤ fP (x)− fP (y) ≤ γΩh − (1− γ)ωh
(6)

Both inequalities are tight i.e. There exist distribu-
tions Q1 and Q2 such that, Q1x<y = Q2x<y = γ,
and fQ1(x) − fQ1(y) = γΩh − (1 − γ)ωh,
fQ2

(x)− fQ2
(y) = γωh − (1− γ)Ωh.

Now, sign(f(x)− f(y)) is constant

⇐⇒ (γωh − (1− γ)Ωh)× (γΩh − (1− γ)ωh) > 0

⇐⇒ S(γ) = γ2(Ωh + ωh)2 − γ(Ωh + ωh)2 + Ωhωh > 0

This must hold ∀ γ, 0 ≤ γ ≤ 1. Also observe that S(0) =
S(1) = Ωhωh.

S(γ) is convex (in particular, quadratic) in γ, with its min-
imum occurring at:

γ∗ = argmin
γ∈[0,1]

S(γ) =
1

2
(7)

and
S(γ∗) = −1

4
(Ωh − ωh)2 ≤ 0 (8)

Thus, S(γ∗) ≤ 0, and hence no `h can satisfy IIA exactly.

A.5.2. PROOF OF PROPOSITION 10

Proof. Continuing from the proof of Proposition 9, Since
S(γ) is convex, quadratic, we need that S( 1

2 + ε) = S( 1
2 −

ε) > 0. Plugging γ = 1
2 + ε in defintion of S(γ) leads to a

recovery of the result.

A.5.3. PROOF OF PROPOSITION 11

Proof. For, Pareto-efficiency, for all {P |Px<y = 1}, we
need that σ∗P,`h(x) < σ∗P,`h(y), which is equivalent to hav-
ing f(x)− f(y) > 0. Plugging γ = 1 in Equation (6), we
get that f(x)− f(y) > 0 iff ωh > 0, which is equivalent to
h : [n] 7→ R being strictly monotonically decreasing.

A.5.4. PROOF OF PROPOSITION 12

Proof. The score for alternative x is given by fP (x) =∑
σ′∈Sn

P (σ′)h(σ′(x)). Suppose the position of x goes
up such that probability mass δ > 0 shifts from σ1 to
σ2 from P1 to P2, where σ1 and σ2 differ only in that
x is higher up in σ2 than in σ1, i.e. σ2(x) < σ1(x) and
σ2(y) ≥ σ1(y)∀y ∈ X\{x},

fP2(x)− fP1(x) = δ(h(σ2(x))− h(σ1(x)))
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Then, fP (x) will decrease or remain the same iff h is non-
increasing.

A.5.5. PROOF OF PROPOSITION 13

Proof. Given distributions P and Q such that σ∗P,`h(x) =
1 and σ∗Q,`h(x) = 1, which implies that fP (x) =
Eσ′∼P [h(σ′(x))] > fP (y), ∀y ∈ X\{x}. Similarly,
fQ(x) = Eσ′∼Q[h(σ′(x))] > fQ(y), ∀y ∈ X\{x}.
fP+Q

2
(x) = Eσ′∼P+Q

2
[h(σ′(x))] = (fP (x) + fQ(x))/2 >

fP+Q
2

(y), ∀y ∈ X\{x}.

A.5.6. PROOF OF PROPOSITION 14

Proof. Let ω1
h = min

j∈[n]|j>1
h(1) − h(j) and let P 1(x) =

γ = 1
2 + ε; ε > 0 Then for all y ∈ X\{x}:

f(x)− f(y) =
∑

σ:σ(x)=1

P (σ) (h(1)− h(y))

−
∑

σ:σ(x)6=1

P (σ) (h(y)− h(x))

≥ γ(ω1
h)− (1− γ) max(Ωh,−ωh)

≡ ε
(
ω1
h + max(Ωh,−ωh)

)
− 1

2

(
max(Ωh,−ωh)− ω1

h

)
For majority rule, we need that, f(x)− f(y) > 0, which is
equivalent to

ε(ω1
h + max(Ωh,−ωh))− 1

2 (max(Ωh,−ωh)− ω1
h) > 0

max(Ωh,−ωh) + ω1
h

max(Ωh,−ωh)− ω1
h

>
1

2ε

So, for any positional loss function `h, we can find an ε(and
hence a distribution P ), for which majority criteria is not
met.

A.5.7. PROOF OF PROPOSITION 15

Proof. The argument follows directly from the proof of
proposition 14.

A.5.8. PROOF OF PROPOSITION 16

Proof. For Condorcet analysis, if Px<y = γ = 1
2 + ε, ε >

0, then f(x) − f(y) > 0 iff ε(Ωh + ωh) > 1
2 (Ωh − ωh).

Taking lim
ε→0+

, shows that positional scoring rules don’t sat-

isfy Condorcet criteria in general i.e. For any positional loss
`h, we can find an ε(and hence a distribution P ), for which
Condorcet criteria is not met.

A.5.9. PROOF OF PROPOSITION 17

Proof. The proof follows directly from the proof of propo-
sition 16.

A.6. Proofs from Section 4.2

A.6.1. PROOF OF THEOREM 3

Proof. We show this constructively. Table 1 shows the εs
for relaxed axioms for various ranking procedures. In par-
ticular, note that Borda Count satisfies Pareto and Mono-
tonicity exactly and satisfies the relaxed Strong Condorcet,
IIA and Majority Rule axioms with some 0 < ε, ε′ < 1

2 , as
required.

A.6.2. PROOF OF LEMMA 1

Proof. Since `h satisfies Pareto, h must be strictly decreas-
ing. Then,

ωh = min
{i,j∈[n]|i<j}

h(i)− h(j) = min
i∈[n]

(h(i)− h(i+ 1))

(9)

and

Ωh = max
{i,j∈[n]|i<j}

h(i)− h(j) = h(1)− h(n) (10)

= (h(1)− h(2)) + · · ·+ (h(n− 1)− h(n)) (11)
≥ (n− 1)ωh (12)

where the last line follows because each term in (11) if
larger than their minimum given by (9), as required.

A.6.3. PROOF OF THEOREM 4

Proof. Let t = Ωh

ωh
≥ 1. Then, from Proposition 10,

ε∗ =
1

2

(
Ωh − ωh
Ωh + ωh

)
=

1

2

(
t− 1

t+ 1

)
(13)

ε∗ is then monotonically increasing in t for t ≥ 1 and is
thus minimized when t is minimum. From Lemma 1, this
is minimized when t = n− 1, which is achieved by Borda
(see Table 1).

B. Experimental details
In this section, we discuss the motivation and key-
takeaways from our Experiments in great detail. In Sec-
tion 4, we saw that for positional scoring losses, all ax-
iomatic properties(both exact and approximate) depend on
three quantities Ωh,ωh and ω1

h. Recall from previous
definitions that Ωh = max

{i,j∈[n]|i<j}
h(i) − h(j); ωh =

min
{i,j∈[n]|i<j}

h(i)−h(j) and ω1
h= min

j∈[n]|j>1
h(1)−h(j). Mo-

roever, all axioms are functions of ratios of these three
quantities. So, any positive linear scaling or translation
of h will not change the behavior of `h towards any
axioms.i.e. Axioms only depend on the behavior of the
discrete-derivative of the function h. We state some key
properties:
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• For any strictly decreasing convex function, it’s
discrete-derivative is decreasing in nature i.e. The
sharpest change in function value is observed at the top
of the list, while the slowest change is observed at the
bottom. To quantify this, for any strictly decreasing
convex h, ωh = h(n)− h(n− 1)

• On the contrary, for any strictly decreasing concave
function, it’s discrete-derivative is increasing in nature.
i.e. The sharpest change in function value is observed
at the bottom of the list, while the slowest change is
observed at the top. To quantify this, for any strictly
decreasing concave h, ωh = h(2)− h(1).
• For Borda Count, which is a linear function, it’s dis-

crete derivatives are constant.
• In our analysis of IIA, we observed that for any two al-

ternatives x and y, for a distribution Pwith the marginal
probability Px<y = γ, the difference of their scores
fP (x)− fP (y) are upper and lower bounded by γωh−
(1− γ)Ωh ≤ f(x)− f(y) ≤ γΩ− (1− γ)ω.
The distribution P̂ over which the lower bound is at-
tained is the one, which places x over y at the in-
dices corresponding to argmin{i,j∈[n]|i<j} h(i)− h(j)
and places y over x at the indices corresponding to
argmax{i,j∈[n]|i<j}h(i)− h(j).

• For convex losses, P̂ places x and y at the bottom po-
sition, whereas for concave losses P̂ places them at the
top.
• Motivated by this intuition, we define two experiments

where we choose the centers for the mixture of Mal-
lows so that we can simulate the P̂ for convex and con-
cave independently. Both the experiments have Z2 to
be the same, which places B at the top and A at the
bottom.(corresponding to Ω).
• In Experiment 1, Z1 puts {A,B} at the bottom, and as

we increase the weight on Z1, we essentially simulate
P̂ for a convex function, which is why we see that the
convex losses perform poorly.
• Similarly Experiment 2, Z1 puts {A,B} at the top, and

as we increase the weight on Z1, we essentially simu-
late P̂ for a concave function, which is why we see that
the concave losses perform poorly.
• Since for Borda, the discrete-derivative is constant, it

is not prone to such distributions and hence never per-
forms the worst. Hence, even empirically we can see
that in a distribution agnostic setting, Borda Count
would be optimal.

C. Directions for Future Work
The study of social choice theory was revolutionized by
Arrow (1951) with the axiomatic approach to social choice
and welfare. However, the interpretation of these axioms

has been a common complaint among practitioners, in part
due to the characterization of axioms using words or logical
statements instead of a quantitative description. We hope
that our framework has shed light on the characteristics of
as well as similarities between the various axioms.

Within the utility maximization framework, we have ana-
lyzed Positional Scoring rules in detail but distance mea-
sures also fall in this class and can be analyzed with the
same machinery. Their performance with regard to the re-
laxed axioms is an important direction for future work. In
the future, we hope to tackle the more interesting problem
of obtaining a representation theory for all losses which sat-
isfy a certain axiom.

We have exhaustively characterized the set of positional
scoring rules that satisfy each axiom (including our relaxed
variants) and shown that Borda Count is optimal in a sense.
It remains to obtain such results for broader classes of loss
functionals (for instance, distance measures).

A common use of rank aggregation techniques in machine
learning is to obtain rankings from a number of algorithms
and combine them to produce a higher score on some other
metric, such as the NDCG in learning to rank. Investi-
gating such metrics w.r.t. the axioms and designing pro-
cedures which are guaranteed to improve performance on
these metrics w.r.t. the base rankings is an important di-
rection for future work. In many such settings, it suffices to
obtain only the top k elements in the aggregation in contrast
to an entire ranking over the set of all alternatives: extend-
ing our analysis to such settings is another key direction for
future work.

Another important area of study in social welfare theory are
game theoretic considerations such as the susceptibility of
a voting procedure to collusion among the voters. A cele-
brated result in this vein is the Gibbard-Satterthwaite theo-
rem regarding the strategyproofness of theorems. Analyz-
ing distributional rank aggregation procedures under this
lens is an open problem.


