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Abstract

We discuss binary classification from only pos-
itve and unlabeled dataP{ classificatiof,
which is conceivable in various real-world ma-
chine learning problems. Since unlabeled data
consists of both positive and negative data, sim-
ply separating positive and unlabeled data yields
a biased solution. Recently, it was shown that
the bias can be canceled by using a particular
non-convexoss such as the ramp loss. However,
classifier training with a non-convex loss is not
straightforward in practice. In this paper, we dis-
cuss aconvexformulation for PU classification
that can still cancel the bias. The key idea is to
use different loss functions for positive and unla-
beled samples. However, in this setup, the hinge
loss is not permissible. As an alternative, we pro-
pose the double hinge loss. Theoretically, we
prove that the estimators converge to the optimal
solutions at the optimal parametric rate. Exper-
imentally, we demonstrate that PU classification
with the double hinge loss performs as accurate
as the non-convex method, with a much lower
computational cost.

1. Introduction
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by a user. Such a situation occurs, e.g., in automatic
face tagging: a user provides a set of images of him-
self, and the task is to automatically tag photos in the
user’s photo album.

Inlier-based outlier detectionis aimed at identify-
ing outliers in an unlabeled dataset based on another
dataset that consists only of inliers (Hido et al., 2008;
Smolaetal., 2009). Thanks to the information brought
by the inlier dataset, this inlier-based approach is
more powerful than the conventional completely un-
supervised approach. This problem is also known as
semi-supervised novelty detecti@cott & Blanchard,
2009; Blanchard et al., 2010).

If the negative class itoo diverse it is difficult to
collect negative data in a representative way. Such a
situation is typically observable in “one-vs-rest” clas-
sification. For example, when classifying land cover
images into urban and non-urban regions (Li et al.,
2011), itis easy to obtain urban samples, but it is diffi-
cult to representatively collect diverse non-urban sam-
ples.

Thenegative-class dataset shifhanges the probabil-
ity distributions of negative samples between the time
when the training data is collected and when the clas-
sifier is applied to the test data. Solving this prob-
lem with an ordinary classifier would require constant
generation of the negative dataset to keep up with the
changing distributions. On the other hand, PU classi-

fication only requires to update the unlabeled dataset,
which is much less costly. Negative-class dataset shift
may occur in spam detection, where adversarial spam-
mers may change the tendency of negative samples
(‘spam’) to defeat the existing classifier, while the
positive class (‘non-spam’) is expected to remain sta-
ble over time.

Proceedings of theg2™¢ International Conference on Machine Given its wide applicability as described above, PU clas-
Learning Lille, France, 2015. JMLR: W&CP volume 37. Copy- sjfication is gathering a great deal of attention these days.
right 2015 by the author(s). A naive approach to PU classification is to train a classi-

Let us consider the problem of learning a classifier only
from positive and unlabeled data. This problem, which re-
fer to asPU classificationarises in various practical situa-
tions under different guises. For example:

e The goal ofidentificationis to find samples in an unla-
beled dataset that are similar to the samples provided
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fier to separate positive and unlabeled samples. HoweveFormulation of PU classification: Letx € R? be ad-
such a naive approach yields a poor solution since the urdimensional pattern angl € {1, —1} be a class label. We
labeled dataset consists of both positive and negative datassume that we have a positive datageand an unlabeled
Although using a loss function weighted according to thedatasett” i.i.d. as

class prior of the unlabeled data'setas shown to produce a

better solution (Blanchard et al., 2010; Scott & Blanchard, y .— {x}l, ~plely=1), X' = {m/}’i ~ p(z),
2009), the PU classifier trained in this way still has a sys- ’ =

tematic estimation bias. _ . .
wherep(z|y) is the class-conditional density of patterns

Recently, it was shown that using a loss function) such  andp(zx) is the marginal density of patterns. Since the un-
that/(z) + ¢(—z) = 1 can cancel the bias completely. For |abeled dataset” consists of positive and negative sam-
example, theamp losswhich is used in theobust support  ples, the marginal density jgx) := mp(z|y = 1) + (1 —
vector machingCollobert et al., 2006; Wu & Liu, 2007), 7)p(x|y = —1). The goal is to learn a classifigfzx) that
satisfies this conditidn Classifier training with the ramp  assigns a labgj to a new patterm: asy = sign (g(x)).

loss can be performed, e.g,. via tt@nvex-concave proce- . e . N

dure (CCCP) (Yuille & Rangarajan, 2002). However, non- The .optlmal classifier g*  is given by g -
convex optimization is computationally expensive and onlym_g Migeg Jojl(g)’ where Jo4(g) s th.e expected

a sub-optimal local solution may be obtained. Another non_mlscla55|f|cat|on rate' when the class@ém) |s.applled o
convex formulation was proposed in Smola et al. (2009). unlabeled samples distributed according(a):

To overcome this weakness of the non-convex formulation, j. . () =7E, [¢o.1(g(X))]+(1—m)E_; [lo-a(—g(X))],
we analyze a formulation of PU classification thatagvex 1)
but can still cancel the bias. The key idea is to use differ-

ent loss functions for positive and unlabeled samples: an 1.
ordinary convex loss functiofi(z) for unlabeled samples WHere the zero-one lossfg(z) = 5 sign(z) +
and a composite loss functiagiiz) — ¢(—=z) for positive

sampled. If (z) — ¢(—=z) is a convex function, the en- PU classification by non-convex loss minimization: In

tire objective function becomes convex and thus the globaihe ordinary classification setting where positive and neg-
solution can be obtained efficiently. Thegistic lossand  ative samples are available for classifier training, the ex-
the squared lossmmediately yield convex composite loss pectationsE; andE_; in Eq. (1) can be estimated by cor-
functions. On the other hand, the composite loss derivedesponding sample averages. In the PU classification set-
from the hinge lossis not convex, but the modified hinge ting, however, no labeled samples from the negative class
loss with an extra kink (which we call th@ouble hinge s available and therefoié_; cannot be estimated directly.
los9 yields a convex composite loss.

1
5

This problem can be avoided by expressihg(g) as fol-
Theoretically, we prove that the estimators converge to théows (du Plessis et al., 2014):

optimal solutions at the optimal parametric rate. Experi-

mentally, the superior accuracy and computational advan- 7, . (4)=24E, [(o.1(g(X))] + Ex [fo-1 (—g(X))] — 7,
tage of the proposed double hinge loss is illustrated on )
benchmark datasets.

o whereE y denotes the expectation ovefxr). This comes
2. Non-convex PU classification from

In this section, we formulate the problem of PU classifica-
tion and review the non-convex PU classification method®X [fo-1(=9(X))]
proposed in du Plessis et al. (2014). =7E1 [lo1(—g(X))] + (1 = m)E_1 [lo-1(—g(X))]

Several methods have been introduced to estimate this class (1 = E1 [loa(g(X))]) + (1 = m)E-1 [fo.1(—9(X))],

prior (e.g., Scott & Blanchard, 2009; du Plessis & Sugiyama,

2014). where the last line is due #.1(—z) = 1 — {p.1(z). Note
?Loss function/(z) that satisfie¢(z) + ¢(—z) = lisalways  that Eq. (2) corresponds to ticest-sensitive classification

non-convex IEIkan, 2001) with weight@r /n and1/(1 — n), wheren

3Note that this idea has been previously shown in the contex . .
of learning from noisy labels (Natarajan et al., 2013). For correc s the proportion of positive samples to unlabeled samples.

parameter choice, PU learning can be interpreted as a special cagg practice, minimizing Eq. (2) is problematic since the
of leaming with noisy labels. subgradient of the zero-one loss is zero everywhere except
whenz = 0. For this reason, the zero-one loss is often
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substituted with @urrogateloss functiort £(z): —_10
== Logistic
Hinge

Jeoulg) = 27Es [((g(X))] + [ﬂu*:l (g (X))] __Hinge

(L= B (-9 | - =

= mlEy [ (g(X))] + (1 — m)E_1 [£(—g(X))]
Ordinary error term
+ 7k [£(g(X)) 4+ £(—g(X))] —.

Superfluous penalty

Figure 1.Selected loss functions.

The first and second terms correspond to the ordinary Cla&Whené(z) is convex, the composite Iofﬁz) is the dif-

sification loss, while the third term is superfluougerm ference between two convex functions. The key question
that is specific to the PU classification setting. Due to thq whether the composite loss can be convex, which makes
superfluous term, a systematic estimation bias is incurre q.(3) a convex function. The following sim’ple theorem
by naive surrogate loss minimization. (proven in Appendix A.1) positively answer the question.
However, as shown in du Plessis et al. (2014), the superflurpagrem 1. Ifthe composite Ios&z)
ous term can be canceled when the loss function satisfies

{(z) + {(—z) = 1. Note that this condition is met only by various losses are illustrated in Fig. 1 (definitions are in
non-convex loss functions such as the ramp3oss Table 1). A simple calculation shows that some losses, such

Non-convex loss functions are, however, often problemati@S the Hinge loss, do not resultin a linear composite loss.

in practice due to the difficulty of non-convex optimization For simplicity, let us always normalize the losses so that th
and the existence of local sub-optimal solutions. In the NeXcomposite loss ig(z) — —2. This results in an objective
section, we explore an alternative way to remove the supetynction of

fluous penalty.

is convex, itis linear.

J(g) =71 [-g(X)] + Ex [((—9(X))].  (4)
3. Convex PU classification
Note that the above is a special case of the previously pro-
In this section, we give the formulation for convex PU clas-posed estimator in Natarajan et al. (2013) for learning from
sification. label noise. For appropriate parameter choices, the fegrni

with label noise problem is reduced to PU learning.
Formulation: Let us consider another expression of

Jo1(g) based on Empirical version: In practice, we use a linear-in-
(1= 1)E_1 [foa(—g(X))] parameter model for functiog(xz):
= Ex [lo-1(=9(X))] — 7By [foa(—9g(X))].- g(x) = a p(x) +b, (5)
Substituting this into Eq. (1), we obtain _
where p(x) = [ pi(x) ... pon(z) | is a set

Jo1(g) =mE1 [lo-(9(X)) —Lo-a(—g(X))]+Ex [lo-1(—9(X)]. of basis functions.  For basis functions, we may

If the zero-one loss is replaced with a surrogate Kis3, use, e.g., the Gaussian functions centered around sam-

we have ple. points ¢i(@) = exp (—|lz = cr|/(20%)) . where
~ {e1,...,en} = {x1,...,xp, 2}, .. 2}, andm =
J(g) = mEy [E(Q(X))} +Ex [((—9(X))], (/R + n’. Alternatively, linear or polynomial functions can

-~ ) -~ be used as basis functions. Using this model, Eq. (3) can
where/(z) is thecomposite loss/(z) = ((z) — {(—z). pe empirically estimated as
Eq.(3) corresponds to using an ordinary loss for unlabeled

samples and a composite loss for positive samples. R &
- J(a, b) :ffZaTgo(wi)fwb
“Examples of surrogate loss functions are illustrated in Fig. 1. n-e-
Many surrogate loss functions are convex, which results in convex o
optimization problems. 1 T , AT
>The same condition was also proved in Ghosh et al. (2014) + n Zé (- () —0) + haias
for learning with label noise. J=1
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where the last term is for regularization. In Eq. (4), thetfirs Logistic loss: The logistic loss is defined &5,1,(z) =
two terms are always positive. However, it may happenlog(1 + exp(—=z)). We therefore wish to minimize the ob-
in degenerate cases, due to inadequate regularizatidn, thactive function:

the first two terms in the above empirical criterion are not

bounded below by zero. To avoid numerical difficulties, JiL(g) = —7E;1 [9(X)] + Ex [log(1 + exp(g(X)))] -

we may in practice constrain these two terms to be non- (7)

negative. o ) _ _
The logistic loss is monotone decreasing when 1, so in

The last remaining choice to obtain a practical algorithm isthjs sense it is preferable over the squared loss for classifi
the choice of the loss functidfz). We will discuss several ation.

choices in the following section. ) o
The proposed method can be relatedbtdinary logistic

regression The objective function for ordinary logistic re-
gression is

In this section, various practical choices of convex loss

functions are explored. Ex [fr(9(X))] = 7y [log (1 + exp(—g(X)))]

+ (1 =m)E_; [log (1 + exp(9(X)))]

4. Convex loss functions for PU classification

Squared loss: The squared loss, defined ds(z) = _ _
1 (2 —1)? results in the following objective function: We use the identityog(1 + exp(—z)) = —z + log(1 +
1 exp(z)) in the first term to get
Js(g) = —mE1 [g(x)] + Ex [(9(X) +1)* (6)
. 14 [ } Ex [tue(9(X))] = —7Eq [g(X)]
=7 /g(w)2p(w)dw —5 /g(w)[%m(w) —p(x)ldz + C, + 7k [log(1 + exp(g(X)))]

4
. . . 1—m)E_; [log(1 X))].
whereC'is anirrelevant constant. Let us assign a class label (1= m)E—1 [log(1 + exp(g(X))]

y for x according to the difference of class-posteriors: By collecting the last two terms intx, we see that this

r(x) =ply = 1|z) — p(y = —1|z) is equivalent to Eq. (7). This implies that ordinary logssti
_ 1) — - 1)(1— regression can be exactly performed in the PU classification
[p(xly=1)7 — p(z|y=—1)(1-m)] /p() setup,

= [2mp(xly = 1) — p(x))] /p(). _ - o o
Then our objective function corresponds to the Ieast_The regularized empirical approximation for the objective

squares fitting of the difference of posteriar&e) to a function in Eq. (7) is
modelg(x) up to an irrelevant constant: n

T m T AT
1) \? p(x) ' o
An advantage of this squared-loss formulation is that it can + l/ ZzLL (_aﬂp(w;) — b) . (8)
be analytically solved. For example, whéns omitted [t
from the model Eq. (5), the objective function with the
regularizer becomes This function is continuous and differentiable, therefore
N 1 1 optimization can be performed using a quasi-Newton
Js(a) = Eaﬂbﬂ%a + ﬁlT(I’ua method (see Appendix B for details).
T A . . . .
- ﬁl Ppax + 74 @ Hinge and double hinge losses: The hinge loss is de-

. fin =1 1 — z). From Table 1 w

where[@el,, = pe(e), and[@u],, = ge(a). The mini- ed asfy(2) 3 max(0, _ 2) 0 able 1 we see

mizer of this objective function can be analytically obtzn  that the composite loss(z) is not a linear function. This

as non-convex composite loss would lead to an undesirable
) non-convex optimization problem.

.
5201

—1
1
a= ((I)Jcbu + )J) V@FH -
n

m We can, however, obtain a convex objective func-

tion if the loss is slightly modified a¥pu(z) =
However, a drawback of the squared loss function is thamax (—z,max (0, 5 — 3z)). Since this loss function has
the function increases as> 1. This is undesirable, since an extra kink at = —1, we refer to it as thelouble hinge
a model that correctly classifies the sample when 1 is Ioss(seg Fig. 1). For this loss function, the composite loss

penalized. term islpn(z) = —z, which is a convex function.



Convex Formulation for Learning from Positive and Unlabeled Data

Table 1.A selected list of loss functions and their composite losses. Losses withaa diomposite loss function was normalized so that
U(z) = —=z.

Loss name Notation /(z) £(z) Notes

Square loss ls(z) 1z-12-1 —z Convex

Modified Huber loss f (2) {imax(o’ 1=z 22-1 —z Convex

—z z<—1

Logistic loss lr(z) log(1 4 exp(—=2)) —z Convex
11-2) 2<-1,

Hinge loss lu(z) 2 max(0,1 — 2) —z —1<2z<1, Non-convex
1(-1-2) z2>1

Double hingeloss  /pu(z)  max(—z,max(0, 1 — 32)) —z Convex

Perceptron loss lp(2) max(—z,0) —z Convex

Boosting loss lexp(z) exp(—=z) exp(—z) — exp(z) Non-convex

The empirical optimization problem for the double hinge and unlabeled datasets separately and then computing the

loss is ratio of estimated densities. However, this two-step pro-
R o \ cedure is undesirable since high-dimensional density esti
Jon(a, b) = —— Z a'px) -1+ o'« mation is often unreliable and taking their ratio can furthe
mis 2 magnify the estimation error. To cope with this problem, in

1 Keziou (2003) and Nguyen et al. (2007), the following ob-
+ = ZéDH (—aTgD(a:;») —b). (9) jective function for density ratio estimation was introddc
n
Jj=1

As in the standard support vector machines, we may rewrite ' /g(f”)P(w“/ = 1)dw—/f*(g(w))10(w)d$a (10)
the minimization of the above criterion as a quadratic pro-

gram by using slack variablesto bound the max opera- Where f(t) is a convex function such thgt(1) = 0, and
tors: f*(z) = sup, tz — f(t) denotes its Fenchel dual. Eq.(10)

is actually a lower bound of thg-divergence fromp(x|y =

. _wqT . 14T AT
min —pl ®pa—mbt ol L4 saa 1) to p(=) (Ali & Silvey, 1966):
st. £>0, (zly = 1)
£€> 11+ Laya+ 1, /f (pwy—) p(@)dz.
£ > dya+bl, p(x)
where> is applied element-wise on vectors. Eq.(10) is maximized &g = r if r(x) € 0f*(g(x)) (i.e.,

the solution is a function of the density ratio). This esti-
mator has been used for inlier-based outlier detection un-
der the Kullback-Leibler divergence (Kullback & Leibler,
In this section, we discuss the relation between PU classifil951) in Smola et al. (2009) and under the Pearson diver-
cation andnlier-based outlier detectiofHido et al., 2008;  gence (Pearson, 1900) in Hido et al. (2008).

Smola et al., 2009). On the other hand, in PU classification, we are interested in

The objective of inlier-based outlier detection is to find-ou the sign of the difference of class-posterior probabditie
liers in an unlabeled dataset based on an inlier dataset. Re- mp(zly = 1)
garding inliers as samples from the positive class, we can p(y = 1|z) — p(y = —1|x) x ——"—~— — 2
show that the class-posteripfy = 1|x) is proportional to p(z)
theratio of the densities between the positive samples andvhich also includes the density ratigz). Thus, inlier-
unlabeled samples: based outlier detection and PU classification are highly re-
_ lated to each other. However, an important difference is
plxly=1) - . : . :
— = =r(x). that inlier-based outlier detection requires an outli@rec
p() for evaluating the outlyingness of samples, while PU clas-
Since the density ratio(x) will tend to take large values sification requires the threshold between the positive and
for inliers and small values for outliers, it can be used fornegative classes. Because of this difference, Eq.(11) also
outlier detection. contains the class prior probabiliyy = 1) = 7.

5. Discussion

11)

p(y = 1]z) o

The density ratie(x) can be naively estimated by first esti- Nevertheless, we can utilize the density-ratio framework
mating the densities(x|y = 1) andp(x) from the positive  of f-divergence estimation in PU classification. Indeed,
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Our main idea is to regard three empirical objectives as
perturbed optimizations of three expected objectives, and
to establishLipschitzian behavioof optimal solutions to

Table 2.Conjugates and the corresponding loss function for PU
learning (cf. Table 1).

) () Loss the perturbed optimizations. Without loss of generality, a
(t—3)° z+1)? -3 ls(2) sume thad < ¢;(x) < 1forallj =1,...,m andx € R,
- imax(0,1+2)°—1 2<1 and that there exists a constdit, such that|a|> < M,
(t—§)70§tS1 1 EMH(Z) . . P . . . T .
z— 3 z>1 for the optimal solutiortx to any optimization ifa ' « is
[2t—1,0<t <1 max(z,max (05+22))—% fpu(z)  regularized. To begin with, we have the following second-

(1—t)In(1 —¢#)

order growth conditions.
+tIn(t)

Lemma 2. It holds that

In(1 + exp(z)) lri(z)

Js(@) = Js(og) + M — agl[3,
Ji(a) = Ju(edy) + Alec — oy |13,
supﬁ/g(w)p(a}\y =1)dx — /f*(g(:c))p(m)dw, Jon(e) = Ju(apy) + Alle — o [[3-
! (12)

Eq. (4) can be expressed as

First, consider the squared loss. Let= {u;, us,us |

u; € ST, up € R™,uz € R™} be a set of perturbation
parameters, wher8" C R™*™ is the cone ofn-by-m
positive semi-definite matrices. Define our perturbed ob-

_(Op(xly =1 jective function by
/f (p(|y)> p(z)de.

p(z) 1 . .
i Jslew) = ja” ( [ e@)ela) pade +u ) o
For different f(¢), we can recover the squared loss, mod-

ified Huber loss, double hinge loss and logistic loss, as 1 d T
shown in Table 2. +5 | [ pl@p@)de +us |

where f*(t) corresponds to the loss function. Note that
Eq.(12) is an upper bound of

-
A
6. Theoretical Analysis -7 (/ e(x)p1(x)dx + u3> a+ EaTa,

In this section, we establish convergence results for the pr ~ as(u) = argmin,, Js(a, u).

posed methods. Assume that the number of basis func- R
tionsm is a constant independent afandr/, i.e., g(z) It is obvious thatJs(a) = Js(,0), and Js(a) =
is parametric and the biash is ignored for simplicity: ~ Js(c, u), where

g(x) =201 ajp4(x) = a ' p(x). Assume that the ideal
estimates are given by

uy = %Zw(wé)w(aﬂéf - /w(w)w(w)Tp(w)d%
i=1

ag = argmin Js(a)

* = argmin J Ly
o:l:L arg min L (), uy = — () — /<P(w)p(w)dw»
apy = argmin JDH(a), " i=1
respectively, where we plug(x) into the original objec- uz = S Zcp(:vi) - /@(fﬂ)l’l(‘”)d‘”' (13)
tives Js(g), JiL(g) and Jor(g). We also assume that the i

empirical estimates are given by _ ) o
Lemma 3. The difference functiods(-, w) — Js(-) is Lip-
Qs = arg min js(a% schitz continuous modulugu) = O(||uy ||Fro + w22 +
N L~ lus|l2) on a sufficiently small neighborhood af.
o = argmin Jy (o),
N ~ Theorem 4. Asn,n’ — oo, we have
app = argmin Jpy(av).
: . : las — aglla = Op(n~ 12 40/~ 1/2),
We then derive convergence rates of the empirical estimates ~ ) 1 12
and the empirical objectives based on a theory known as |[Js(@s) = Js(as)| = Op(n +n )-
perturbation analysis of optimization probler(see Bon-
nans & Shapiro, 1998; Bonnans & Cominetti, 1996, andSecond, consider the logistic loss. L£be a Banach space

references therein). of Lipschitz continuous functions : R™ +— R equipped
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with a sup-norm|u||oo = sup,, |u(a)|. Letw = {us, uy |
us € R™ uy € U} be a set of perturbation parameters,
and define our perturbed objective functional by

o) =~ ([ plelpi()de + ) e

A
+ [ 1+ explel@) a)plaiia + ula) + SaTa,
oy (u) = argming Ji| (o, u).

It is not difficult to see that/| (a) = J.(«,0) where
0 eU,and ] (a) = JiL(a,u) where

ws =2 Y ple) - [ el (@is.

wi(@) = L 3 hn(1 + explp(al) ) ()
i=1

- /ln(l + exp(p(x) " a))p(x)de.

Lemma 5. The difference functiod | (-, w)—Ji.(+) is Lip-
schitz continuous modulus(u) = O(||usl|2 + Lip(u4))
on a sufficiently small neighborhoodef, , whereLip(u,)
is the best Lipschitz constantof.

Theorem 6. Asn,n’ — oo, we have

|G — afy ]2 = Op(n /2 +n/71/2),

|jI.L(aLL) —Ji(eg)| = 0,(n 2+ n/=1/2),

Finally, consider the double hinge loss. Here we use a sim-

ilar set of perturbation parametets = {us,us} as the
logistic loss, and define our perturbed objective functiona

by

o) = tomiaia )

.

+ us ()

1+ a

0 (@) o} ple)ie
A
+ §aTa,

apy(u) = argmin, Jpn(o, u).

It is easy to see thalpn(a) = Jpu(a, 0) where0 € U,
andJpn () = Jon(a, u) where

ws =Y ple) - [ el (@is. (15)

!

,)Ta}

1< 1+ o)
u5(0t) = ; Zmax {07 %7 ‘P(mz
i=1
-
- /max {O, %, go(zc)Ta} p(x)de.

Lemma 7. The difference functiowpy(-,u) — Jpu(-)
is Lipschitz continuous modulus(u) = O(||lus|2 +
Lip(us)) on a sufficiently small neighborhood afs,.

Theorem 8. Asn,n’ — oo, we have

1&on — apullz = Op(n~ 12 +0/~172),

| Jon(@on) — Jon(apy)| = Op(n™1/2 4 n/~1/2),

To sum up, the empirical estimates and the empirical objec-
tives converge ir©,,(n~'/2 +n/~1/2) to the corresponding
targets in all of three cases. This is the optimal convergenc
rate, since it is of orde©,(n~'/2) when approximating

an expectation by an empirical average based: atata.

Note that there is a generalization error bound in du Plessis
et al. (2014) that is also of ord€?,(n—/2 + n/~'/2) un-

der the problem setting of PU classification. Nevertheless,
their proposed method is non-convex and has no conver-
gence analysis. As a consequence, our proposed methods
are advantageous because they possess both bounds of the
convergence rate and generalization error.

7. Experiments

In this section we report experimental results.

Numerical illustrations: We numerically illustrate the
effect of multiple local minima for the ramp loss on a sim-
ple numerical problem. The two class-conditional distribu
tions are

plxly=1) =N, (2, 12) and p(zly=—1) =N, (—2, 12) ,

whereN (i1, %) denotes the univariate normal distribution
with meany and variances?. We generatel0 positive
samples and, using a class priorof= 0.5, generate&0
unlabeled samples. Using a modgl) = wx + b, and
choosing\ = 103 we plot the value of the objective func-
tion w.r.t. tow andb in Fig. 2. Even in this simple problem,
we see that the ramp loss function has multiple minima. We
see in Fig. 3 that the bad local minimum leads to a worse
classification result.

Next, we illustrate the failure of applying ordinary clas-
sifiers in the PU learning problem due to the superfluous
penalty term. The positive and negative classes are dis-
tributed ad4(0.1, 1) and/(—1.1, —0.1), wherel/(a, b) is

the uniform density betweemandb. This dataset is triv-
ially separable and the offsetb/w of a classifier should
always be in the rangé-0.1,0.1]. Drawing different
datasets and training classifiers on it gives the results in
Fig. 4. In this simple example, we see that directly using
the hinge loss and logistic loss result in a wrong classifi-
cation boundary — even in fully separable datasets. Our
proposed method and the ramp loss yield correct solutions.
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Figure 2.0Objective value of the ramp loss Figure 3.Resulting discriminant bound- Figure 4.Average offset—b/w for dif-
w.r.t. w andb, illustrating multiple lo- ary for the ramp loss minim#; and P,  ferent classifiers trained on the fully-
cal minima. The objective value fdp, is and the double hinge loss.P; (with a separable problem. Correct classifiers
higher thanP. higher value) is an inferior classifier. should be between -0.1 and 0.1.

o
=]
=]

(S LogReg NN C-LL I Hingo I C-DH EEIRamp | Table 3.Classification accuracy (in percent) of the proposed
methods. Best and equivalent methods (udért-test) are bold.

Dataset 7 LogReg C-LL Hinge C-DH Ramp
Ovs1 0.1 31% 0.8% 0.7% 05% 0.5%
0.4 8.9% 1.3% 1.6% 09%  0.8%
0.7 8.8% 1.5% 1.8% 0.6% 1.0%
Ovs.1 Ovs.2 Ovs.3 Ovs.4 Ovs.5 0Ovs.6 Ovs.7 Ovs.8 Ovs. 9 Ovs2 0.1 4.2% 3.0% 3.1% 2.8% 2.7%
Figure 5.Average execution time of different methods 0.4 11.8%  6.0%  7.4% 53%  5.3%
0.7 11.2% 6.9%  7.6% 5.1% 5.4%
Ovs.3 0.1 41% 27% 2.9% 25% 2.5%
0.4 119% 58% 7.4% 51% 51%

o
S
=]

o
S
=]

Average execution time [sec]

Benchmark datasets: We performed experiments illus-

trating the method on the MNIST dataset. The following 0.7 113% 69% 7.5% 51%  5.4%
methods were compared: Ovs4 01 3.7% 1.8% 2.1% 1.6% 1.4%
0.4 10.8% 3.9% 5.0% 2.8% 2.5%

e LogReg Hinge: Training a weighted classifier with 0.7 102% 4.4% 53% 2.7% 2.8%
the logistic loss and the hinge loss. These methods arévs 5 0.1 5.0% 41% 44% 4.0% 3.9%
convex, but subject to the superfluous penalty. 04  14.4% 94% 11.5% 9.4%  9.3%

0.7 13.4% 11.1% 13.2% 10.5%10.0%

e C-LL, _C-DH (proposed): The_convex methods pro- 01 41% 31% 31% 29%  2.8%
posed in Sec. 4 using the logistic loss and double hinge 0.4 11.6% 6.4% 7.8% 5.9% 5.8%
loss. 0.7 11.6% 7.1% 7.8% 6.0% 6.1%

e Ramp: The method of du Plessis et al. (2014) us-0vs7 0.1 3.7% 20% 22% 1.7% 1.5%
ing the non-convex ramp loss. The objective function 8-‘7‘ ig-gfﬁ’ ‘5‘-82? g-gsf’ g-ng’ 23?2{;

PR H . . 0 . 0 . 0 . 0 . 0

wa§ minimized us'mg the convex-concave procedur% Vs 8 01 4.0% 58%  2.8% 26% > 6%
(Yuille & Rangarajan, 2002; Collobert et al., 2006) 0.4 11.4% 5.8% 6.9% 5.1% 5.0%
(see Appendix B.4 for a detailed discussion). 07 108% 6.4% 7.9% 53% 5.3%
Ovs9 0.1 4.0% 2.7% 2.9% 2.5% 2.4%

All methods used the same model. Hyperparameters were 04 11.1% 48% 57% 41% 4.0%
selected via cross-validation on the zero-one loss objecti 07 105% 53% 58% 3.8% 3.9%

in Eq. (2). The “0" digit was used for the positive class, .
and another digit was used for the negative class (i.e., on8. Conclusion
dataset for each digit “1"...“9"). Dimensionality was re-

) o . . We discussed a convex framework for learning from posi-
duced to2 via principal component analysis a@tl0 posi-

. tive and unlabeled data. Theoretically, it was shown that th
tive samples and00 unlabeled samples were drawn. The Y

| ) ied ! ts. butiti %{oposed estimators converge to the optimal solutions at
class priorwas varieg across experiments, but ILis assumefiy optimal parametric rate. Experimentally it was shown
that the class prior is known at training tifoe

that PU classification with the proposed double hinge loss
The classification accuracy is given in Table 3. From thisperform as accurate as the non-convex ramp-loss method,
we, see that the ramp-loss and the proposed double hindwit with a much lower computational burden. Furthermore,
loss give accurate results. The comparison in average comve related the convex PU learning framework to sevgral
putational time (Fig. 5) shows however that our proposedlivergence estimation based PU learning methods.

double hinge loss method is significantly faster.

8In practice, it may be estimated with methods such as (BlanAcknowledgements MCdP and MS were supported by
chard et al., 2010; du Plessis & Sugiyama, 2014). JST CREST.
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