Convex Formulation for Learning from Positive and Unlabeled Data

A. Proofs
A.1. Proof of Theorem 1

If the composite losg(z) is convex, it is linear.

Proof: The composite loss is an odd function:

U—z) = U(~2) — U(z) = —L(2),

Therefore L. Uz) = —%E(—z). If the composite los$(z) is convex a7 {(z) > 0 holds for allz. Since the convexity of

'dz2 1dz2

{(z) implies the convexity of(—z), %Z(—z) > 0 should also hold for alt. However, iff—;f(z) > 0, thenf—;~(—z) <0

holds, which is contradictory to the convexityZ(f—z). Therefore & {(z) = 0 should hold, which is satisfied only when

- 'dz?
£(z) is linear. O
A.2. Proof of Lemma 2
Js(ex) is strongly convex inx with parameter at least, and thus
Js(a) = Js(ag) + Vis(ag) " (a — ag) + A|e — a3
> Js(ag) + Aller — a3,

where we use the optimality conditionJs(ag) = 0. Similarly, we can prove the other two inequalities. O

A.3. Proof of Lemma 3

The difference function can be written as

1 1
Js(a,u) — Js(a) = ZaTula + §u;a — Tuj o,

with a partial gradient
0

1 1
%(Js(a, u) — Js(a)) = it + 52 — TUs.

Given thes-ball of g, i.e., Bs(ag) = {a | | — agll2 < 6}, itis easy to see that for ary € Bs(ag),

lellz < [l — agflz + [laglls < 1+ M.,

and then 5 . )

| stex) = e | < 5000+ Mol + s+ sl
This means thaf/s(-, u) — Js(+) is Lipschitz continuous omBs(ag) with a Lipschitz constant of orde®(||u ||ro +
uzll2 + [[usll2)- O

A.4. Proof of Lemma 5
The difference function can be written as
Ji (o, u) — Ji () = —mug o4 ug(a).

Givena € Bs(ay ), we have known that-ruJ o is Lipschitz continuous with a Lipschitz constant of ordefi|us||2)
in the proof of Lemma 3. Consequentli, (-, ) — Ji(+) is Lipschitz continuous os(«}, ) with a Lipschitz constant
of orderO(||us||2 + Lip(ua)). O
A.5. Proof of Lemma 7

Same as the proof of Lemma 5. O
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A.6. Proof of Theorem 4
Letu,, us andug be defined as in Eq. (13). According to tbentral limit theorem

1 ]|mo = Op(n'™172), [luslla = Op(n'~12),  Jlug|la = Op(n™"/?),
asn,n’ — oo. Thus, we have
s — aglla < A w(u)
= O(Jlut([fro + lluzll2 + [Jus]l2)
— Op(n—1/2 +n/—1/2)
by Lemma 2, Lemma 3, and Proposition 6.1 in Bonnans & Shap®é§, p. 19).

On the other hand, R R N N
|Js(as) — Js(as)| < |Js(as) — Js(ag)| + [Js(as) — Js(a@s)|,

in which

~ ~

-~ * -~ * 1 “ A -~ *
Js(@s) = Js(ag) = (as+ag)’ | D ela)e(@)" + 5lm | (@s—ag)
i=1

’ T T
1 c -~ * 1 -~ *
+ ﬁzwwé) (as—ag)— (nZSO(GCi)> (as — ag),
i=1 j
T * * 1 * 1 * 1 * *
Js(ag) — Js(ag) = 195 wios + U205 — TUz Q.

Sinced < ;(x) < 1, |lagll2 < M, and||as||s < Ma,

~

|Ts(@s) — Js(ag)| < |Js(@s) — Js(ag)| + | Js(ag) — Js(ag)]
< Op(llas — asll2) + Op(llurllero + [[uzlla + [lus]l2)
:Op(n71/2+n/71/2)’

which completes the proof.

A.7. Proof of Theorem 6
Letus andus () be defined as in Eq. (14). The gradientgfis given by

e (@) (@)
Vi@) = Y e ey Ix e @),

According to the central limit theorem,
luslls = Op(n~1/2),  Lip(ws) = Op(n'~*/?),
asn,n’ — oo, sinceLip(uq) = sup,, |[Vus(a)|2 and

1/2

<m < 00.

2

SUPqeRr™ zeRd

‘ e(x)
1+ exp(—¢(z) o)

Thus, we have

o — o [l2 < A tw(u)
= O(|lus||2 + Lip(ua))
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_ Op(n71/2 + n/71/2)

by Lemma 2, Lemma 5, and Proposition 6.1 in Bonnans & Shap®8§, p. 19).
On the other hand,

[T (@) — Jic (e )] < 1T (@) — Ju ()] + i (efy) — Ju (e, )]
For the second term,

| (o) = Ji (o) = | — mug af + us(of))|
< M llusllz + [ua(agy )]
_ Op(n—l/z 412

according to the central limit theorem. For the first ternis & bit more complex:

n T
+|r (i Zgo(:c)) (oL —af))

T /A T * A * ~ *
|Ji (@) — (o )] < ‘2(04LL +of ) (@ —aof))

n’

> 1+ explip(al) @) — (1 + explp(a) i)l

Let f(z,t) = In(1 + exp(z + t)), thenlim; o f(z,t) = f(2,0) and

lim fet) = /(2.0 = lim — f(z,t)

< o0
t—0 t t—0 Ot '

T 1+ exp(—z —t)

where we usé&’Hopital’s rule. In other wordsf (z, t) approacheg(z, 0) in O(t) ast — 0. Subsequently, for any € R<,

by z = p(x) "oy andt = p(x) T — ¢(x) "o we can obtain
| In(1 + exp(e(x) " aur)) — In(1 +exp(p(e) )| = O(lp(z) aw —¢(x) " of|)
= O(m'?|law — afi|l2),
which results inJ (auy) — Ji (e )| = O, (n=Y/2 4+ n/=1/2), O

A.8. Proof of Theorem 8

The proof goes along the same line as that of Theorem 6ui-ahdus (a) be defined as in Eq. (15). Note that the function
max{0, (1+2)/2, z} is piecewise linear in, differentiable almost everywhere, afiek (d/dz) max{0, (1+2)/2,z} < 1.
As a result,

[usllz = Op(n™'/?),  Lip(us) = Op(n''/?),

asn,n’ — oo, and

[[apH — apllz < A w(u)
= O(|lusll2 + Lip(us))
— (’)p(n_l/Q + n/—1/2)

by Lemma 2, Lemma 7, and Proposition 6.1 in Bonnans & Shap®8§g, p. 19).
On the other hand,

| Jon(@on) — Jon(apn)| < |Jon(@on) — Jor(ady)| + | Jon(edu) — Jon(adu))|

IN

1 ’",/ R R
i > Imax{0, (1 + p(a)) "aw ) /2, (@) Tour }
i=1
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— max{0, (1 + ¢ (@) " )/2, (@) Taf 3 + Op(n™ /2 +n/~1/3).
Let f(z,t) = max{0, (1 + z + ¢t)/2, z + t}, thenlim;_,o f(2,t) = f(2,0) and forz € R\ {0, 1},
fi SR i ) € 40,51
In other words,f(z,t) approaches(z,0) in O(t) ast — 0 almost surely. Subsequently, for amyc R?, by » =
p(z) "agy andt = p(x) Tapn — p(z) " afyy we can obtain
| max{0, (1 + ¢(2)"aw)/2, (@) Taw } — max{0, (1 + ¢(z) "o )/2, p(2) T af L} = O(lp(z) "aw — (@) afL))
= O(m'?||aw — afi||2)

_ Op(n—1/2 + n/—1/2),

which completes the proof. O

B. Optimization problems

In this section, we give exact optimization problems for tgimization methods presented in the paper. The logistic
regression and logistic loss method is solved with a quasithin method, and therefore we provide the derivatives in
Sec. B.1.

The Hinge loss and Double Hinge loss result in quadraticlprob. The ramp-loss is solved via a sequence of quadratic
problems. All quadratic problems are expressed in the form

ming, %aTHa +fla
S.t. La <k
l{«
This standard form can then just be plugged into an off-tiefptimization package such as Gurobi, IBM CPLEX or
MATLAB's internal ‘quadprog’ function.
B.1. Logistic loss

The gradient for the objective function in Eq. (8) is

8j\I_L (av b)

™
= ——PJ1+ A\
Jda nor T

1 n
= =Dt (e o)) — b) e(x)),
j=1

where/; ; (z) is the derivative of 1 (z):

)y exp(=2)
Le(z) = 1 Fexp(—2)

The derivative with respect to the unregularized congdtasit
8T (a,b) 1 &
=T Z%L (—aTe(x)) —b).
j=1

B.2. Double Hinge Loss - PU Learning

The objective function can be expressed as

™ n 1 n’ 1 ) )\ 2
T h ;9(931) + ?;max ((Lmax (g(w}), B} + 29(232))) + 5 llgll5
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T n m 1 ’ﬂ/ m , 1 1 m , )\ m )
= Z (Z 1 Ozg(pz(il)i)-i-b) + = ;max <O,max <; appe(x)) +b 5—1—5 <; agwg(:vj)—i—b))) —&—5 ;az

i=1

The objective function can then be expressed as

min —I1T®pa — b+ H1TE+ S0
st. £€>0,

€= 11+ idya + 01,

5 = <I>Ua + b]_,

Let

ThenH is defined as

AIm><'m Omxl Om’xn’
H = Ol><m 0 len’ )
On/ xXm On’ x1 On’ xn'

whereO,, «,, is a zero matrix of rows andm columns. The linear part of the objective is

—Ipg1
f=| -n
11,
o An’/x1
The lower-bound is
—Omx1
l= —00
0n’><1
The first linear constraint is
1 1 1
—-1+-0 -bl
£z gl+gtvats
1 1 1
~® S |
gPuat bl == -5
@ 1
[ %(I)U %1n’><1 _In’xn’ ] u j_iln’XL
13
The second linear constraint is
£ dya+ b1
(I)Ua+b1 75 j On/xl
(87
[ (bU 1n’><1 _In’xn’ } b j On’><1~
13

Combining the two sets of inequalities, we get
L = %‘I)U %1n’><1 _In’xn’ ,
(I)U 1n’><1 _In’xn’
and

k: _%lanl )
0n’><1
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B.3. Weighted hinge loss classifier
We want a cost-sensitive classifier with a per-sample wigightJsing the model

g(x) = Z appe(xy + 0,
—1

where

{c1,...,en} ={x1,...,z},

we wish to minimize

b m
1 A
J(g9) = o sz‘EH (yz Zawe(wi) + b) + §aTa,

i=1 (=1
= izn:'wrnax 0,1—y iaggog(w-) +b)+ éocToz
2n Pt 7 i ZZZl 7 2 N
This gives a QP of
. 1 T AT
glgré 5w §+ 5a Ra
st & >0, Vi=1,...,n
ﬁizl—yizlg:la@k(mi,c@)—ku Vi=1,...,n.
We then set
(8
Y= b
3
H is then

A Om><1 Om><n
H: Oan 0 Ol><n
Onxn On><1 Onxn

The linear term is

0m>< 1

The lower bound is

Define® as

The constraint can be written in matrix form as
£ 1y — (P + by)
—Pa—-by—€£= -1,
The matrix is then
L=[-® —y —Ixn |,
andk is

k=[-1,x1].
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20

H,@

== -H,(2)

15

Figure 6.Decomposition of the ramp-loss into convex and concave parts.

B.4. Weighted ramp-loss classifier (CCCP)

Classification with the ramp-loss is difficult, due to the ti@n-convexity of the loss function. One popular method to
perform optimization is to split the non-convex functiomara convex and concave part. The concave part is then upper-
bounded by a linear function, and optimization is iterdyiyeerformed: minimization of the upper-bound, and tiglen

of the upper-bound around the new minima. We minimize thepréoas problem here using this approach. This is a
straightforward application of the convex-concave pracedCCCP) in Yuille & Rangarajan (2002) and is essentidiy t
same as Collobert et al. (2006).

We wish to minimize the following non-convex objective ftioo:
J(a,b) Zw IR yZZagcpg (x;)+b —|—)\a a, (16)
=1 /=1 2

where the ramp los&; (z) is defined as

1 1 1
lr(%z) = max <O,min (1, 3~ 22)) = 5 max (0, min(2,1 — 2)).

By defining the following (slightly more general) hinge loss
H (z)= %max(o, €—2),

the ramp losg (z) can be decomposed as:
lr(z) = Hi(2) — H-1(2).
This is illustrated in Fig. 6. The objective Eq. (16) can tfere be decomposed as

J(a b) = Jvcx(a b) + Jcavc(a b)

A
Jvex (0, b) szHl <Zo¢gw x;) +b> + 2a a,

i=1 /=1
Jcave (e b - szH— (Z aﬂpf(wi) + b)
/=1

The following self-evident relation can be used to uppeurabthe concave part

tz — f(z) <supyt — f(y)
yeR

= f(z) >tz — f*(1), (17)
where

fr(t) = supyt — f(y).

yER
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The inequality in Eq.(17) is known as tkenchel inequalitynd the functiory*(z) is known as thé&enchel duabr convex
conjugate Applying the above inequality t&/.(z), we can obtain a bound as

H(z) > 2t — H! (1),
CHL(2) < HE(1) =,

whereH*(t) is the Fenchel dual aff.(z). The Fenchel dual off _; (¢) is (the full calculation is given in Appendix B.4.3)

(1) = -t —1<t<0,
7 Y otherwise

We can minimize the upper-bound as

~ =
|| I
o
\H
[SIEN
IN V
(.
— =

argmin H*,(t) — tz = {
t

The concave part is then bounded, with the parametes

Jcave a b (1 sz <H1 az — ;Y; <Z CW(PZ wz +b>>
(=1

whereJeave (@, 1) < Jeave(a, b, @), for anya.

B.4.1. TIGHTENING OF THE UPPERBOUND
The upperbound is minimized (tightened) when
o — 3 i ()L aepe(mi) +0) < —
! 0  otherwise

B.4.2. MINIMIZING THE OBJECTIVE

We wish to minimize the convex part and the upper bouiid, u, a) = Jyex (o, u) + Jeave(, u, @) with respect taa.
This gives an objective of

J(a,b,a) szHl (yz (Z (e +b>) + )\a o - fzwzazyl (Zaew x;) +b>

/=1
We define the following matrices:

D, o = yik(xi, co),
;¢ = wia;yik(xi, co),

The QP for this is then
min  gow'€+ gala— 11T0a — by Y1 wiaiy.

b€
st. & =>0 Vi=1,...,n

&> 1 i (Xloy cupel@) +b) Vi=1,...n.

We define again

2
Il
moo Q
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The quadratic term is

ALnXm Onwd Onxn
H = Oan 0 len
Onxn Onxl Onxn
The linear term is
19T
T <—n
f= _15 =1 WiGiY;
%w

The lower-bound is

—Omx1
b= —00
Onxl

The linear term is
—Pa—by — € <X —1,x;1.
This gives a matrix of
L=[-® —y —lun ],
andk is

k= [~ 1oyl

B.4.3. CALCULATION OF THE FENCHEL DUAL OF H,(z)
In this section, we briefly give the derivation of the Fenathehl of H.(z)

H(t) =suptv — H.(v)

1
= suptv — imaX(O,e—v).

To make the above easier, we split the domain ofithe

1 1
H?(t) = max ( suptv — = max (0,€ — v) ,suptv — - max (0,e —v) | ,
v<e 2 v>e€ 2

1
= max (sup tv— = (e —wv),suptv
v<e 2 v>e

For the first part:

v<e v<e

=2 (e—v) = £t
sup tv 3 €— V) =8Supv 5
1
2

The second part is

Putting these two together gives:

e (1) = et —1<t<0,
] otherwise



