Multi-instance multi-label learning in the presence of novel class instances:
Supplementary Material

1. Surrogate function calculation

In this section, we show the steps to compute the surrogate
function. In our setting, the observed datais {Yp,Xp}, the
parameter is w, and the hidden data y = {y;,y,,...,¥g}
To compute the surrogate g(w,w’), we begin with the
derivation of the complete log-likelihood. We apply the
conditional rule as follows

p(Yp,Xp,y|lw) = p(Yply,Xp,w)p(yXp, w)p(Xp|w)
B ny

= p(Yo I T p(wsilxsi. w)p(Xp). (1)
b=1i=1

We recall the relation between the instance label and fea-
ture vector, including novel class, as follows

HC ef(ybi:C)Wszi
c=0
chzo eWe Xoi

Then, the complete log-likelihood can be computed by tak-
ing the logarithm of (1), replacing p(yu;|Xp;, W) from (2)
into (1), and reorganizing as follows

B n, C
=3 Iy = o)wixe (3)
b=1 1=1 c=0

- Zzlog Z vexe) +log p(Yply) + log p(Xp).

b=1 i=1 c=

P(Yoi|Xpi, W) = ()

lng(YD7 XD7 ylW)

Finally, taking the expectation of (3) w.r.t. y given Yp, Xp,

and w’, we obtain the surrogate function g(-, -) as follows
g(W7W’)= y[log p(Yp, Xp,yIW)[¥p,Xp, W] (4)
B
b=

ZP (Y5 = ¢ Yo, Xp, W)W X
1i=1 c=0

— log( Zew ]+

where ¢ = Ey[logp(Yply)|Yp,Xp,w
constant w.r.t. w.

1+ logp(Xp) is a

2. Proof for the dynamic programming
equation of Step 1 in the E-step

The probability of the bag label for the first j 4 1 instances
of the bth bag can be computed recursively using

= p(jr1 = Uxpjq1, W)
=Y

x [p(Y) = L{,|Xp, w) + p(Y] = L'|X;, w)].

p(Y]T =L/ X, w

Proof. Assume L' is the label set of the first j+1 instances.
If the (j + 1)th instance has label [, then the label set of the
first j instances would be either L’\l, or L. In the former
case, the (j+1)th instance is the only class [ instance in the
first j 4+ 1 instances. In the second case, some instance be-
fore j 4 1 also belongs to class [. These two cases are mu-
tually exclusive. Following the total probability formula,
we sum over all mutually exclusive events. O

3. Proof for Proposition 1

In this section, we show the detailed proof for Propo-
sition 1 of computing p(ypn,,Ys = L|Xp,w) from
p(YZb_1|Xb, w) and p(Ypn, = €[Xbn,, W).

Proposition 1 The probability p(ypn, = ¢, Yy = L|Xp, W)
for all ¢ € L|J{0} can be computed using

o [fc=0,
P(Yon, = ¢, Yy = LIXp, W) = p(Yon, = ¢[Xon,, W)X
[p(Yr ™" =LIXp,w) + p(Y;* " = L J{0}/X;, w)]

e Elseifc+#0,

P(Ybn, = ¢, Yy = LIXy, W) = p(Yon, = ¢[Xpn,, W)X

[p(Y;* ™" = L|Xp, w) + p(Yp* " = Ly [Xp, W)+
p(Ypr~t =L J{0}Xp, w)+

p(Ypr ' =L [ J{0}X,, w)]

Proof. Denote the power set of L(J{0} excluding the
empty set as P. We compute p(ypn, = ¢, Yo = L|Xp, W)



Submission and Formatting Instructions for ICML 2015

by marginalizing p(ypn,. Yy = L,Y,* = L'|X;, w) over
Y," as follows

P(Yon, = ¢, Yy = L|Xp, W)
= Py, =&, Yo =LY} =L/[Xp,w). (5
L'CP

Using conditional probability rule for the right hand side of
(5) we obtain

P(Yom, = ¢, Yp = LIX, w) (6)

= pYm, = .Y} = L'[X;,, w)p(Yy = LY} = L),

L/'CP

From the proposed model, p(Y, = L|Y;* =L') = I(L =
L") + I(LU{0} = L'). Replacing p(Y, = L|Y;* = L’)
into (6) we obtain

P(Yon, = ¢, Yy = L|X4, W) = p(ypn, = ¢, Y;? = L|Xp, W)
+p(yon, = ¢, Y3 = LJ{0}Xp,w). (D)

e For ¢ # 0: The first term in the right hand side of (7),
P(Ybn, = ¢, Y," = L|X;, w), is computed by marginaliz-
ing p(ypn, = ¢, Yp* = L, Y;* " = L/|X;, w) over Y};» '
as follows
p(ybnb =, ng = L|Xb7w)
=3 pln, = Y =LY =L [X,,w). (8)
L'CP
Using the conditional probability rule we have
PWon, = & Y =L, Y"1 =L/ [Xp, w)
= p(Ybn, = ¢, YZ”’_I =L/|X;, w)x
p(Yy" = Llypn, = ¢, Y"1 = L)) ©)

Replacing p(ypn, = ¢, Y;* = L, Y;* "' = L'[X;, w) into

(8) we obtain
p(ybnb =, YZb = L|Xb7 W)
= Z [p(ylmb =G Y(?b_l = L/|Xb,W)><
L/CP
p(Yy" =Llypn, = ¢, X"~  =L). (10)
From the proposed model we have p(Y;” = Llypn, =
o Yp~! = L) = I(L = L'U{c}). Moreover, given
instance features, instance labels are independent. Conse-
quently, from (10), we obtain

P(Yon, = ¢, Y," = L|Xp, W) (11)
= z [p(ybnb = c\xbnb,w)x
L'CP

p(Ypr = L/|Xp, wI(L = L' J{c})]
= p(yb’ﬂb = C‘anb,W)X
(Y ™" = LIXp, w) + p(Y;" ™" =Ly [Xp, w)].

Deriving similar steps from (8) to (11) for the second term
of (7), p(yvn, = ¢, Y," = LUJ{0}|X;, W), we obtain

p(Ysn, = ¢, Y3 = L{_{0}[Xp, w) (12)

= p(ylmb = C|anb7 W) 2

(Y~ = L{_J{0}Xs, w) + p(Y;" ™" = Ly [_{0}/Xe, w)].

Replacing probabilities obtained in (11) and (12) into (7),
we obtain the proof for the case ¢ # 0.

e For ¢ = 0: Since the bag label L. does not contain novel
label 0 and yp,, € Y,", the first term in the right hand
side of (7), p(ypn, = ¢, Y,* = L|X;,w) = 0. Replacing
probabilities obtained in (12) into (7), we obtain the proof
for the case ¢ = 0.

O

4. Instance membership probability
calculation algorithm

In this section, we show the pseudo code for computing
p(yyi = ¢, Yy = L[Xp, w).

Algorithm 1 Instance membership probability calculation
algorithm
Input: L. X;, Yy, W, c

Output: p(yp = ¢, Yy = L|Xp, W), V1 < <y

for i = 1 to ny do
Swap yp; and ypp, -
Initialize p(Y; = X, w) = 0, V1 C P.
Set p(Yi = {1}|Xp, W) = p(yp1 = I|xp1, W), VI €
LJ{0}.

for j=1ton, —1do

Dynamically compute p(Yi+1|Xb,W), from
p(Yi |X, w) using (8).

end for

Compute p(ypi = ¢Y, = L[Xp,w) from

p(Y,"[Xp, w) using Proposition 1.
Swap back yp; and Yy, .
end for




