Adaptive Belief Propagation

Georgios Papachristoudis
John W. Fisher III

CSAIL, MIT, Cambridge, MA 02139, USA

Abstract

Graphical models are widely used in inference
problems. In practice, one may construct a sin-
gle large-scale model to explain a phenomenon
of interest, which may be utilized in a variety of
settings. The latent variables of interest, which
can differ in each setting, may only represent
a small subset of all variables. The marginals
of variables of interest may change after the ad-
dition of measurements at different time points.
In such adaptive settings, naive algorithms, such
as standard belief propagation (BP), may utilize
many unnecessary computations by propagating
messages over the entire graph. Here, we for-
mulate an efficient inference procedure, termed
adaptive BP (AdaBP), suitable for adaptive in-
ference settings. We show that it gives exact re-
sults for trees in discrete and Gaussian Markov
Random Fields (MRFs), and provide an exten-
sion to Gaussian loopy graphs. We also provide
extensions on finding the most likely sequence
of the entire latent graph. Lastly, we compare
the proposed method to standard BP and to that
of (Siimer et al., 2011), which tackles the same
problem. We show in synthetic and real experi-
ments that it outperforms standard BP by orders
of magnitude and explore the settings that it is
advantageous over (Siimer et al., 2011).

1. Introduction

Many estimation problems can be cast as inference in
graphical models, where nodes represent variables of in-
terest and edges between them indicate dependence rela-
tions. Naive inference may have exponential complexity
in the number of variables. Message passing algorithms,
such as BP (Pearl, 1982) reduce the complexity signifi-
cantly. Despite the fact that BP performs exact inference

Proceedings of the 32™* International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

GEOPAPA @MIT.EDU
FISHER @ CSAIL.MIT.EDU

only on trees, it is often applied to loopy graphs (for which
it is approximate) due to its computational efficiency.

We consider the problem of inference in large-scale mod-
els. Such models which arise, for example, in complex
spatio-temporal phenomena, may be utilized in multiple
settings. It is often the case that only a subset of latent
variables is of interest for different applications which may
vary from instance to instance (Rosales & Jaakkola, 2005;
Chechetka & Guestrin, 2010; Wick & McCallum, 2011).
Additionally, the set of available measurements may vary
with use or become available at different points in time.
The latter is common for any sequential estimation prob-
lem. In such situations, general-purpose inference algo-
rithms, such as BP may utilize many unnecessary compu-
tations when only a small subset is desired. The complex-
ity of such approaches becomes prohibitive as the size of
graph increases, e.g., due to constant re-evaluation of mes-
sages. There exist several examples that fall into this cat-
egory of problems. Patient monitoring provides one such
practical example. Large-scale systems may monitor the
health status of many patients; however, different physi-
cians limit their interest to patients under their immediate
care. Temperature monitoring sensors provide data over
time and space, but sensitive areas (e.g., server room) may
require more careful examination for the timely response in
case of abnormal behavior. Lastly, in computational biol-
ogy, the effects of mutations are explored (computational
mutagenesis), with each putative mutation resulting in a
very similar problem.

This motivates methods for problems where measurements
are added incrementally and the interest is in a subset of
node marginals at a given time point or the MAP sequence
of the full latent graph. This is the problem of adaptive in-
ference, where the goal is to take advantage of previously
computed quantities instead of performing inference from
scratch. In these cases, standard BP results in many redun-
dant computations. Consequently, we develop an adaptive
inference approach which avoids redundant computations
and whose average-case performance shows significantly
lower complexity compared to BP. The main idea is to send
only messages between the node where a measurement has

Adaptive Belief Propagation

been obtained from (wy) and the node whose marginal is
of interest (vg).! The correctness of this approach is guar-
anteed by propagating messages between consecutive mea-
surement nodes wy_1, wy at every iteration as shown in Fig.
1. As a result, we only send the necessary messages to
guarantee that the incoming messages to the node of inter-
est vy are correct. We call this minimal messaging schedule
adaptive BP. We show that it gives exact results on trees (as
standard BP) and provide an extension for Gaussian loopy
graphs that still guarantees exactness in the evaluation of
marginals.

The proposed method requires a preprocessing step of
O(N log N) time, where N is the number of latent nodes.
In the worst case, when relative distance between consecu-
tive “measurement” nodes is approximately the tree diam-
eter and the diameter is on the order of N (highly unbal-
anced tree), the performance is comparable — yet still faster
to— standard BP. However, for height-balanced trees worst-
case performance results in O(log N') messages per update
as compared to O(NV) for standard BP. In the worst case, if
distance of consecutive nodes is very small, the computa-
tion of the node marginal is obtained in constant time per
iteration. We provide an extension of the method for MAP
inference and for Gaussian loopy MRFs and show how it
can be used to suggest nearly optimal measurement sched-
ules. We compare the proposed method to (Siimer et al.,
2011) and examine settings under one approach may have
advantages over the other. Lastly, we empirically demon-
strate the performance of our method in a variety of syn-
thetic datasets, as well for two real applications.

Related Work. Siimer et al. consider the same problem in
the context of factor graphs (Siimer et al., 2011) utilizing
the factor elimination algorithm to evaluate node marginals
(Darwiche & Hopkins, 2001). They construct a bal-
anced representation of the elimination tree in O(| X |3t~ V')
time, which allows for computation of a node marginal in
O(|X|?*» log N), where N is the number of nodes, t,, is
the elimination tree width (size of the largest clique in the
chordal graph minus one) and |X'| the alphabet size. How-
ever, the preprocessing step becomes prohibitive as |X|
and t,, grow large, thus making this method inappropri-
ate for dense loopy graphs. For trees, the width of the
elimination tree is one and the complexity of updating the
model reduces to O(|X| log N) as compared to O(|X|N)
for standard BP. Note that they address the discrete case
only. As we show later, the computational complexity is
impacted significantly by not taking into account the rela-
tive distances between consecutive nodes of interest. (Wick
& McCallum, 2011) consider the focused inference prob-
lem, where they propose a prioritized scheme of Metropolis
Hastings algorithm that focuses on sampling variables from
a set of interest. (Chechetka & Guestrin, 2010) examine the

"We will refer to wy as “measurement” node for abbreviation.

same problem. They create a prioritized message schedule
weighted towards messages to which the set of interest is
most sensitive. Their approach is limited to discrete graphs,
the set of interest is fixed and the preprocessing time de-
pends on the number of edges and neighbors of the nodes.
In contrast, our proposed method extends to loopy Gaus-
sian models, has a reduced pre-processing time, and allows
for varying sets of interest.

2. Problem Statement

Consider the Markov Random Field (MRF) which repre-
sents a graph G = (V, &) of N latent variables, X =
{X1,...,Xn}, whose direct dependencies are represented
by edge set £. Let’s denote the neighbors of latent node
X, with N'(k) and assume each latent node X, is linked
to my, measurements { Y 1.m, }. The set { Yy 1.m, } will
be called observation set and be denoted by Si. In addi-
tion, each X, € X. A feedback vertex set (FVS) F, is a
set of nodes whose removal results in a cycle—free graph
T = V \ F (forest of trees). Obviously, 7 = () in the
case of trees. We denote |F| = K to be the size of FVS.
We would also call all nodes in 7 that are neighbors to
an FV node as anchors and denote them by A. That is,
A={i|ieT,ieN(p),Yp € F}.

For the purpose of our analysis, we focus on discrete
MREFs, but the proposed method generalizes straightfor-
wardly to Gaussian MRFs (Weiss & Freeman, 2001).
Lastly, a common assumption is that measurements are
conditionally independent on X. We focus on pairwise
MREFs since it can be shown that MRFs with larger cliques
can be reduced to pairwise ones (Wainwright et al., 2005).
We consider three types of potentials; node potentials of
latent variables, gagco)(:ck), pairwise potentials between la-
tent and observed variables, xx¢(2k, ye), and pairwise po-
tentials between latent variables, ;;(z;, z;). In the gaus-
sian case, we assume that the variables follow a multivari-
ate Gaussian with parameters h, J, where h is the full po-
tential vector and J the full precision (information) ma-
trix. Absence of an edge between two nodes i, 5 implies
that J;; = 0 and vice versa. We are interested in prob-
lems where a measurement is added at a time and only one
or a few marginals are of interest at any point. The to-
tal number of available measurements is M = ijﬂ my.
Lastly, we are given a measurement plan (order) w =
{wi,...,wp} = {wi.p}, which provides the order of
taking measurements from each set. That is, a measure-
ment is obtained from set S,,,, then from S,,,, and so on.
We call marginal order, v = {v1.)s}, the sequence of the
latent nodes whose marginal is of interest at each step.

Belief Propagation. Belief propagation is a message pass-
ing algorithm where two messages are propagated on each
edge (i, 7), one on each direction. A message from node 7

Adaptive Belief Propagation

to node j essentially contains all the information from the
subtree rooted at ¢. In its serial version, an arbitrary node is
chosen as a root, then messages are passed from leaves to
the root, and then back to the leaves. In the discrete case,
messages and marginal of interest are computed as

mMi— 4 x] Z‘Pz Zg 1;[}1] xuxj H mk—n 551
kEN (i)\j
1
DX, (xz 08 @7 l‘z H mk—>L zz 2)
keN (i)\j
while in the gaussian case as
himsj = —Jjid i jhay Jisj = —JjdyjJij ()
hi = hi + Z Pg—i Ji = Jy +ZJk—m “4)
kEN (4) kEN (i)

where hv',\j = h; + Zke]\/(i)\j hi—i, J,;\j = Jiy +
D ke N\ Ji—i. Belief propagation is a dynamic pro-
gramming algorithm that takes advantage of the tree struc-
ture to avoid recomputing recurring quantities. The com-
plexity of sending a message in the discrete case is
O(|X|?), where |X| is the alphabet size. It is O(d?) for the
Gaussian case, where d is the dimension of the latent node.
The overall complexity in its serial version is O(N|X|?).

Updating node potentials. Observed nodes are essentially
absorbed into the node potential of the latent node they link
to. If a measurement Y, ., = ¥, is added at iteration ¢
linking to node X,,,, it updates node X,,, potential as

@ & 1)(xwz)Xweu($we s Yu)s

Spw e (37 We) Spw ¢

where <p(é () is the node potential before the incorpora-
tion of measurement y,,. Updating the node potential re-
quires O(]X|) time. In the Gaussian case, incorporating a
measurement in node wy is as straightforward. It becomes
clear that all the information about observed nodes is eas-
ily absorbed into the latent node potentials. Thus, we will
henceforth only consider the graph of latent nodes.

3. Method Description

For the purposes of analysis, we would delay the discussion
to general Gaussian MRFs until Sec. 5. We will consider
trees here and show later an extension to Gaussian loopy
graphs. As a reminder, we obtain one measurement at ev-
ery step and are interested in finding the marginal at a given
node. We show in the supplement how this can be extended
to multiple measurements or nodes of interest at a time.
The measurement order w = {wy,...,wys} is the order
that measurements are obtained, while the marginal order
v = {v1,...,vp} determines the marginals of interest at
any time. Again, the key idea is to propagate messages in
the paths (wy—_1,wy) and (we,ve), VL. The path between
any two nodes can be determined trivially if their lowest
common ancestor (Ica) is known. The problem of finding

the Ica of two nodes is well-studied and is related to the fa-
mous Range Minimum Query (RMQ) problem, which re-
turns the index of the minimum element between two spec-
ified indices of an array A. This algorithm, as discussed
in (Harel & Tarjan, 1984), requires the building of a struc-
ture M of size N x L, where L = [log, N + 1, which
returns the index of the minimum array element between
two specified indices of A in constant time. It is extremely
well-suited for problems with a large number of queries, R,
where R > N, since it is linear in R. It turns out that the
LCA can be reduced to the RMQ problem as shown below
(Czumaj et al., 2007), (Fischer & Heun, 2007).

Lowest Common Ancestor. For a specified root, each
node is labeled in a breadth-first manner. That is, the root
is assigned label 1, and all other nodes are labeled accord-
ingly in a top-down, left-right approach (cf. Fig. 1). As
we mentioned above, the index of the minimum element
in the subarray A[i...j] is provided in constant time by
building the RMQ structure. Now, suppose we recover the
Euler tour E of the tree starting from the root. As a re-
minder, the Euler tour of a strongly connected, directed
graph G is a cycle that traverses each edge of G exactly
once, although it may visit a node more than once (Cor-
men et al., 2009). Since we are dealing with undirected
graphs here, we assume for the purposes of analysis that
each undirected edge is equivalent to two directed edges
of opposing direction. The number of edges entering or
exiting a node is called the in-degree or out-degree, respec-
tively. Since by construction each node has equal out- and
in-degree, the Euler tour is always a cycle, that is, it starts
and ends on the same node (here, the root). If we denote by
H the vector which stores the index of the first occurrence
of each node in F, the Ica of nodes wy_1,w, would be
somewhere in E[H,,_,, ..., H,,] due to the way the Eu-
ler tour is constructed (depth-first manner). Since the nodes
are labeled in a breadth-first manner, the Ica of wy_1, wy
would be the one with the smallest label and hence the
smallest depth in the range E[H,,_,,...,H,,]. It be-
comes apparent that we need to introduce a vector D,
which would store the depth of the corresponding nodes
in the Euler tour. For example, the depth of the first node
in the Euler tour is [D,]; = 0, because it is the root. Since
the Ica of wy_1,w, is the node with the smallest depth
in E[H,,_,,...,H,,|, the index of the minimum ele-
ment of subarray D.[H ,,_,,. .., H,,] would give us the
lca(wg,l, wg).

It remains now to build a matrix M that would provide an-
swers to queries of the type arg min D [H ,,,_,, ..., Hy,]
in constant time. The size of this matrix would be N x L,
where L = [log, N'|+1, while element [M]; ; would rep-
resent the index of the minimum element of the subarray

Adaptive Belief Propagation

D, that starts at 5 and has length 271
(M), — [M]; ;1 [Delimy, ;-0 < [Deliy, -,
e [M]minfit+2i-2,n},j—1 »Otherwise,

wherei=1,...,N,j=1,...,L,r =min{i +2/72 N}
and [M; 1 = i. The absolute index of the minimum value
of D.[i, ..., j] is recovered in constant time as

[M]i,k-‘rl) [De][M]i,k+1 < [De][M]s,k+1
[M];_9k41 k41 ,otherwise,

where k = |log,(j —i +1)] and s = j — 2% + 1. The Ica
of wy_; and wy is simply

lca(wg,l, wg) = {

RMQp, (i,j) =

Ervop, (Hu, | Hu,) Huoy < Hu,

ERMQDe (Huy Huy o) otherwise.

&)
Adaptive BP. With a careful inspection, we observe that
after the incorporation of a measurement at node X,,,, the
evaluation of the messages along the unique path from node
wy to node vy is sufficient for the determination of node
ve’s marginal. This is the key point of the adaptive BP
algorithm. The above procedure guarantees to give the cor-
rect marginals along this path as long as all the incoming
messages to node wy are correct. This is possible, if we
additionally propagate messages from wy_; to wy at every
iteration. The algorithm is described as follows. During
initialization, all node potentials we propagate messages
along the entire graph in both directions. At this point,
as a new measurement arrives from set S, , the messages
from w; to vy are computed. This way, the marginals of
the nodes in the path that connects wy,v; (incl. wi, v1)
are correctly updated. Then, we propagate messages from
w1 to wa, update the node potential of X,,, and send mes-
sages from wy to vo. We continue with this procedure for
each ¢. If w, = wy_1, no messages are propagated from
wy—1 to wy, while if wy = wvy_1, only the node potential
Xuw, 1s updated. Obviously, the path from node w,_1 to wy
is directly related to the lca(wg—_1,wy). Similarly, for the
pair (wg, vy). Therefore, at every iteration, we need to de-
termine the Icas of these two pairs, which is accomplished
in constant time, with the reduction to the RMQ problem.
Once we find the lca of pair (wy—_1,wy), we can trivially
determine the directed path from wy_; to wy by traversing
from wy_1 up to lca(wy—1,w,) and then down to w,. We
will denote the messages in this path by M (w;—1 — wy).
Similarly, we denote the messages of the directed path from
wy to vy by M(wy — vy). Note here that both of the above
schedules contain only the single-direction messages from
one node to another. The update is done in the same man-
ner as in the serial version of BP, that is, we propagate mes-
sages from wy_1 to the Ica(wy_1, wy) and then down to wy.
The procedure is the same for the pair (wg,vg). A flow of
the algorithm and a detailed description are provided in Fig.
1 and Alg. 1, respectively.

> >
w
x (4

Ve)7? We—1

(a) Messages from w,—1 to wy

(b) Messages from wy to vy

Figure 1. The bold node in black represents the current measure-
ment node we, while the bold node in gray the previous measure-
ment node we—1. The node in question mark represents the node
of interest v¢. (a) In the first phase of an iteration, we propagate
messages from w¢—1 to w, (depicted in purple color). (b) In the
second phase, we propagate messages from w to v, (depicted in
black color) after we have updated the node potential at wg, which
has changed due to the addition of a new measurement.

Messages are updated as
mi—j(z;) = Z@i(ﬁ)%;‘(%;%) H my—i(Ti),
2 kEN (i)\j
V(Z,j) S M(wg_l — ’LUg) and M(U}g — ’Ug),
while the marginal of node of interest vy, is computed from
Eq. (2). If the latent graph is a chain, there is no need to

find the Ica: we simply propagate from w;_; to wy, update
the node potential of w, and propagate messages to vy.

Proposition 1. Alg. [correctly updates the messages in
path M(we—1 — wy), VL.

(Proof of this and subsequent corollaries in the supplement)

Corollary 1. Alg. I correctly updates the messages in path
M(’LU[— U@),V@

Corollary 2. Alg. 1 provides the exact marginals of all
nodes in path M(w; — vy), V2.

Algorithm 1 ADAPTIVE BP
Preprocessing
Determine Euler tour E, depths of elements in the Euler
tour D, vector H which stores the index of the first
occurrence of node ¢ in E, and matrix M which stores
the index of the minimum value of the subarray of D,
starting at ¢ and having length 29— 1,
Initialization
Initialize the node, pairwise potentials and messages.
Iteration
for{=1,...,M do
Find Ica(w;_1,wy) from Eq. (5).
Determine the schedule M (wy—1 — wy).
Compute messages m;_,;(x;) in M(we—1 — wy).
Update the node potential at X, .
Find lca(wy, ve) from Eq. (5).
Determine the schedule M (w; — vp).
Compute messages m;— ;(z;) in M(wg — vg).
Compute the marginal of interest px,, (v,).
end for

Adaptive Belief Propagation

Complexity. If the depth of each node (D) is not known in
advance, it can be retrieved in O(N) time, in a depth-first
approach. Similarly, the Euler tour is also retrievable in lin-
ear time. The same holds for vectors D, and H. Lastly,
the creation of matrix M, takes O(N log, N) time and
space. Therefore, the overall complexity of preprocessing
is O(N log, N). For adaptive BP, we only need to send
messages along the directed paths M(w;—1 — wy) and
M(wy — vg). The number of messages to be sent in step
¢ is dist(wy_1,wy) + dist(wg, ve).> The overall complex-
ity is O(3 0%, (dist(we_1, we) + dist(we, v/))|X|?). Com-
pare this with standard BP, where 2(N — 1) messages are
sent at each iteration resulting in an overall complexity of
O(mN?|X|?), assuming that the number of measurements
from each set is the same, m; = m,Vk. As we see, the
complexity of adaptive BP directly depends on the context
of the measurement and marginal order, while standard BP
has a fixed cost per iteration. We will analyze the worst,
best and average complexity of adaptive BP for balanced
and unbalanced trees. In the worst-case, when the tree is
highly unbalanced (tree diameter on the order of N) and
the relative distance between (wy_1,wy), (wg,vy) is com-
parable to the diameter for all £, we need to transmit O (V)
messages at every iteration. In this case, the order of the
number of messages to be sent is the same with standard
BP. If, instead, the latent graph is a balanced tree, with each
node having approximately ¢ children, O (|log, N|) mes-
sages are propagated at every iteration in the worst case. In
the best-case scenario, if wy_1, wy, vy are akin to each other
(e.g., parent-child or siblings) for every ¢, then only one
or two messages are propagated at every iteration, which
reduces the overall complexity to just O (mN|X|?). As
expected, when there is small distance between pairs of
nodes (wy_1,we), (wg,ve), the complexity is substantially
reduced. Complexity only depends on the relative distance
between consecutive terms. Structure comes only into con-
sideration, in the worst case, when the relative distance be-
tween (wy—_1,wp) and (wy, vy) are consistently comparable
to the tree diameter.

4. Extension to Max-Product

In the case of max-product, we replace sum with max and
introduce a new type of messages, called delta messages,
that will be used for the recovery of the MAP sequence. A
delta message indicates the value of the source node that
corresponds to the MAP sequence of the subtree rooted
at the source node (excl. the branch containing the target
node) for a specific value of the target node. In order to re-
cover the MAP sequence, we need to propagate delta mes-
sages from wy_; to wy and then backtrack from w, down
to the leaves (considering wy as the root).

The distance between nodes w, v is the length of the path
connecting them and equals dist(w, v) = Dy 4+ D — 2Dica(a,v)-

In general, obtaining the MAP sequence is a linear oper-
ation in the number of nodes. However, local changes in
node potentials might induce only small changes in the
MAP sequence. We should note that the only delta mes-
sages pointing towards the root w, that change, are the
ones the path M(wy_1 — wy), which are correctly up-
dated during iteration ¢. A visualization of the algorithm
is provided in the supplement. This observation can help
us recover the MAP sequence in a more efficient way. We
create an indicator sparse matrix, whose rows represent the
source and columns the target of a delta message. We
assign value 1 to any delta message that became “dirty”
(changed) in the most recent iteration. That is, every mes-
sage in M(wy_1 — wy). Therefore, when we backtrack
from w, down to the leaves, we must consider the effect
that these changed messages have in the MAP sequence.
Nevertheless, if a node’s maximizing value remains the
same (with the previous iteration), then the MAP subse-
quences of the subtrees rooted at the neighbors of this node
will also remain the same since the delta messages from
these neighbors to the node stayed intact. Because of that,
there is no need to backtrack further down to the subtrees
of a node’s neighbors, if this node’s maximizing value did
not change between consecutive iterations.

5. Extension to Gaussian Loopy MRFs

Adaptive BP can be extended to Gaussian loopy graphs by
using the Feedback Message Passing (FMP) algorithm by
(Liu et al., 2012). Their algorithm provides a way to evalu-
ate the exact means and variances in loopy Gaussian MRFs.
On the first step, an FVS F is determined from one of the
existing algorithms. Then, the exact means and variances
are obtained in two rounds. In the first round, BP runs on
{hr, Jr}, where hr, Jr correspond to the part of full po-
tential vector and block of full information matrix that con-
tain only nodes in 7. We also run BP |F| = K more
times with parameters {h?, Jr},cF, where h? = Jr,. In
other words, h? is the part of column of .J that corresponds
to node p and contains only the rows that correspond to
nodes in 7. This provides us with “partial” means and
variances 1] , %7, Vi € V as well as “feedback gains”
g¥,Vi € V,p € F that will be used in the second round
of the method. In the second round, the means and vari-
ances in FVS F are evaluated by inverting J £ and the exact
means and variances are retrieved by running BP one more
time and adding correction terms to the estimated variances
from the first round, flz; (see Alg. 2 for more details).

After briefly outlining FMP, we move on by describing
the extension of AdaBP to Gaussian loopy graphs. As a
reminder, once we determine the FVS F, the remaining
graph 7 is a tree. Let’s denote by w] the node from 7~

Adaptive Belief Propagation

Algorithm 2 FEEDBACK MESSAGE PASSING (FMP)

1. Construct K potential vectors: h? = Jr,Vp € F.

2. Run BP K + 1 times on 7 with parameters
{hT, J71}, {hP, J’T}pe}', which will produce mes-
sages h] , . hY . JT, ; and marginals /i il ar, EZ;

i—70 i g0

3. Obtain the K—sized graph with updated parameters

h]:, J]: as
[JFlpg = Jpq — Z Jpigis Yp,q € F (6)
ieN(p)NT
iy =hy — > Juil, WpeF (D

€N (p)NT
and solve for X r = j}1 and pr = Z;fz;.

4. Revise the potential vector in 7T as izi = h; —
> jen(nF Jijlrlj, Vi € T and obtain the exact
means by running BP one more time on the revised
potential vector (the corresponding messages will
be denoted by hT

l—)])

5. Correct the variances with

Si =35+ Y>> gSFlpegl, VieT. (8)

pEF qeF

where a measurement has been obtained most recently
Jfwe e T

w] | ,otherwise.

Let’s further denote the subtrees of T rooted at wz o €T
with the nodes in A as their leaves by 7,* and 7,", respec-
tively. Depending on the size of the anchor set .4, and the
allocation of its nodes inside 7, subtrees 7,*,7,” can be
much smaller than T, |7,*|, |T,%| < |T|.

We
w] =

As we see from steps 4 and 5 of Alg. 2, the evaluation
of the marginal at vy requires the knowledge of pr, X+
which in turn require the knowledge of “partial” means 1]
and “feedback gains” ¢¥ at the anchors A,Vp € F. The
quantities i ,g¥,Vi € A will be correct as long as the
messages between w, and A are correct, which is guaran-
teed by sending messages between consecutive measure-
ment nodes as we did in the tree case. The difference in the
loopy case is that since some measurement nodes might
belong to the FVS, we should always propagate messages
from the most recent measurement node in 7 (that is, wz—),
to the next measurement node wy € T to ensure consis-
tency. If wy ¢ 7T, propagation is not necessary. For the
evaluation of v,’s marginal, we further need to propagate
from w[to all nodes in A, which ensures the correctness
of all incoming messages to nodes in A. After that, the po-
tential vector hr and information matrix Jr are updated
correctly from Egs. (6), (7) which leads to the right mean
and covariance px, X of the FVS F. If v, € F, we re-

trieve the marginal from pz, X7 as [ur]v,, [2F]vpv,. Oth-
erwise, we revise the potential vectors according to Step 4
of Alg. 2 and propagate messages h’ ;> Vp from wé to vy.
Tables 1, 2, 3 summarize the messaging protocol for every
iteration ¢. A more detailed discussion is provided in the
supplement.

Table 1. Messages between we—_1, we

wy €T wp € F
Send J7,;,h];, hi; -

1n/\/l(l7i — wp)

Wye—1 € {]‘—, T}

Table 2. First-round messages between wy, ve

Ve € {f" T}

wy € {F, T} Send JT,;,hl ;, hY in M(w] — A)

Table 3. Second-round messages between wy, ve
v €T v € F

in M(A — vy) -

Send hlﬁj
in ./\/l(w,T — vp) -

Send A?

Z‘)j

Wy € {]'-,7-}

In terms of complexity, we first need to determine the FVS.
Even though, finding the minimum FVS is NP-complete,
there are approximate algorithms that find an FVS with
size comparable to the optimal. For example, (Bafna
et al., 1999) provide a 2-approximation, which runs in
O(min{|€|log N, N?}) time. At every iteration we need
to send (K + 2)dist(w/ ,,w,) messages between w]
and wy, if w, € T and (K + 2)(|7,*| — 1) messages
between wZ and nodes in A. If, in addition, v, € T,
the propagation of (|7,°| — 1) hLT_U messages between
the anchors A and v, is necessary, plus Kdist(w] ,vy)
hf _,; messages from w[to vp. Therefore, we send
O(K (dist(w]_y, we) +dist(w] , ve) + | 7;°]) + |T,*]) mes-
sages per iteration. Compare this to the O(K|T]|) mes-
sages per iteration of standard FMP. To understand the dif-
ference in complexity, let’s assume for the shake of expo-
sition that |7,%| > dist(w]_,,wy), dist(w] ,v,), |T;|. This
means that the complexity of adaptive BP is O(K|7,"|),
which results in a speedup on the order of O(|T1/|7,*|).
since it always holds that |7,”’| < |T|. Therefore, adaptive
BP is consistently faster than standard FMP.

6. Experiments

Henceforth, we refer to the proposed algorithm as AdaBP,
the method of (Siimer et al., 2011) as RCTreeBP, and stan-
dard BP as BP. We use a publicly available version of RC-
TreeBP. In addition, when we make use of the term “con-
secutive elements”, we mean consecutive measurement ele-
ments wy_1, w, and concurrent measurement and marginal

Adaptive Belief Propagation

4 4
10 [ItEBP)/t(AdaBP) 10 l:llEBP)/t(AdaBP)
o . [E(RCTreeBP)t(AdaBP) o . (E{RCTreeBP)i(AdaBP)
= = 3 —
510 [Xl=2 F10 X =2
o o
2 2
§ 10 § 10
3 810!
10 10
0 0
10 10
10" 102 10® 10
4 4
10" (=BP)(AdaBP) 10" (=BP)i(AdaBP)
Bt(RCTreeBP)/t(AdaBP Et(RCTreeBP)/A(AdaBP
-2103 |[x] =10 -2103 x| =10
© ©
Qo o
2 2
§ 10 § 10
1o 1o
%) %)
0 0
10 10
10" 102 10® 10 10" 102 10® 10*
N N

(b) Constrained w

(a) Unconstrained w
Figure 2. Comparison of the total running times of AdaBP
against standard BP (gray) and RCTreeBP (black) over dif-
ferent alphabet sizes, |X| € {2,10}. (a) Distance be-
tween consecutive elements E[dist(w¢—_1, we)] is unconstrained.
(b) E[dist(we—1,we)] < |X|log N. For average distance
E[dist(w¢—1,we)] smaller than |X|log N, AdaBP is 1.3-4.7
faster than RCTreeBP.

elements wy, vy. Recall that updates per iteration in RC-
TreeBP have complexity O(|X|?log N) (for trees), while
complexity is O(|X|?(dist(we_1,we) + dist(wye, vy))) for
AdaBP. Our experiments demonstrate that AdaBP is con-
sistently orders of magnitude faster than standard BP (ex-
cept in the worst case), and outperforms RCTreeBP when
the average distance between consecutive elements is less
than |X|log N (see Fig. 2(b)). Conversely, if the tree
diameter is much greater than |X|log N and the aver-
age distance between consecutive elements is compara-
ble to the tree diameter, AdaBP yields worse performance
than RCTreeBP. We consider the following synthetic ex-
periment where we construct unbalanced trees of sizes
N € {10,102,103,10*}. We repeat the above procedure
R = 10 times for each NV, by randomly constructing a new
tree. For each tree, we randomly generate different w or-
ders of size N and for simplicity of analysis we set v = w,
so that only the distance between consecutive measurement
nodes affects the computation. Figs. 2(a) and 2(b) compare
the ratios of running times of AdaBP against standard BP
and RCTreeBP (different rows correspond to different al-
phabet sizes). In all cases both AdaBP and RCTreeBP sig-
nificantly outperform standard BP. Fig. 2(a) considers the
case of randomly generated w. When there is no restriction
on the distance between consecutive elements, both AdaBP
and RCTreeBP are comparable. However, for average dis-
tance between consecutive elements less than |X|log N,
AdaBP is 1.3-4.7 times faster than RCTreeBP. Fig. 3(a)
and 3(b) consider worst and best case performance of Ad-
aBP, respectively. In the former, we generate several differ-
ent instances of a Markov chain of varying sizes and con-

T 7i(BP)/t(AdaBP)
B{(RC TreeBP)/{(AdaBP

Speedup ratio
Speedup ratio

4

10° 10

(a) E{dist(we—1,we)}~O(N) (b) E{dist(we—1,we)} =2

Figure 3. (a) Worst case. Distance between consecutive elements
is on the order of V. AdaBP is comparable to standard BP (still
being 2—4 times faster) and orders of magnitude slower than RC-
TreeBP. (b) Best case. Consecutive elements are very close to
each other. Only a constant number of updates is required per
step for AdaBP.

struct the measurement and marginal orders, w and v such
that there is at least 2N/3 distance between consecutive el-
ements. In the latter case, we consider different instances
of a star graph (tree diameter: 2) of varying sizes and ran-
domly create measurement and marginal orders (which by
construction do not have consecutive elements of more than
2 nodes apart). As expected, in Fig. 3(a), RCTreeBP out-
performs AdaBP for worst-case w (that is, when there is
large distance between consecutive elements), yet still out-
performs BP by a factor of 2-4. However, in Fig. 3(b)
we see that AdaBP is 4-49 times faster than RCTreeBP
and up to thousand times faster than BP. Next, we consider
application of AdaMP (MP denotes max-product) to bio-
logical data. Specifically, we explore the effects of point-
wise mutations in DNA sequences to the birth or disappear-
ance of CpG islands. CpG islands are regions of DNA with
high percentage of cytosine (C) occurring next to guanine
(G) nucleotides and are believed to be responsible for up-
stream gene regulation. Usually, CpG island detection is
modeled as an HMM problem where hidden nodes are bi-
nary variables which indicate the presence (or absence) of
a CpG region and observed variables correspond to the ob-
served DNA sequence comprised of the four nucleotides
{A,T,C,G}. The goal is to find the MAP sequence (CpG
regions) that best explains the observed data (DNA se-
quence). In computational mutagenesis, changes in the lo-
cation of CpQG islands are of interest due to mutations in the
DNA sequence (Acar et al., 2009). We compare AdaMP
and RCTreeMP on varying-size stretches (102-10° bp) of
human chromosome 21 obtained from the NCBI database.
We train the parameters of HMM with one of the standard
CpG prediction tools, CpG Island Searcher (Takai & Jones,
2002). We perform a mutation every other nucleotide for
each DNA-pair stretch and compare the running times of
both methods under different criteria in Fig. 4. In this
experiment, vy = wy,V¢. Fig. 4(a) shows the speedup
of AdaMP over RCTreeMP for varying sizes of DNA se-
quence. For medium to large sequences, AdaMP exhibits

Adaptive Belief Propagation

8 100 + RCTreeMP (/= 0.09]
10 525 AdaMP p =0.14)
2 Q
6 o e (e
10—7 o
4 108 £15
100 10 710
2 3
105 S5
— 10" x5 e, L |
102 10° N 10* 10° 10° 10" 10 10° 10* 10° 0 0 400 600 800
(@) (b) ©

Figure 4. (a) Speedups of AdaMP over RCTreeMP for varying-
size stretches of chr 21 (10%-10° bp). (a) Left y-axis shows the
speedup over RCTreeMP, while right y-axis the actual running
times in sec (represented as lines). (b) Ratios of update times of
AdaMP over RCTreeMP for different values of dist(we—1,we)
(x-axis: dist(we_1, we), y-axis: speedup). The four log-log plots
correspond to four different DNA stretches of 102,103, 10%, 10°
bp size, respectively. For smaller distances, AdaMP outperforms,
but for distances closer to the graph size N, RCTreeMP is prefer-
able. Red line indicates ratio of 1. (¢) Both methods are not very
sensitive to changes in the MAP sequence between consecutive
iterations (x-axis: # of bp that differ between consecutive MAP
sequences).

better performance, however, for very large sequences of
size ~ 10, the computational cost of determining the MAP
sequence is nearly linear with the graph size (even though
the cost of updating the delta messages remains remark-
ably low). In contrast, RCTreeMP depends only on the
number of variables which changed since the previous it-
eration. Fig. 4(b) examines the relationship in perfor-
mance to the distance between consecutive elements for
DNA stretches of varying size (102-10° bp). As expected,
AdaMP is very sensitive to the distance between consecu-
tive elements dist(wy—_1, wy). On the contrary, RCTreeMP
depends only on the graph size N. AdaMP is preferred for
measurement schedules with low average dist(wy_1, wy)
(points above the red line), while RCTreeMP average dis-
tance comparable to graph size (points below the red line).
Lastly, Fig. 4(c) shows that both methods are not very sen-
sitive to changes in the MAP sequence between consecu-
tive iterations.

As a second experiment, we analyzed temperature mea-
surements collected from 53 wireless sensors at 30 sec in-
tervals from the Intel Berkeley Research lab. We modeled
the latent temperatures in the various locations of the lab
as a grid graph. We assume that measurements obtained
from a sensor are a noisy representation of the temper-
atures around its close vicinity. We further assume that
temperatures evolve over time following linear dynamics
as Xy = AX;_1 + Vi1, where V;_; ~ N(0,Q) and X;
represents the temperatures of the lab at time ¢. We learn
parameters A and @ by training the data between Feb 28
and Mar 7, 2004 on a Normal-inverse-Wishart model. One
of the primary goals in this setting is to estimate the co-
variance of the latent variables after the incorporation of
measurements. Since the problem is modeled as a Gaus-
sian HMM, we can use the Kalman filter/smoothing up-

—t(KF)/t(AdaBP) w0 —ﬁgaBP

o 60

B .
240

S

3

2 20

(7] i

5

50 100 150 200
Iteration j

20 40 60 80 100 120 140 160 180
dist(we, we—1)

(a) (b)

Figure 5. (a) This figure shows the speedup over Kalman filter
(KF). AdaBP is 1-42 times faster than standard kalman filter-
ing/smoothing techniques. (b) Running time per iteration of Ad-
aBP and KF as a function of consecutive distance between ele-
ments. AdaBP is much more sensitive to dist(w¢—1,w¢) and as
the figure suggests it is much faster than KF when dist(we, we—1)
is small. Dotted plots represents deviation due to different runs of
the experiment.

dates. We use measurements in a 6-hour window on Feb
28, 2014 on a random order and compare the update times
of AdaBP versus standard Kalman filter/smoothing updates
(RCTreeBP is not included for comparison here, since it is
not applicable to Gaussian models). We see in Fig. 5(a),
that AdaBP is consistently (1-42 times) faster than Kalman
filtering/smoothing. Also, in Fig. 5(b), we observe the di-
rect dependence of AdaBP to distance between consecutive
elements (wy_1,wy), (we, v¢), which makes it more appro-
priate for problems with small average distance.

7. Discussion

We presented a new algorithm, AdaBP, which is particu-
larly suited to sequential inference problems, when there is
little or no knowledge of the measurement schedule in ad-
vance. In addition, when we can design the measurement
order, we show in the supplement how to propose a nearly
optimal schedule by casting it as a shortest Hamiltonian
path problem. We compared the method to standard BP and
RCTreeBP. In the case of trees, standard BP incurs a pro-
hibitive cost (O(NN) messages per iteration), while AdaBP
sends only the necessary messages between consecutive el-
ements. We provided an extensive analysis of the algo-
rithmic complexity with respect to the measurement w and
marginal schedule v. We showed that when consecutive
measurement and marginal elements w,_1, wy, v, are akin
to each other, the complexity per iteration is of order O(1)
and hence the overall complexity is O(N) (provided the
sizes of w, v are close to V). In addition, advanced knowl-
edge of the measurement nodes allows for a nearly mini-
mal schedule design. Lastly, we showed extensions of the
algorithm to Gaussian loopy graphs and to the most likely
sequence problem (which applies on the full latent graph).
An implementation of this algorithm is publicly available
athttps://github.com/geopapall/adabp

https://github.com/geopapa11/adabp

Adaptive Belief Propagation

Acknowledgments

The authors would like to thank the reviewers for their valu-
able comments and suggestions. This work was partially
supported by the Army Research Office (ARO) Multidisci-
plinary Research Initiative (MURI) program (Award num-
ber WO11NF-11-1-0391), NSF/DNDO Collaborative Re-
search ARI-LA (Award ECCS-1348328), and by the De-
partment of Energy (NA-22) Consortium for Verification
Technology.

References

Acar, U. A., Thler, A. T., Mettu, R. R., and Siimer, O. Adap-
tive Updates for MAP Configurations with Applications
to Bioinformatics. In IEEE/SP 15th Workshop on Statis-
tical Signal Processing (SSP), August 2009.

Bafna, V., Berman, P., and Fujito, T. A 2-Approximation
Algorithm for the Undirected Feedback Vertex Set Prob-
lem. SIAM Journal on Discrete Mathematics, 12(3):
289-297, Sep 1999. ISSN 0895-4801.

Chechetka, A. and Guestrin, C. Focused Belief Propagation
for Query-Specific Inference. In Proceedings of the 13th
International Conference on Artificial Intelligence and
Statistics (AISTATS), May 2010.

Cormen, T. H., Stein, C., Rivest, R. L., and Leiserson, C. E.
Introduction to Algorithms. McGraw-Hill Higher Educa-
tion, 3rd edition, 2009.

Czumaj, A., Kowaluk, M., and Lingas, A. Faster algo-
rithms for finding lowest common ancestors in directed
acyclic graphs. Theoretical Computer Science, 380(1-2):
37-46, July 2007.

Darwiche, A. and Hopkins, M. Using recursive decomposi-
tion to construct elimination orders, jointrees, and dtrees.
In Trends in Artificial Intelligence, Lecture Notes in Al,
pp. 180—191. Springer-Verlag, 2001.

Fischer, J. and Heun, V. A New Succinct Representation of
RMQ-Information and Improvements in the Enhanced
Suffix Array. In Proceedings of the Ist International
Conference on Combinatorics, Algorithms, Probabilis-
tic and Experimental Methodologies, ESCAPE’07, pp.
459-470. Springer-Verlag, 2007.

Harel, D. and Tarjan, R. E. Fast Algorithms for Finding
Nearest Common Ancestors. SIAM Journal on Comput-
ing, 13(2):338-355, May 1984.

Liu, Y., Chandrasekaran, V., Anandkumar, A., and Willsky,
A. S. Feedback Message Passing for Inference in Gaus-
sian Graphical Models. [EEE Transactions on Signal
Processing, 60(8):4135-4150, Aug 2012.

Pearl, J. Reverend Bayes on inference engines: A dis-
tributed hierarchical approach. In Proceedings of the
American Association of Artificial Intelligence National
Conference (AAAI), pp. 133—-136, 1982.

Rosales, R. and Jaakkola, T. S. Focused Inference. In Pro-
ceedings of the 10th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS), pp. 317-324,
January 2005.

Siimer, 0., Acar, U. A, Thler, A. T., and Mettu, R. R. Adap-
tive exact inference in graphical models. Journal of Ma-
chine Learning Research, 12:3147-3186, Nov 2011.

Takai, D. and Jones, P. A. Comprehensive analysis of CpG
islands in human chromosomes 21 and 22. Proceed-
ings of the National Academy of Sciences (PNAS), 99
(6):3740-3745, March 2002.

Wainwright, M. J., Jaakkola, T. S., and Willsky, A. S. MAP
estimation via agreement on trees: Message-passing and
linear programming. IEEE Transactions on Information
Theory, 51:2005, 2005.

Weiss, Y. and Freeman, W. T. Correctness of belief prop-
agation in gaussian graphical models of arbitrary topol-
ogy. Neural Computation, 13:2173-2200, 2001.

Wick, M. L. and McCallum, A. Query-Aware MCMC. In
Advances in Neural Information Processing Systems 24,

pp. 2564-2572, 2011.

