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Proofs
Proposition 1. Messages in pathM(w`−1 → w`) are cor-
rect.

Proof. Base case: The messages in the path w1 → w2 are
correct. This is trivially true since all the incoming mes-
sages to w1 and to the nodes in the path M(w1 → w2)
have been correctly evaluated during initialization. There-
fore, after we absorb the measurement in the potential of
Xw1

, propagating from w1 → w2 will give us the correct
messages.
Induction step: We will assume now that the messages
in M(wj−1 → wj), j ∈ {2, . . . , ` − 1} are correct and
we will show that the messages in M(w`−1 → w`) will
be correct as well. W.l.o.g. assume the tree is rooted at
w`−1 as shown in Fig. 1 and i is one of w`−1’s neigh-
bors. We need to show that all the incoming messages to
w`−1 as well as the incoming messages to the other nodes
in M(w`−1 → w`) are correct. Let’s first show that the
incoming messages to w`−1 are correct. There are three
cases for the subtree Ti rooted at i (if we ignore the branch
containing the edge (i, w`−1)): (a) there are no previous
measurements {w1, . . . , w`−2} from it, (b) the last mea-
surement from it was taken at time ti < ` − 2, or (c) at
time ti = ` − 2. In the first case (a), since there are no
previous measurements, the incoming message mi→w`−1

stayed intact since initialization and thus is correct. In
the second case (b), since ti < ` − 2, this means that at
point ti + 1, we moved to a subtree of another neighbor
of w`−1 through w`−1. Due to our assumption, that all
messages from previous paths M(wj−1 → wj), j < `,
are correct, this also implies that the messages in the path
M(wti → wti+1) are correct and this includes message
mi→w`−1

as well. Lastly, if ti = ` − 2, this means that
the previous measurement, at time ` − 2, was taken from
the subtree rooted at i (c). By assumption, all messages
in M(w`−2 → w`−1) are correct. So, in all cases, the
incoming message from i to w`−1 is correct. We follow
similar logic for all neighbors of w`−1. Lastly, we should
demonstrate that the incoming messages to the other nodes
in the pathM(w`−1 → w`) are correct. The logic is sim-
ilar as before. Let’s refer to the subtrees that are attached
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Figure 1. Correctness of message updates. Purple thick arrows
represent the messages that will be propagated in the current it-
eration from w`−1 → w`, while solid black arrows the incoming
messages to M(w`−1 → w`) which have been evaluated cor-
rectly from previous iterations.

to the pathM(w`−1 → w`) as tree branches. Take a node
(call it j) attached to M(w`−1 → w`) and consider the
subtree Tj rooted at it. Let’s denote by k the node in the
path M(w`−1 → w`) that j links to, as show in Fig. 1.
As before, we have three cases: (d) there are no previous
measurements taken from Tj , (e) the last measurement was
taken at time tj < ` − 2, or (f) at time tj = ` − 2. If
there are no previous measurements (d), this means that
the message mj→k stayed intact since initialization. If
tj < ` − 2 (e), then at point tj+1 we “exited” subtree
Tj through node k and moved either to another branch of
that path or to another subtree of w`−1. In either case,
due to our assumption, the messages inM(wtj → wtj+1)
are correctly updated including message mj→k. Lastly,
if tj = ` − 2 (f), then due to our assumption, the mes-
sages M(w`−2 → w`−1) are correct, including the mes-
sage mj→k. We reason similarly for all nodes which are
part of M(w`−1 → w`). Therefore, since all incoming
messages to w`−1 and nodes inM(w`−1 → w`) are cor-
rect, the messages inM(w`−1 → w`) would also be cor-
rect.

Proposition 2. The incoming messages of each node in
M(w`−1 → w`) are correct.

Proof. We denote by k a node inM(w`−1 → w`) and by
j one of its neighbors, j ∈ N (k), as shown in Fig. 2. De-
note further by Tj the tree that is rooted at j if we exclude
the tree branch that contains the edge (j, k). We define as
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Figure 2. Correctness of incoming messages of nodes in
M(w`−1 → w`). The incoming messages of every node in
M(w`−1 → w`) are correct. Here, k is a node inM(w`−1 →
w`) and j ∈ N (k), while Tj is the tree rooted at j, if exclude the
tree branch that contains edge (j, k).

t(k, j) the most recent time that a measurement has been
obtained from tree Tj . By default, if no measurement has
been obtained from Tj , we set t(k, j) = ∞. Also, if Tj
includes node w`−1, then obviously t(k, j) = `− 1. From
the definition of t(k, j), which indicates the time that the
last measurement has been obtained from Tj , we have that
at time t(k, j)+1 we exited the tree Tj through edge (j, k).
Due to Prop. 1, all messages inM(wt(k,j) → wt(k,j)+1),
including message mj→k are correct. We follow the same
logic for all neighbors of k.

Proposition 3. The incoming messages of each node in
M(w` → v`) are correct.

Proof. We will first start by showing that the incoming
messages of the neighbor of w` in path M(w` → v`).
Then, we can show with a similar logic that all the in-
coming messages of the remaining nodes inM(w` → v`)
are correct as well. From Prop. 2, we showed that the
incoming messages of all nodes in M(w`−1 → w`)
are correct. This includes node w`. Let’s denote by k
the neighbor of w` in M(w` → v`). Since, the incom-
ing messages of w` are correct and after the update of
w`’s potential, it follows from relation mw`→k(xk) =∑
xw`

ϕw`
(xw`

)ψw`,k(xw`
, xk)

∏
s∈N (w`)\kms→w`

(xw`
),

that message mw`→k is correct as well. Now, let’s denote
by j a neighbor of k (other than w`), and by Tj the tree
rooted at j that does not include the tree branch that
contains edge (j, k), as shown in Fig. 3. Again, t(k, j)
denotes the most recent time a measurement has been
obtained from tree Tj . If w`−1 is contained in tree Tj ,
then t(k, j) = ` − 1 (Fig. 3(a)), if no measurement has
been obtained from Tj , then t(k, j) = ∞ (Fig. 3(c)),
and t(k, j) = t < ` − 1, otherwise (Fig. 3(b)). If
t(k, j) = `− 1, then during propagationM(w`−1 → w`),
message mj→k has been correctly updated (as part of the
schedule M(w`−1 → w`)). If t(k, j) = t < ` − 1, this
means that at time t(k, j) + 1, we exited tree Tj through
edge (j, k). Hence, message mj→k has been correctly
updated during scheduleM(wt(k,j) → wt(k,j)+1). Lastly,
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Figure 3. Correctness of incoming messages of nodes in
M(w` → v`). The incoming messages of every node in
M(w` → v`) are correct. Tree Tj represents the tree rooted at
node j, if we exclude the brach that contains edge (j, k). (a) Node
w`−1 is included in Tj . (b) The most recent measurement from
Tj has been taken at time t(k, j) < ` − 1. (c) No measurements
have been received from tree Tj .

if t(k, j) = ∞, this means that no measurement has been
obtained from tree Tj , and hence message mj→k stayed
intact since initialization. This obviously holds for every
neighbor j of k. We have established that all incoming
messages to k, with k being the direct neighbor of w` in
M(w` → v`) are correct. Therefore, the message from
k to its other neighbor in M(w` → v`) would also be
correct, since all the incoming messages to k are correct.
We argue that all the incoming messages to k’s neighbor
in M(w` → v`) are correct in exactly the same fashion
we argued for k. By following this logic, we show that
the incoming messages of all nodes in M(w` → v`) are
correct.

Corollary 1. The marginals of all nodes inM(w` → v`)
are correct.

Proof. Since the marginal at a node i is given by

pXi
(xi) ∝ ϕi(xi)

∏
k∈N (i)

mk→i(xi),

and by Prop. 3 all incoming messages to a node in
M(w` → v`) are correct, then the marginal at node i ∈
M(w` → v`) will also be correct.

Extension to Multiple
Measurements/Marginals
So far we have assumed that w`, v` are scalars. That is,
we have assumed we obtain one measurement and are in-
terested in just one marginal at a time. We can easily relax
this assumption, by extending to multiple measurements or
marginals at a time (cf. Fig. 4). Let’s start with the case of
multiple measurements and one marginal (Fig. 5(a)). That
is, w` is a vector and v` a scalar. A naı̈ve approach would
be to propagate messages inM(u→ v`), for each u ∈ w`,
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Figure 4. Extension to multiple measurements/marginals. (a)
Original graph. (b) Multiple w`, one v`. Measurements at
node 3, 8, 10 are obtained, while node 1’s marginal is sought. (c)
One w`, multiple v`. Measurement at node 1 is obtained, while
marginals at nodes 3, 8, 10 are of interest.
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Figure 5. (a) Multiple w`, one v`. We need only propagate mes-
sages on the gray band from measurement nodes (in bold face)
to the node of interest v`. Here, w` = {3, 8, 10}, v` = 1. (b)
For each u ∈ M(u → v`), we push the messages that need to
be evaluated on stack S1. This also contains duplicate messages
due to the overlap of paths (e.g., messages (2, 1), (4, 2)). In this
example, messages were pushed into the stack in the following or-
der; first messages inM(3 → 1), then inM(8 → 1) and lastly
messages inM(10 → 1). (c) Pop each element from stack S1
and push it to stack S2, while keeping a hash table to avoid du-
plicates. For instance, at the beginning message (2, 1) is pushed
to stack S2, then (4, 2), (9, 4), (10, 9). When element (2, 1) is
encountered again, it will be skipped since it already exists in the
hash table. (d) After we pop all elements from stack S1 and push
them to stack S2 (avoiding duplicates), we form the messaging
schedule by popping messages from the top of stack S2.

but this would result in the re-evaluation of many messages
that are found in overlapping paths M(u → v`), for all
u ∈ w`. Ideally, we would like to send messages on the
gray band (Fig. 5(a)) just once in the right order. In that
case, for each u ∈ w`, we retrieve the messages in the path
M(u → v`) that need to be evaluated and push them into
a stack (S1) (see Fig. 5(b)). In order to place the messages
in the right order of evaluation, we pop the messages and
push them into a second stack, S2. To avoid duplicates,
we keep a hash table with messages as a key. We evaluate
messages by popping elements from stack S2 one-by-one.
See Fig. 5(c).

In the case of one measurement and multiple marginals
(Fig. 6(a)),w` is a scalar while v` a vector. For each u ∈ v`,
we retrieve the messages in the pathM(w` → u) that need
to be evaluated and push them into a queue (Q) (see Fig.
6(b)). We poll messages from Q (retrieve and remove the
head of the queue), while we avoid duplicates. To avoid
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Figure 6. (a) One w`, multiple v`. We need only propagate mes-
sages on the gray band from measurement node (in bold face) to
the nodes of interest v`. Here, w` = 1, v` = {3, 8, 10}. (b)
For each u ∈ M(w` → u), we push the messages that need to
be evaluated on queue Q. This also contains duplicate messages
due to the overlap of paths (e.g., messages (1, 2), (2, 4)). In this
example, messages were pushed into the queue in the following
order; first messages in M(1 → 3), then in M(1 → 8) and
lastly messages inM(1 → 10). (c) We generate the messaging
schedule by polling each element from the (head of) queue, while
keeping a hash table to avoid duplicates. For instance, at the be-
ginning message (1, 3) is polled from the queue and then message
(1, 2). The second time that message (1, 2) will be encountered,
it will be skipped since it already exists in the hash table.

duplicates, we keep a hash table with messages as a key
(Fig. 6(c)). If a message already exists in the hash table, it
will not be considered in the messaging schedule.

Lastly, we treat the multiple measurements/multiple
marginals case by applying the procedure of the mul-
tiple measurements/one marginal case to each different
marginal.

Extension to Max-Product
In case of max-product, we just need to replace sum with
max and introduce a new type of messages, called delta
messages, that will be used for the recovery of the MAP
sequence. A delta message δi→j(xj) indicates the value
of the source node that corresponds to the MAP sequence
of the subtree rooted at the source node (excl. the branch
containing the target node) for a specific value of the target
node. That is, if we denote by Ti the subtree rooted at i ex-
cluding the branch that contains j, then [x∗Ti ]i = δi→j(xj).
That is, it provides the maximizing value at node i of the
MAP subsequence x∗Ti if node j had value xj . In order
to recover the MAP sequence, we need to propagate delta
messages from w`−1 to w` and then backtrack from w`
down to the leaves (considering w` as the root).

In general, obtaining the MAP sequence is a linear op-
eration in the number of nodes. However, local changes
in node potentials (via the introduction of measurements)
might induce only small changes in the MAP sequence.
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Figure 7. (a) Message updates (max-product version). Purple
thick arrows represent the messages that will be propagated in
the current iteration, while solid black messages that have been
evaluated correctly from previous iterations. (b) Savings in MAP
sequence computations. During the `-th step, the node potential
at w` (bold-faced node) as well as delta messages δi→j(xj) in
M(w`−1 → w`) (purple arrows) change. Let’s assume the max-
imizing value at w` remained the same compared to the previous
iteration, while the maximizing values of the remaining nodes in
pathM(w`−1 → w`) changed. We visualize this change with a
red ×. Since the maximizing value at w` stayed intact, the maxi-
mizing values of all its subtrees (not including the one containing
pathM(w`−1 → w`)) will remain the same (here, trees T1, T2).
Therefore, there is no need to backtrack down to a node whose
maximizing value did not change since the last iteration. On the
other hand, since the maximizing values of the remaining nodes
inM(w`−1 → w`) changed, their subtrees’ maximizing values
(T3, T4, T5) would also potentially change and hence backtrack-
ing on these trees is necessary. Usually, a change in a node’s
maximizing value results only in local changes in the MAP se-
quence. Therefore, this scheme might practically lead to a lot of
computational savings.

We should also note that the only delta messages point-
ing towards the root w` that have changed, are the ones in
path M(w`−1 → w`), which were correctly updated (at
iteration `). See Fig. 7(a) for details. This observation
can help us recover the MAP sequence in a more efficient
way. In more detail, we can create an indicator sparse ma-
trix, where rows would represent the source and columns
the target of a delta message. We can assign the value
1 to any delta message that became “dirty” (changed) in
the most recent iteration. That is, every message in path
M(w`−1 → w`) (purple arrows in Fig. 7(a)). Therefore,
when we backtrack from w` down to the leaves, we must
consider the effect that these changed messages can have in
the MAP sequence. Nevertheless, if the value of a node re-
mains the same (with the previous iteration), then the sub-
sequences of the subtrees rooted at the neighbors of this
node will remain the same. Therefore, there is no need to
backtrack further down to a subtree once a node’s maxi-
mizing value remained the same and the subtree is linked
to that node via a “clean” message. A visual explanation is
provided in Fig. 7(b).

Extension to Gaussian Loopy MRFs
In the case of Gaussian loopy graphs, we should observe
that in order to obtain a marginal at a node, we need to send
two types of messages; first–round messages JTi→j , h

T
i→j

corresponding to the acyclic part of the graph T after the
removal of FVS F , “feedback” messages hpi→j for ev-
ery feedback vertex p and second–round messages h̃Ti→j ,
which are revised potential messages after the update of
the potential vector h at the anchors (neighbors of feed-
back vertices). This change in potential vector requires the
knowledge of the updated means µF and covariance ΣF of
the FVS, which requires in turn the knowledge of all “par-
tial” means µ̂Ti and “feedback gains” gpi at the anchors.

This observation leads to a natural extension of adaptive
BP to Gaussian loopy graphs. First, let’s denote the node
from set T , where a measurement has been obtained most
recently as wT` . It obviously holds

wT` =

{
w` w` ∈ T
wT`−1 otherwise.

If w`−1, w` ∈ T , we send messages JTi→j , h
T
i→j , h

p
i→j

from w`−1 → w` exactly as we did in the acyclic case (see
Fig. 8(a)). However, when w`−1 ∈ F , we need to send
messages from node wT`−1, which is the node where a mea-
surement has been obtained most recently, to propagate the
effects of the past changes in the current node w` (see Fig.
8(b)). In summary, when w` ∈ T , we send messages from
wT`−1 to w`, while no action is necessary when w` ∈ F .
By this procedure, we ensure that all incoming messages
JTi→j , h

T
i→j , h

p
i→j to w` are correct.

Now let’s assume we want to update v` ∈ F . This would
require the knowledge of partial means µ̂Ti and “feedback
gains” gpi ,∀p ∈ F at the anchors, i ∈ A. As a reminder,
anchors are the neighbors of FVS nodes which belong in
T , A = {i | i ∈ T , i ∈ N (p),∀p ∈ F}. The correct
update of µ̂Ti , g

p
i ,∀i ∈ A leads to the correct evaluation of

ĥF , ĴF which in turn provides the correct mean and vari-
ance for v` since by our assumption belongs to the FVS.
Partial means and “feedback gains” at the anchors would
be correct if the change in the potential of the most re-
cent measurement node wT` is propagated at the anchors
after the update of node’s w` potential. We achieve this
by sending messages JTi→j , h

T
i→j , h

p
i→j from wT` to all an-

chors A,∀i. This guarantees that all incoming messages at
the anchors are correct.

If v` ∈ T , we need to propagate a second–round of mes-
sages to account for the feedback provided by the up-
dated parameters µF ,ΣF of the FVS nodes. In other
words, we revise the potential vectors as h̃i = hi +∑
j∈N (i)∩F Jij [µF ]j . From an inspection of the above re-

lationship, we can easily see that the only potential vectors



Adaptive Belief Propagation – Supplementary Material

1 2 3 4 16

5 6 7 8 9

10 11 12

18

13

17 14 15

?
v`

wT
`�1

w`�1

w`

(a) w`−1, w` ∈ T .

1 2 3 4 16

5 6 7 8 9

10 11 12

18

13

17 14 15

?
v`

w`�1

w`

wT
`�1

(b) w`−1 ∈ F , w` ∈ T .

Figure 8. First phase of AdaBP: Messages from w`−1 to w`.
Nodes filled with color represent the nodes in FVS F . Removal
of FV nodes breaks the graph in an acyclic graph T . Bold node
in black represents the current measurement node, while in gray
the previous measurement node w`−1. Small black dot represents
the most recent measurement node from T (before step `), while
double stroke node next to a question mark, the node of inter-
est v`. (a) w`−1, w` ∈ T . In this case, because w`−1 ∈ T ,
we have wT`−1 = w`−1. We send messages JTi→j , h

T
i→j (black

color) and messages hp
i→j , ∀p ∈ F (multi color) from w`−1 to

w`. (b) w`−1 ∈ F , w` ∈ T . In this case, w`−1 ∈ F . Therefore,
wT`−1 6= w`−1. We send messages JTi→j , h

T
i→j (black color) and

messages hp
i→j , ∀p ∈ F (multi color) from wT`−1 to w`. This

phase corresponds to l. 8–10 of Alg. 1.

which would change are the ones at the anchors, since the
sum involves the intersection of the FVS nodes F and the
neighbors of a node in i ∈ T . This means we need to prop-
agate messages h̃Ti→j from the anchors A to node v`. We
obtain the right mean at v` from (h̃T , JT T , h̃Ti→j , J

T
i→j).

Lastly, we correct the variance from σ2
v`

= (ĴTv`,v`)
−1 +∑

p,q∈F g
p
i [ΣF ]pqg

q
i , where ĴTv`,v` is obtained from the

previous run of BP. As we observe, the “feedback gains”
at node v` are essential for the correct evaluation of vari-
ance at v`. As a last step, we need to propagate messages
hpi→j ,∀p ∈ F from wT` to v` to transfer the effect of wT to
node v`. This concludes the algorithm. A full description
of the algorithm is provided in Alg. 1, while a depiction of
the algorithmic flow is shown in Figs. 8, 9, 10.

Corollary 2. Ifw` ∈ T , messages hTi→j , J
T
i→j , h

p
i→j ,∀p ∈

F in pathM(wT`−1 → w`) are correct.

Proof. The proof follows the same logic with that of Prop.
1. The only difference here is that w`−1 is substituted by
wT`−1, which is defined as:

wT`−1 =

{
w`−1 , if w`−1 ∈ T
wT`−2 , otherwise.

In other words, wT`−1 represents the most recent measure-
ment that has been obtained from T . The reason for prop-
agating from wT`−1 to w` is that we need to propagate the
effect of the most recent measurement in T to w`. Obvi-
ously, when w` ∈ F , scheduleM(wT`−1 → w`) = ∅.

Algorithm 1 ADAPTIVE BP FOR GAUSSIAN LOOPY
XXXXXXXXX GRAPHS

1: Preprocessing
2: Find FVS F using one of known algorithms (e.g.,

(Bafna et al., 1999)).
3: Build the RMQ structure on tree T = V \ F as de-

scribed in Sec. 3 of main paper.

4: Initialization
5: Before incorporating any measurements, run BP on tree
T using parameters (hT , JT T ), (JT p, JT T ),∀p ∈ F .
This will generate first–round JTi→j , h

T
i→j , h

p
i→j ,∀p ∈

F , and second–round messages h̃Ti→j ≡ hTi→j . Also,
initialize wT0 = 0.

6: Iteration
7: for ` = 1, . . . ,M do
8: if ` > 1 ∧ wT`−1 6= 0 ∧ w` ∈ T then
9: Send JTi→j , h

T
i→j , h

p
i→j ,∀p∈F inM(wT`−1→ w`).

10: end if
11: Update the node potential at Xw`

: this changes
hw`

, Jw`,w`
.

12: Send messages JTi→j , h
T
i→j , h

p
i→j ,∀p ∈ F in

M(wT` → A).
13: Evaluate partial means µ̂Ti from

(hT , JT T , hTi→j , J
T
i→j) and “feedback gains” gpi

from (JT p, JT T , h
p
i→j , J

T
i→j), for all i ∈ A, p ∈ F .

14: Obtain theK–sized FVS graph with updated param-
eters ĥF , ĴF as

[ĴF ]pq = Jpq −
∑

i∈N (p)∩T
Jpig

q
i , ∀p, q ∈ F (1)

[ĥF ]p = hp −
∑

i∈N (p)∩T
Jpiµ̂

T
i , ∀p ∈ F (2)

and solve for ΣF = Ĵ−1F and µF = ΣF ĥF .
15: if v` ∈ F then
16: µv` = [µF ]v` , σ2

v`
= [ΣF ]v`,v` .

17: else
18: Revise potential vectors as

h̃i = hi +
∑
j∈N (i)∩F Jij [µF ]j .

19: Send messages h̃Ti→j inM(A → v`).
20: Send messages JTi→j , h

p
i→j ,∀p ∈ F in

M(wT` → v`).
21: Evaluate µv` = (ĴTv`,v`)

−1ĥTv` , where

ĥTv` = h̃v` +
∑

k∈N (v`)

h̃Tk→v` (3)

ĴTv`,v` = Jv`,v` +
∑

k∈N (v`)

JTk→v` . (4)

and σ2
v`

= (ĴTv`,v`)
−1 +

∑
p,q∈F

gpv` [ΣF ]pqg
q
v`
.

(5)

22: Reset messages h̃Ti→j inM(A → v`).
23: end if
24: end for
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Figure 9. First phase of AdaBP: Messages from wT` to A.
Nodes filled with color represent the nodes in FVS F . Bold node
in black represents the current measurement node, while nodes
in red represent the anchors A. Small black dot represents the
most recent measurement node from T (incl. step `), while dou-
ble stroke node next to a question mark, the node of interest v`. In
this example, because w` ∈ T , we have that wT` = w`. After we
update the potential at Xw` , we propagate messages JTi→j , h

T
i→j

(black color) and messages hp
i→j , ∀p ∈ F (multi color) from wT`

to the set of nodes A (l. 12 of Alg. 1). After the end of this step,
we are guaranteed that the partial means µ̂Ti and “feedback gains”
gpi , for all i ∈ A, p ∈ F are correct.

1 2 3 4 16

5 6 7 8 9

10 11 12
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13

17 14 15

w`

v`
wT

`

?

Figure 10. Second phase of AdaBP: Messages from A to v`.
This phase would only take place if v` ∈ T . Nodes filled with
color represent the nodes in FVS F . Bold node in black repre-
sents the current measurement node, while nodes in red represent
the anchors A. Small black dot represents the most recent mea-
surement node from T (incl. step `), while double stroke node
next to a question mark, the node of interest v`. In this example,
because w` ∈ T , we have that wT` = w`. After we compute the
mean µF and covariance ΣF at the FVS, the marginal means and
variances at the FVS F are correct. If v` ∈ F , we simply retrieve
its mean and variance by µv` = [µF ]v` , σ

2
v` = [ΣF ]v`,v` . Oth-

erwise, after revising the potential vectors h̃i at the anchors A,
we send messages h̃Ti→j from anchors A to v` (blue color) and
messages JTi→j , h

p
i→j ,∀p ∈ F from wT` to v` (multi color). This

phase corresponds to l. 15–20 of Alg. 1.

p1 p2

(a) Original graph. (b) T v
` (c) T w

`

Figure 11. (a) Original loopy graph. The graph G = (V, E)
is divided in FVS nodes F (nodes p1, p2) and the acyclic part
T = V \ F . The black bold-faced node indicates the node from
T where a measurement has been taken most recently, wT` , the
double-stroke node represents the node of interest, v`, and the red
bold-faced nodes represent the anchor nodes A, that is, nodes in
T that are neighbors to FVS nodes. (b) T v

` tree. Tree T v
` is the

subtree of T that has node v` as a root and passes through all
anchor nodes A. (c) T w

` tree. Tree T v
` is the subtree of T that

that has node wT` as a root and passes through all anchor nodes
A.

Corollary 3. If w` ∈ T , the incoming messages
hTi→j , J

T
i→j , h

p
i→j ,∀p ∈ F of each node in M(wT`−1 →

w`) are correct.

Proof. The proof follows the same logic with that of Prop.
2. For every node k in the path M(wT`−1 → w`), we
consider one of its neighbors in tree T . Let’s denote it
by j. We are interested in showing that the messages
hTj→k, J

T
j→k, h

p
j→k,∀p ∈ F are correct. Again, we denote

by Tj the tree rooted at j, if we exclude the branch that con-
tains edge (j, k) and by t(j, k) the most recent time that a
measurement has been obtained from tree Tj . Then, at time
t(j, k) + 1, we exited tree Tj through the edge (j, k), and
by Cor. 2 messages in M(wTt(j,k) → wt(j,k)+1) are cor-
rect, which includes messages hTj→k, J

T
j→k, h

p
j→k,∀p ∈ F .

This holds for every neighbor of k in T .

Let’s denote the (minimal) subtree of T rooted at wT` that
passes through all the anchor nodes A by T w` and by T v`
the (minimal) subtree that is rooted at v` ∈ T and passes
through all the anchor nodes A. See Fig. 11 for a visu-
alization of trees T w` , T v` . Messages from wT` to A in the
tree T w` represent the messages inM(wT` → A). Equiva-
lently, messages from all u ∈ A to v` ∈ T in the tree T v`
represent the messages inM(A → v`).

Proposition 4. The incoming messages
hTi→j , J

T
i→j , h

p
i→j ,∀p ∈ F of each node in T w` are

correct.

Proof. We should show that the messages from the “root”
wT` towards the leaves of the minimal subtree T w` that con-
tains all the nodes in A are correct. If w` ∈ T , then
wT` = w` and we showed in Cor. 3 that the incoming mes-
sages of each node in M(wT`−1 → w`) are correct. This
includes the incoming messages to node w`. If w` ∈ F ,
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and τ was the last time a measurement was obtained from
T , then wT` = wτ and by Cor. 3 all incoming messages
to every node in M(wTτ−1 → wτ ) are correct, which in-
cludes those of node wτ . Since, by assumption all remain-
ing measurements (from τ + 1 to ` have been taken from
F), the incoming messages hTi→j , J

T
i→j , h

p
i→j ,∀p ∈ F to

wτ would reflect the correct value up to iteration `. There-
fore, we established that whether w` ∈ T or w` ∈ F , the
incoming messages to wT` are correct. Consequently, mes-
sages to its children would be correct. We show that the
incoming messages of the remaining nodes in T w` are cor-
rect in exactly the same fashion as in Prop. 3. That is, if
we denote by k a child of wT` and by j one of k’s neigh-
bors, we show that messages hTj→k, J

T
j→k, h

p
j→k,∀p ∈ F

are correct by claiming that they have been part of a past
message scheduleM(wt(k,j) → wt(k,j)+1), where t(k, j)
is the most recent time a measurement has been obtained
from subtree Tj .1 We continue this reasoning in a top-down
approach, from the “root” wT` to the nodes in A.

Corollary 4. The “partial” means µ̂Ti of all nodes in T w`
are correct.

Proof. This follows trivially from Prop. 4, since all in-
coming messages hTi→j , J

T
i→j to every node in T w` are cor-

rect.

Corollary 5. The “feedback gains” gpi of all nodes in T w`
are correct.

Proof. This follows trivially from Prop. 4, since all incom-
ing messages hpi→j , J

T
i→j ,∀p ∈ F to every node in T w` are

correct.

Corollary 6. The mean µF and covariance ΣF are cor-
rect.

Proof. From Eqs. (1), (2), we see that ĥ, Ĵ are correct,
since by Cor. 4, 5 “partial” means µ̂Ti and “feedback gains”
gpi ,∀p ∈ F at the anchors are correct and the node potential
at Xw`

has been already updated (l. 11, Alg. 1).

Corollary 7. The revised potentials h̃i for every node i ∈
T are correct.

Proof. From l. 18 of Alg. 1, the revised potential is defined
as

h̃i = hi +
∑

j∈N (i)∪F
Jij [µF ]j .

Since by Cor. 6, we showed that µF is correct, then the
revised potentials would be correct as well. From the sum-
mation, it is clear that the only potential vectors that are
revised are the ones at the anchors.

1As a reminder, subtree Tj is defined as the subtree rooted at
j that excludes the branch which contains edge (j, k).

Proposition 5. The incoming messages h̃Ti→j of each node
in T v` are correct.

Proof. Let’s start with the first iteration, ` = 1. Messages
h̃Ti→j to nodes in A are identical to hTi→j , since no other
node potential has been revised yet. Initially, the incom-
ing messages hTi→j , J

T
i→j to the anchors A are correct by

Prop. 4. The only potentials that are revised after we learn
µF ,ΣF are the ones at the anchors, which by Cor. 7 are
correct. This implies, that revised messages h̃Ti→j from the
anchors to their parent nodes would also be correct. Let’s
denote by k a parent of an anchor node and by j one of its
neighbors, as shown in Fig. 12. If j is one of the anchors,
since we assumed that k is parent node to an anchor node,
we just argued above that the message h̃Tj→k is correct.
Now, if j does not belong to the tree T v` , we denote by Tj
the tree rooted at j excluding the tree branch that contains
edge (j, k), as shown in Fig. 12. There are three scenarios,
the last measurement that has been received from tree Tj is
in time t(j, k) = ` (Fig. 12(a)), t(j, k) = t < ` (Fig. 12(b))
or t(j, k) =∞ (Fig. 12(c)), which means that no measure-
ment has been obtained from that tree yet. For the first two
cases, message h̃Tj→k, which is identical to hTj→k, is correct
as it is part of the scheduleM(wt(k,j)→t(k,j)+1). By Prop.
4, all incoming messages hTj→k, J

T
j→k, h

p
j→k, of each node

in M(wt(k,j)→t(k,j)+1) are correct. For the third case,
when there is no measurement from subtree Tj , message
hTj→k has stayed intact since initialization. So, in all three
cases message h̃Tj→k is correct. Hence, when node k sends
a message to its own parent it will also be correct. Obvi-
ously, here because we start with the first iteration ` = 1,
t(k, j) can only be t(k, j) = 1 or t(j, k) =∞. Continuing
in this logic, we show that all incoming messages to node
v`, h̃Tj→v` , are correct as well. As a last step of the algo-
rithm, after we evaluate the marginal at the node of interest,
we reset all messages h̃Ti→j in T v` to their previous values as
the revised potentials h̃i at the anchors reflect “imaginary”
changes produced by the feedback of FVS nodes, rather
than real changes that would be an outcome of obtaining
a new measurement. By doing so, we guarantee that mes-
sages h̃Ti→j coincide with messages hTi→j at the end of the
first iteration. Therefore, when we move to the second it-
eration, we follow an identical logic to show that messages
h̃Ti→j in T v` would be correct. Similarly, messages h̃Ti→j in
T v` for every iteration ` would be correct.

Corollary 8. The incoming messages JTi→j , h
p
i→j ,∀p ∈ F

of each node inM(wT` → v`) are correct.

Proof. The proof follows exactly the same logic as that of
Prop. 4.

Corollary 9. The marginal at v` (µv` , σ
2
v`

) is correct.
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Figure 12. Correctness of incoming messages of nodes in T v
` .

The incoming messages of every node in T v
` are correct. Red bold

faced nodes represent the anchors and the fact that their potential
vectors have been revised (changed). Tree Tj represents the tree
rooted at node j, if we exclude the brach that contains edge (j, k).
(a) Node w` is included in Tj . (b) The most recent measurement
from Tj has been taken at time t(k, j) < `. (c) No measurements
have been received from tree Tj .

Proof. If v` ∈ F , the marginal (mean and variance) have
been correctly estimated in Eqs. (1), (2) as shown in Cor.
6. If v` ∈ T , by Cor. 7, Prop. 5, and Cor. 8, the re-
vised potential at v`, h̃v` , and the incoming messages to
node v`, h̃Tk→v` , JTk→v` are correct. Therefore, by Eqs.
(3), (4), ĥTv` , Ĵ

T
v`,v`

are correct, which makes the mean
at v`, µv` correct. Lastly, since by Cor. 8, messages
hpi→j , J

T
i→j ,∀p ∈ F in M(wT` → v`) are correct, it fol-

lows that the “feedback gain” at v`, gv` is also correct and
hence variance at v`, σ2

v`
as estimated by Eq. (5) will also

be estimated correctly.

Complexity. In standard FMP, O(|T |K) messages are
propagated in the first round. Then updated potential vec-
tor ĥF and information matrix ĴF are filled in O(K2NF )
time, where NF = maxp∈F |N (p) \ F|. In other words,
NF is the size of the largest neighbor set of an FV (ex-
cluding any nodes belonging to FVS F). Information
matrix ĴF is inverted in O(K3) time and produces re-
vised potential vector in O(|A|) time. Lastly, O(|T |)
computations are required for the second–round messages
and O(K2) for the correction of the variance at a sin-
gle node. If K ≤ min{|T |/NF ,

√
|T |}, the dominant

term is O(K|T |). If |T |/NF ≤ K ≤ NF , the domi-
nant term is O(K2NF ). If K ≥ max{NF ,

√
|T |}, the

dominant term is O(K3). In case the FVS is moderate
in size (e.g., K ≤ min{|T |/NF ,

√
|T |}), the dominant

term isO(|T |K) which comes from the evaluation of first–
round messages. By applying adaptive BP to the first– and
second–round messages, we save a great deal of computa-
tions, since instead of sending a fixed number of (K+3)|T |
messages per iteration, we send only the absolutely neces-
sary messages.

We should remind that the subtrees of T rooted atwT` , v` ∈
T that pass through all the anchor nodes A are denoted
by T w` and T v` , respectively. See Fig. 11 for a visualiza-
tion of trees T w` , T v` . Depending on the size of the anchor

set, A, and the allocation of its nodes inside T , subtrees
T w` , T v` can be much smaller than T , |T w` |, |T v` | � |T |.
Going back to the complexity analysis, we send (K +
2)dist(wT`−1, w`) messages, if w` ∈ T and zero, otherwise.
We additionally send (K + 2)(|T w` | − 1) between node
wT` and the anchors A. If, in addition, v` ∈ T , the prop-
agation of (|T v` | − 1) h̃Ti→j messages between the anchors
A and v` is necessary, plus Kdist(wT` , v`) h

p
i→j messages

from wT` to v`. Therefore, we sendO(K(dist(wT`−1, w`) +

dist(wT` , v`) + |T w` |) + |T v` |) messages per iteration.

Compare this to the O(K|T |) messages per iteration of
standard FMP. To understand the difference in complex-
ity, let’s assume for the shake of exposition that |T w` | ≥
dist(wT`−1, w`), dist(wT` , v`), |T v` |. This means that the
complexity of adaptive BP is O(K|T w` |), which results in
a speedup on the order of O(|T |/|T w` |), since it always
holds that |T w` | ≤ |T |. Throughout the analysis, we have
made the assumption that FVS is moderate in size. For FVS
comparable to the full graph size N , the proposed method
(as well as standard FMP) will perform poorly, since the
dominant computation per iteration would be O(K3) and
is comparable to the complexity of the inversion of the full
information matrix J .

Determining a nearly optimal measurement
schedule
We have made the assumption that the measurement order
is not known to us in advance. An equally interesting prob-
lem arises when we are given constraints on the number
of measurements we can draw from each latent node and
the task is to construct an optimal schedule of obtaining
them. More formally, suppose we can draw kt measure-
ments from Xt and we draw measurements from S distinct
latent nodes.2 Obviously, the schedule should be designed
in such a way that it would result in the minimum num-
ber of propagated messages. Since there is no propagation
of messages when measurements are taken consecutively
from the same node, we can reduce this problem to one
where there is one measurement vector (of size kt) for each
of the S nodes. In other words, once we reach a node Xt
(dictated by the measurement schedule), we will draw kt
measurements from that node. Even though we can find
the optimal solution to the above problem for small S, the
exhaustive search becomes intractable as S grows, since
there are S! possible solutions. The problem of determin-
ing an optimal schedule of measurements that visits each
of the S nodes exactly once, which corresponds to finding
a schedule with the minimum number of computations, can
be reduced to the shortest Hamiltonian path problem. As a
reminder, a Hamiltonian path is a path that visits each node

2As a reminder, there are N latent nodes in total.
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exactly once. A Hamiltonian cycle is a cycle that visits
each node exactly once except for the starting node, which
is visited twice. A graph that contains a Hamiltonian cycle
is called a Hamiltonian graph. A graph that has a Hamil-
tonian cycle has trivially a Hamiltonian path as well, since
the edge between the last node in the visitation order and
the starting node can be removed. The shortest Hamilto-
nian path problem has shown to be NP-complete (Arora &
Barak, 2009).

To formulate the shortest Hamiltonian path problem, we
are given a set of nodes X1, . . . ,XS that form an edge set E .
For every edge (i, j) ∈ E linking two nodes, there is a non-
negative distance (cost) dist(i, j) associated with them. The
goal is to find an ordering w, where each node is visited
exactly once, that minimizes the total distance traveled

max
w

S−1∑
j=1

dist(wj , wj+1).

When the triangle inequality holds, that is, for every triplet
(i, j), (i, k), (j, k) ∈ E , dist(i, j) ≤ dist(i, k) + dist(j, k),
there are approximate techniques with nice theoretical
guarantees that provide nearly optimal solutions. One al-
gorithm that runs in polynomial time O(S3) is a variant
of Christofides’ algorithm, which was initially designed
for the Traveling Salesman Problem (TSP) (Christofides,
1976). The TSP is very related to the shortest Hamilto-
nian path, since the objective is the same with the addi-
tional constraint that at the end of the visitation order, we
return to the starting point. In other words, it is a shortest
Hamiltonian cycle problem. The variant of Christofides’
algorithm that gives an approximate solution for the short-
est Hamiltonian path problem is proposed in (Hoogeveen,
1991). This algorithm serves as a 3/2 approximation in the
worst case.

We convert the problem of finding a schedule of minimum
computations to a shortest Hamiltonian path as follows.
We concatenate all kt measurements of variable Xt into
one vector of measurements. Since we draw measurements
from S latent nodes, we compute the distance between ev-
ery pair of latent nodes as

dist(i, j) = Di +Dj − 2Dlca(i,j), (6)

where D is the depth of a node and lca(i, j) is the lowest
common ancestor of i, j, which is recovered in constant
time through the reduction to the RMQ problem. With
this approach, we form a full undirected graph of S nodes,
where each edge is weighted by the distance between the
incident nodes. This graph is guaranteed to have a Hamil-
tonian path, since Dirac (1952) showed that a simple graph
with S vertices with S ≥ 3 is Hamiltonian if every node has
degree S/2 or greater, which applies to full graphs. You can

see a visualization of the measurement plan designation in
Fig. 13.

If we denote the length of the nearly shortest Hamiltonian
path by `H , then in the Gaussian case, the overall com-
plexity of message passing would be O(`Hd

3), where d is
the dimension of latent variables. If, in addition, the di-
mension d is comparable to the number of latent variables
N , the complexity of finding a shortest Hamiltonian path
O(S3) does not affect the overall complexity (in asymp-
totic terms), since S ≤ N .

Computing messages in pathM(w` → w`+1)

When we move on computing messages from M(w` →
w`+1), we do not have to recompute the messages that are
common with those in the path M(w` → v`), that have
already been evaluated. More specifically,

M(w` → w`+1)

=



{M(w` → lca(w`, v`)), M(lca(w`, v`)→ w`+1)}
, if lca(w`, w`+1) = lca(v`, w`+1)

{M(w` → lca(w`, w`+1)),M(lca(w`, w`+1)→ w`+1)}
, if lca(w`, w`+1) > lca(v`, w`+1)

{M(w` → lca(v`, w`+1)), M(lca(v`, w`+1)→ w`+1)}
, if lca(w`, w`+1) < lca(v`, w`+1)

The first part of pathM(w` → w`+1) is already evaluated
during the computation of messages in the pathM(w` →
v`). We can omit computing the messages in the common
path by recovering the lca of nodes (v`, w`+1), which is
accomplished in constant time.

REFERENCES
Arora, S. and Barak, B. Computational Complexity: A Modern

Approach. Cambridge University Press, New York, NY, USA,
1st edition, 2009.

Bafna, V., Berman, P., and Fujito, T. A 2-Approximation Algo-
rithm for the Undirected Feedback Vertex Set Problem. SIAM
Journal on Discrete Mathematics, 12(3):289–297, Sep 1999.
ISSN 0895-4801.

Christofides, N. Worst-case analysis of a new heuristic for the
traveling salesman problem. Technical Report 388, Graduate
School of Industrial Administration, Carnegie Mellon Univer-
sity, 1976.

Dirac, G. A. Some theorems on abstract graphs. Proceedings of
the London Mathematical Society, 3(1):69–81, 1952.

Hoogeveen, J. A. Analysis of Christofides’ heuristic: Some paths
are more difficult than cycles. Operations Research Letters, 10
(5):291–295, 1991.



Adaptive Belief Propagation – Supplementary Material

1

2 3

4 5 6 7

8 9

10 11

(a) Original graph.

3

5

8

11

4

4

33

3

5

(b) Full graph of measurement
nodes.

1

2 3

4 5 6 7

8 9

10 11

(c) Minimum computational schedule.

Figure 13. Reduction of finding optimal schedules to shortest
Hamiltonian path. (a) The nodes where we would obtain mea-
surements from are 3, 5, 8, 11 (depicted as boldface). Our task is
to design a measurement plan with the minimum number of mes-
sages for inference purposes. (b) We form a full undirected graph
comprised of the measurement nodes. The weight of each edge
would be the distance between these two nodes in the original
graph, calculated by Eq. (6). (c) The path shown is one possible
optimal solution. The arrow with a circle in one end indicates the
starting node of sequence w.
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Figure 14. (a) M(w` → w`+1) = {M(w` →
lca(w`, v`)),M(lca(w`, v`) → w`+1)}. In this case,
next measurement node, w`+1, is outside the subtree of
w`, v`. Bold arrow indicates the already computed mes-
sages in M(w` → lca(w`, v`)), while the dotted the ones
to be computed. (b) M(w` → w`+1) = {M(w` →
lca(w`, w`+1)),M(lca(w`, w`+1) → w`+1). In this case,
next measurement node, w`+1, is inside the subtree of w`, v`
and closer to w`. Bold arrow indicates the already computed
messages in M(w` → lca(w`, w`+1)), while the dotted the
ones to be computed. (c) M(w` → w`+1) = {M(w` →
lca(v`, w`+1)),M(lca(v`, w`+1) → w`+1)}. In this case,
next measurement node, w`+1, is inside the subtree of w`, v`
and closer to v`. Bold arrow indicates the already computed
messages inM(w` → lca(v`, w`+1)), while the dotted the ones
to be computed. Gray bands encompass all the messages in
M(w` → v`) that have been correctly updated from the previous
iteration.


