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Abstract

We seek to find the robust policy that maximizes
the expected cumulative reward for the worst
case when a partially observable Markov deci-
sion process (POMDP) has uncertain parameters
whose values are only known to be in a given
region. We prove that the robust value function,
which represents the expected cumulative reward
that can be obtained with the robust policy, is
convex with respect to the belief state. Based on
the convexity, we design a value-iteration algo-
rithm for finding the robust policy. We prove that
our value iteration converges for an infinite hori-
zon. We also design point-based value iteration
for fining the robust policy more efficiency possi-
bly with approximation. Numerical experiments
show that our point-based value iteration can ad-
equately find robust policies.

1. Introduction
The partially observable Markov decision process
(POMDP) has been studied extensively as a model of
sequential decision making under stochastic and partially
observable environment (Shani et al., 2013; Young et al.,
2013). The POMDP has a wide range of applications
including the systems of spoken dialog (Young et al.,
2009), fault recovery (Shani & Meek, 2009), human-robot
interaction (Pineau et al., 2003b), and the assistance of per-
sons (Hoey et al., 2010). In these applications, parameters
of a POMDP are often set manually by experts (Hoey et al.,
2010; Pineau et al., 2003b; Young et al., 2009). There
also exist systematic methods for learning parameters of
a POMDP (Makino & Takeuchi, 2012; Shani et al., 2005;
Shani & Meek, 2009), but precise estimation is generally
difficult. The robustness against the uncertainties in the
parameters of a POMDP is of paramount importance to
open up new but critical applications such as finance.
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For a (fully observable) Markov decision process (MDP),
the prior work has investigated ways to obtain the (opti-
mally) robust policy that maximizes the expected cumula-
tive reward for the worst case when the values of the param-
eters of the MDP have uncertainties and are only known
to be in a given set called an uncertainty set (Nilim & El
Ghaoui, 2005; Osogami, 2012). Although a POMDP can
be considered as an MDP with the continuous state space
consisting of belief states (Smallwood & Sondik, 1973),
existing computational procedures for finding the robust
policy for an MDP rely on the finiteness of the state space
(Nilim & El Ghaoui, 2005).

A key property of the POMDP is that the value function
is piecewise linear and convex (PWLC) with respect to the
belief state when decisions are made over a finite horizon
(Smallwood & Sondik, 1973). Computing the value func-
tion is essentially equivalent to finding the optimal policy,
and the prior work has exploited the PWLC property for
finding the optimal policy either exactly (Monahan, 1982;
Smallwood & Sondik, 1973) or approximately (Kurniawati
et al., 2009; Pineau et al., 2003a; Smith & Simmons, 2004).

When the parameters of the POMDP are only known to
lie in an uncertainty set, we study the robust value func-
tion that gives the expected cumulative reward for the worst
case. Computing the robust value function directly leads to
finding the robust policy.

Specifically, we prove that the robust value function is con-
vex when the uncertainty set is convex, which is the first
contribution of this paper. A lower bound on the robust
value function can then be given by a PWLC function.
Our proof is by induction and immediately suggests robust
value iteration for computing the robust value function or
its lower bound with dynamic programming.

We then prove that the robust value iteration converges for
an infinite horizon when future reward is discounted, which
is our second contribution. This means that the robust value
function for an infinite horizon can be approximated arbi-
trarily closely with a PWLC function, which can be found
via robust value iteration. The exact procedure of robust
value iteration is important primarily because it gives the
foundation of approximate but efficient procedures.
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We design robust point-based value iteration (robust PBVI)
for computing the robust value function approximately,
which is our third contribution. The robust PBVI is directly
motivated by the standard PBVI for POMDPs (Pineau
et al., 2003a). The application of this point-based approach,
however, can only be justified and motivated by the con-
vexity of the robust value function, which we prove in this
paper. Also, details of the robust PBVI need to be specified
for computational purposes.

In particular, we show that an optimization problem ap-
pearing in the robust PBVI is convex and becomes linear
program when the uncertainty set is represented by a set
of linear inequalities. This includes a particularly interest-
ing case, studied for example in Osogami (2012), where
each parameter has a nominal value, and the true value can
deviate from the nominal value at most by a constant fac-
tor. These specifications of the robust PBVI constitute our
fourth contribution.

To choose actions based on a robust policy, the belief state
needs to be updated every time observation is made. Be-
cause the parameters have uncertainty, the belief state can-
not be updated with the Bayes rule, as in the standard case
of no uncertainty. We design robust belief update for updat-
ing the belief state to be used with a robust policy, which
is our fifth contribution. The robust belief update solves
the optimization problem that appears in the robust PBVI.
Hence, the particular structure of the uncertainty set is also
desirable for efficiency of the robust belief update.

We then conduct numerical experiments of finding a ro-
bust policy by the use of the robust PBVI and executing the
robust policy with robust belief update. These numerical
experiments constitute our final contribution. Here, we use
the robust PBVI in the framework of heuristic search value
iteration (HSVI) by Smith & Simmons (2004) (i.e., robust
HSVI). The robust HSVI is applied to Heaven and Hell,
a standard instance of a POMDP that has been used for
example in Braziunas & Boutilier (2004); Poupart (2005);
Shani et al. (2007). For our purposes, we assume that the
probability of erroneous observation can deviate its nomi-
nal value by up to a constant factor. We show that the robust
policy is found in 24 seconds and indeed robust against un-
certainty.

The rest of the paper is organized as follows. In Section 2,
we show the convexity of the robust value function and
design robust value iteration, whose convergence is estab-
lished for an infinite horizon. In Section 3, we propose
robust PBVI and discuss how we can exploit the particular
structure of the uncertainty set in the robust PBVI as well as
in robust belief update. Section 4 shows the results of nu-
merical experiments. In Section 5, we discuss the related
work and conclude the paper.

2. Robust value iteration
We start by considering the POMDP with a finite horizon,
[0, N ]. Let S be the finite set of states, letA be the finite set
of actions, and let Z be the finite set of observations. Let
r(s, a) be the immediate reward that can be obtained by
taking a ∈ A from s ∈ S. Let pan(t, z|s) be the probability
of transitioning to t ∈ S and observing z ∈ Z given that
a ∈ A is taken from s ∈ S at time n ∈ [0, N). Let 0 < γ ≤
1 be the discount rate. The standard objective is to find the
policy, which determines the action to take for each belief
state at each time, that maximizes the expected cumulative
reward, where the reward at time n is discounted by the
factor of γn. A belief state gives the probability of being in
each s ∈ S . This is the probability that the decision maker
believes. Let B be the space of the belief states, i.e. all of
the probability vectors having dimension |S|.

Here, we study the robust POMDP, where pan(·, ·|s) is only
known to be in an uncertainty set, Pas , for each s ∈ S, a ∈
A, n ∈ [0, N). Throughout, we assume that the uncer-
tainty set, Pas , is convex. Our objective is to find the ro-
bust policy that maximizes the expected cumulative reward
for the worst case with this uncertainty. Let pan ∈ Pa
denote pan(·, ·|s) ∈ Pas ,∀s ∈ S . For simplicity, we as-
sume that Pas is independent of n, but, when N < ∞, it
is straightforward to relax this assumption in the follow-
ing. Although we assume full knowledge about r(·, ·), it
is straightforward to consider an uncertainty set, Ras , of
r(s, a) for (s, a) ∈ S × A. The worst case is simply given
by the one in Ras that has the minimum expected value,
independently for each (s, a) ∈ S ×A (Osogami, 2012).

The robust value function, Vn(b), gives the maximum ex-
pected cumulative reward that can be obtained, in the worst
case, from time n ∈ [0, N ] when the belief state at time n
is b ∈ B. For n ∈ [0, N), the robust Bellman equation
gives fundamental relation between Vn and Vn+1:

Vn(b) = max
a∈A

min
pan∈Pa

∑
s∈S

b(s)

(
r(s, a)

+ γ
∑

t,z∈S×Z
pan(t, z|s)Vn+1(b′b,a,z)

)
, (1)

where b′b,a,z is the belief state after taking a ∈ A from
b ∈ B and observing z ∈ Z:

b′b,a,z(t) =

∑
s∈S

pan(t, z|s)b(s)∑
s′,t′∈S2

pan(t′, z|s′)b(s′)
,∀t ∈ S. (2)

The robust Bellman equation (1) follows directly from the
Bellman equations for the POMDP (Smallwood & Sondik,
1973) and for the robust MDP (Nilim & El Ghaoui, 2005).
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Algorithm 1 Robust value iteration
1: ΛN ← {0}
2: for n← N − 1 to 0 do
3: Λn ← RobustDPbackup(Λn+1)
4: end for
5: Return: Λn, n = 0, . . . , N − 1

We can now establish the convexity:

Theorem 1. When N < ∞, the robust value function,
Vn(b), is convex with respect to b for each n ∈ [0, N ] as
long as the uncertainty set, Pas for s, a ∈ S ×A, is convex.

The proof of Theorem 1 is provided in Appendix A. We
prove Theorem 1 by induction that is motivated by value
iteration with incremental pruning (Monahan, 1982) for
POMDPs. Robust value iteration, which we will present
in the following, thus follows from the steps of the proof.
Our proof applies a minimax theorem, where the convexity
of the uncertainty set plays an essential role.

Robust value iteration (Algorithm 1) is equivalent to the
standard value iteration for the POMDP (Monahan, 1982;
Smallwood & Sondik, 1973) except Step 3. Specifically,
from n = N to n = 0, we recursively find a set of vectors,
Λn, that represents the robust value function with

Vn(b) = max
α∈Λn

[∑
s∈S

α(s)b(s)

]
. (3)

Here, Step 1 initializes ΛN = {0}, where 0 is the vector of
zeros, because VN (b) = 0,∀b ∈ B. Unlike the standard
POMDP, however, the set, Λn, is generally infinite, because
the robust value function is not necessarily piece-wise lin-
ear. In the following, we will show a way to approximate
the exact robust value iteration by considering only a finite
subset of Λn. This approximate robust value iteration gives
a lower bound on Vn(b), and this lower bound is PWLC
with respect to b.

Step 3 of Algorithm 1 uses new robust DP backup de-
scribed in Algorithm 2 to construct Λn from Λn+1. Analo-
gously to the standard DP backup (Monahan, 1982; Small-
wood & Sondik, 1973), Steps 4-10 of Algorithm 2 find
the set of vectors, Λan, that represents the convex function,
Qa(b), that satisfies

Vn(b) = max
a∈A

Qan(b). (4)

Here, Qan(b) is the robust Q-function that represents the
maximum expected cumulative reward that can be obtained
from time n when a ∈ A is taken from b ∈ B at time n.
Hence, we can construct Λn via Λn = ∪a∈AΛan. Steps 11-
12 eliminate the redundant vectors that never become the

Algorithm 2 Robust DP backup
1: Input: Λn+1

2: Λ?n ← ∅
3: for all a ∈ A do
4: Λan ← ∅
5: for all (αz)z∈Z ∈ (Λ̄n+1)|Z| do
6: for all s ∈ S do
7: pa,?n (·, ·|s)← argmin

pan(·,·|s)∈Pa
s

∑
t∈S

∑
z∈Z

pan(t, z|s)αz(t)

8: end for
9: Λa

n←Λa
n∪
{(
r(s, a)+γ

∑
t∈S

∑
z∈Z

pa,?n (t, z|s)αz(t)
)
s∈U

}
10: end for
11: Λan = prune (Λan)
12: Λ?n ← prune (Λn ∪ Λan)
13: end for
14: Return: Λ?n

maximizers in (3), which is analogous to incremental prun-
ing (Monahan, 1982) for POMDPs.

What distinguishes robust DP backup from standard DP
backup (Monahan, 1982; Smallwood & Sondik, 1973)
is Step 7, which finds the probability mass function,
pa,?n (·, ·|s), that gives the worst case under the given un-
certainty. A simple but important remark, which follows
from the use of a minimax theorem in our proof of Theo-
rem 1, is that considering the worst case for each s ∈ S
results in the worst case for any b ∈ B. Steps 6-8 thus
find pa,?n (·, ·|s) independently for each s ∈ S. The pa,?n
depends on the robust value (the value of the robust value
function) of the next belief state, which in turn can depend
on the observation, z ∈ Z , that we make after taking the a.
Namely, the α-vector that gives the robust value of the next
belief state can depend on the z. Another consequence of
the use of a minimax theorem is that, now, α-vector can be
any vector in the convex hull, Λ̄n+1, of Λn+1.

The loop starting with Step 5 thus considers all of the or-
dered subsets of |Z| vectors in Λ̄n+1, where each α-vector
corresponds to a z ∈ Z . For each (αz)z∈Z , Step 9 con-
structs an α-vector, using the pa,?n that gives the worst case
for that (αz)z∈Z , and includes that α-vector in Λan. The
loop starting with Step 5 is generally intractable, because
Λ̄n+1 is continuous. One can approximate this loop, for ex-
ample, by replacing Λ̄n+1 with a finite subset, Λn+1. This
approximate robust value iteration gives a lower bound on
the robust value function.

Most of those (αz)z∈Z ’s do not correspond to the true α-
vectors that give the robust value at the next belief state.
However, the α-vector constructed in Step 9 with such an
(αz)z∈Z is dominated by another and pruned in Step 11 or
in Step 12.
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Algorithm 3 Robust point-based DP backup
1: Input: Λn+1,B0

2: Λ̃n ← ∅
3: for all b ∈ B0 do
4: Λ̃n,b ← ∅
5: for all a ∈ A do
6: Solve (5) for b, a
7: for all z ∈ Z do
8: α?z ← maximizer αz in the optimal solution of

(5) that achieves (6)
9: end for

10: for all s ∈ S do
11: pa,?n (·, ·|s) ← minimizer pa(·, ·|s) in the opti-

mal solution of (5)
12: α?(s)← r(s, a) + γ

∑
t∈S

∑
z∈Z

pa,?(t, z|s)α?z(t)

13: end for
14: Λ̃n,b ← Λ̃n,b ∪ {α?}
15: end for
16: Λ̃n ← Λ̃n ∪

{
argmax
α∈Λ̃n,b

∑
s∈S

b(s)α(s)

}
17: end for
18: Return: Λ̃n

Robust value iteration is designed for a finite horizon but
can be shown to converge as N → ∞ in the following
sense, which we prove in Appendix B:

Theorem 2. The robust value function, V0, satisfying (1)
converge uniformly as N →∞ if γ < 1.

For each N , let Λ(m) ≡ ΛN−m be the set of vectors found
in the m-th iteration of the robust value iteration (Algo-
rithm 1), where Λ(m) is independent of N . Let V (N)

n be
the robust value function for time n when the horizon is
[0, N). Then Λ(m) represents V (N)

N−m for any N . Theo-

rem 2 suggests that V0 ≡ V
(N)
N−N , which is represented by

Λ(N), converges as N →∞.

Theorem 2 implies that the dependency of the worst case on
n disappears as n→∞. For a finite horizon, the pan ∈ Pa
that gives the worst case can depend on n, as is evident
from the robust Bellman equation (1). Because V (N)

N−m ≡
V

(M)
M−m for anyM andN , Theorem 2 implies the following:

for anyN0 > 0, Vn for n ∈ [0, N0] converges to a common
function as N → ∞. Then the dependency of (1) on n
disappears, so does the dependency of the pa,?n on n.

Robust value iteration is computationally expensive, be-
cause exact value iteration for POMDPs is computationally
expensive even without the uncertainty in the parameters.
The significance of the results in this section is primarily in
giving the theoretical foundations for the approaches to be
presented in the following and others.

3. Point-based approach
We now use the idea of the point-based approach, which
has been developed for POMDPs without uncertainty
(Pineau et al., 2003a), to design robust point-based value
iteration (robust PBVI). We will also present the robust be-
lief update for executing a robust policy.

3.1. Robust point-based value iteration

The point-based approach can limit the number of vectors
that represent the robust value function. Specifically, we
keep only those vectors in Λn that achieve the maximum
in (3) for some b in a given finite set, B0 ⊂ B. We can
use this idea of the point-based approach, because we have
proved that the robust value function is convex and can be
represented with a set of vectors.

Robust PBVI replaces the robust DP backup in Algorithm 1
with the robust point-based DP backup shown in Algo-
rithm 3. Here, Steps 4-16 find a single vector, α, for a
given b ∈ B0 and keep that vector in Λ̃n. When the given
Λn+1 contains all of the vectors that represents Vn+1(·),
the vector that is kept in Λ̃n is the α ∈ Λn that maximizes∑
s∈S b(s)α(s). Because robust point-based DP backup is

used iteratively, the given Λn+1 is generally approximate.

For a given b ∈ B0 and a given a ∈ A, Step 6 solves the
following optimization problem:

min.
∑
z∈Z

U(z)

s.t. U(z) ≥
∑
s∈S

b(s)
∑
t∈S

pan(t, z|s)αz(t),

∀αz ∈ Λn+1,∀z ∈ Z
pan(·, ·|s) ∈ Pas , ∀s ∈ S. (5)

The optimal solution of (5) is used to determine the maxi-
mizers and the minimizers in the robust Bellman equation
(1). For z ∈ Z , the maximizer α?z ∈ Λn+1 is the one that
achieves

U(z) =
∑
s∈S

b(s)
∑
t∈S

pan(t, z|s)α?z(t) (6)

for the optimal solution of (5). For each z ∈ Z , there
must exist an α?z ∈ Λn+1 that achieves (6); otherwise, the
value ofU(z) can be decreased (so can the objective value),
while satisfying the constraints in (5), which contradicts
the optimality of the solution. For s ∈ S, the minimizer
pa,?n (·, ·|s) is the pan(·, ·|s) in the optimal solution of (5).

The pa,?n obtained from the optimal solution of (5) can be
shown to be the minimizer in the robust Bellman equation
(1) for the given b ∈ B0 and the given a ∈ A. Specifically,
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(16)-(17) in Appendix A imply that

pa,?n ≡ argmin
pan∈Pa

∑
s∈S

b(s)

(
r(s, a)

+ γ
∑

t,z∈S×Z
pan(t, z|s)Vn+1(b′b,a,z)

)
(7)

= argmin
pan∈Pa

∑
z∈Z

max
αz∈Λn+1

∑
s∈S

b(s)
∑
t∈S

pan(t, z|s)αz(t).

(8)

The last expression (8) can be represented as the optimiza-
tion problem (5).

The maximizers and minimizers are extracted in Step 8 and
Step 11 and used to construct a vector, α?, in Step 12. This
α? vector constitutes the Qan(b) in (4) such that Qan(b) =
α? · b, when the given Λn+1 is exact. Here, for a given b
and an a, the value ofQan(b) is given by

∑
s∈S b(s) r(s, a)

plus the optimal objective value of (5) multiplied by γ.

Because Pas is convex, (5) is a convex optimization prob-
lem. For example, consider the case studied in Os-
ogami (2012), where pan(t, z|s) can range between 0 and
p̂a(t, z|s)/κ for κ > 1 (here, p̂a(t, z|s) can be considered
as a nominal value of pan(t, z|s)). Then Pas is convex and
can be represented with a system of linear inequalities, so
that (5) reduces to the following linear program:

min.
∑
z∈Z

U(z)

s.t. U(z) ≥
∑
s∈S

b(s)
∑
t∈S

pan(t, z|s)αz(t),

∀αz ∈ Λn+1,∀z ∈ Z

0 ≤ pan(t, z|s) ≤ 1

κ
p̂a(t, z|s),

∀s, t ∈ S2, z ∈ Z∑
t,z∈S×Z

pan(t, z|s) = 1,

∀s ∈ S. (9)

Note that (9) is linear program, because b ∈ B0 is given in
the robust point-based DP backup.

3.2. Robust belief update

To choose actions based on the policy that is found by the
robust PBVI (or robust value iteration), we need to update
the belief state. The standard belief update (2) requires the
knowledge of pan, which has uncertainties in our settings.

Because the robust policy is optimized for the pa,?n in (8)
that gives the worst case, the belief state needs to be up-
dated based on that pa,?n . Suppose that we take an ∈ A
at time n and observe zn ∈ Z . The robust belief update

solves (5) with b = bn and a = an to obtain the minimiz-
ers, pan,?n . Then the belief state, b′bn,an,zn

at time n+ 1 is
obtained as

b′bn,an,zn(t) =

∑
s∈S

pan,?n (t, zn|s)bn(s)∑
s′,t′∈S2

pan,?n (t′, zn|s′)bn(s′)
,∀t ∈ S.

(10)

Analogously to Step 6 of Algorithm 3, particular forms
(e.g., (9)) of Pans can be exploited for computational ef-
ficiency.

3.3. Robust heuristic search value iteration

The robust PBVI in Section 3.1 gives a foundation of
more sophisticated approaches. The state-of-the-art ap-
proaches to POMDPs (without uncertainties) iteratively up-
date lower bounds and upper bounds on the value func-
tions (Smith & Simmons, 2004; Kurniawati et al., 2009;
Zhang et al., 2014; Brechtel et al., 2013). The lower bounds
are updated with point-based value iteration, and the upper
bounds are used to guide the search for the belief states to
be included in B0. The robust PBVI can be used in the
framework of these approaches.

In our numerical experiments in Section 4, we will use the
robust PBVI in the framework of heuristic search value it-
eration (HSVI) by Smith & Simmons (2004). Namely, the
lower bounds are updated with the robust PBVI in our ro-
bust HSVI. We also need to specify how the lower bounds
and the upper bounds are initialized in the robust HSVI,
because existing approaches do not allow uncertainties in
the parameters of a POMDP. In the following, we assume
infinite horizon.

The initial upper bounds can be set by first choosing an ar-
bitrary ṗa ∈ Pa for each a ∈ A and then finding upper
bounds with the assumption of pa = ṗa,∀a ∈ A. For
example, we can compute the Q-functions of a correspond-
ing MDP (QMDP) or the fast informed bound (Hauskrecht,
2000) to initialize the upper bounds. These upper bounds
with arbitrary pa’s are valid, because the worst case pa,?n
can only lower the values.

On the other hand, lower bounds cannot be obtained by ar-
bitrarily fixing pa ∈ Pa for a ∈ A. A popular approach to
initializing lower bounds for a POMDP without uncertain-
ties is fixed action policy (FAP) (Smith & Simmons, 2004;
Kurniawati et al., 2009). We apply the idea of FAP, but ad-
ditional ideas are needed due to uncertainties. Now, for a
fixed a0 ∈ A, the V that satisfies the following equation
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gives the lower bound on the robust value function:

V(b) = min
pa0∈Pa0

∑
s∈S

b(s)

(
r(s, a0)

+ γ
∑

t,z∈S×Z
pa0(t, z|s) V(b′b,a0,z)

)
, (11)

because optimizing actions can only increase the values.
Now, (11) can be seen as a Bellman equation for a POMDP
(without uncertainties) with the objective of minimizing the
expected cumulative reward, where each pa0 is associated
with an action in a possibly continuous space, Pa0 . That is,
pa0 ∈ Pa0 can be seen both as an action and as the prob-
ability mass function for transition and observation given
that action. The value function of a POMDP with the ob-
jective of minimization is concave, so that V(b) is concave
with respect to b.

We want to initialize the lower bounds with a PWLC func-
tion, so that they can be used in the robust HSVI. This mo-
tivates us to compute the lower bounds on extreme belief
states with FAP and linearly interpolate the extreme points.
Namely, for s ∈ S , let es be the extreme belief state such
that es(s) = 1 and es(s

′) = 0 for s′ 6= s. We find the
lower bound on V (es) by the following Bellman equation
for s ∈ S:

V(es) = r(s, a0) + γ min
pa0∈Pa0

∑
t,z

pa0(t, z|s) V(et).

(12)

Then we obtain the lower bound on an arbitrary b ∈ B by

V(b) =
∑
s∈S

b(s) V(es), (13)

which gives a proper lower bound, because the robust value
function is convex (Theorem 1). We refer to the lower
bound of (13) as the robust initial lower bound.

4. Numerical experiments
We now apply the robust HSVI to Heaven and Hell (Brazi-
unas & Boutilier, 2004; Poupart, 2005; Shani et al., 2007),
a standard instance of a POMDP. We introduce uncertain-
ties in the parameters of the POMDP and study the robust-
ness of the policy found by the robust HSVI. We also study
how the bounds are updated by the robust HSVI. Due to
space limitation, we provide the results of the numerical
experiments in the associated supplementary material.

In our Heaven and Hell, an agent travels the area shown in
Figure 1 of the supplementary material. The agent moves
one step at a time with the reward of −1 (unit cost). The
agent obtains the reward of 1 upon reaching “heaven” or
the reward of−10 upon reaching “hell,” and terminates the

travel. One of the two “?”s in Figure 1 is “heaven,” and
the other is “hell.” The agent can observe which “?” is
“heaven” at “!”, but this observation is erroneous and has
uncertainties. Specifically, the probability of observation
error, pe, has the nominal value of p̂e = 0.1 but can deviate
it by a constant factor of 1/κ (i.e., 0 ≤ pe ≤ p̂e/κ). At the
locations with numerical labels, the agent can observe the
exact location without error. The state of the POMDP is
the pair, (m,n), wherem denotes the location of the agent,
and n denotes the location of “heaven” (the right “?” or the
left “?”). The initial belief state, b0, is that (5, right) with
probability 0.5 and (5, left) with probability 0.5. The agent
seeks to maximize the expected cumulative reward with the
discount rate of γ = 0.9. When pe is large, the agent should
directly go to an arbitrary “?”, because the cost of going to
“!” for an observation pays off only when the observation
is informative. A difficulty here is that pe is uncertain.

5. Related work and conclusion
Our work extends the prior study on robust MDPs (Nilim &
El Ghaoui, 2005; Osogami, 2012) to POMDPs, where the
policy is optimized for the worst case when the parameters
have uncertainties. Although this robust POMDP is studied
for the first time, there exits the prior work that addresses
the uncertainty in the parameters of POMDPs.

In particular, Bayesian reinforcement learning (RL) for a
POMDP (Doshi-velez, 2009; Ross et al., 2008; 2011) as-
sumes prior distributions over the parameters and seeks to
find the policy that maximizes the expected cumulative re-
ward based on these prior distributions. We expect that
the approach of the robust POMDP is complementary to
Bayesian RL, as has been the case for (fully observable)
MDPs where the uncertainties are addressed both from ro-
bust MDP (Nilim & El Ghaoui, 2005; Osogami, 2012) and
from Bayesian RL (Vlassis et al., 2012).

There also exists the prior work that considers the uncer-
tainty in parameters of a POMDP but does not considers
the problem of finding the robust policy, which is optimal
for the worst case. For example, Itoh & Nakamura (2007)
find a policy that is optimal for an arbitrary point in the
uncertainty set. Ni & Liu (2013) do not explicitly state
exactly what policy the proposed modified value iteration
finds, but their approach is similar in spirit to Itoh & Naka-
mura (2007), and an arbitrary alpha-vector is selected in
each step of value iteration. Ni & Liu (2012) find an opti-
mistic policy for the best case via policy iteration.

Our work establishes the fundamental results, including the
robust Bellman equation, the convexity of the robust value
function, and the robust belief update, that initiate the study
of robust POMDPs. The robust PBVI, the robust HSVI,
and the robust initial lower bound give basic frameworks
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for planning with robust POMDPs. As is discussed at the
end of Section 4, there are interesting directions of future
work towards efficient planning under partially observable
and uncertain environment. Maximizing the expected cu-
mulative reward for the worst case studied in Section 4 can
be shown to be equivalent to maximizing the value of a cer-
tain risk measure when the parameters have the given nom-
inal values (Osogami, 2012). This equivalence motivates
the study of other risk-sensitive objectives with POMDPs,
which has never been investigated in the literature.

A. Proof of Theorem 1
We prove the theorem by induction. For n = N , we have
Vn(b) = 0 for b ∈ B, which is convex with |Λn| = 1.

For 0 ≤ n < N , suppose that Vn+1(b) is convex with
respect to b. Then there exists a possibly infinite set of
vectors, Λn+1, such that

Vn+1(b) = max
α∈Λn+1

[∑
s∈S

α(s)b(s)

]
. (14)

Plugging (14) into (1), we obtain

Vn(b) = max
a∈A

min
pan∈Pa

∑
s∈S

b(s)

(
r(s, a)

+γ
∑

t,z∈S×Z
pan(t, z|s) max

αz∈Λ
(a,z)
n+1

∑
x∈S

b′b,a,z(x)αz(x)

)
.

(15)

Here, the value function at time n + 1 depends on a ∈ A
and z ∈ Z at time n, and this dependency is represented in
the notation, Λ

(a,z)
n+1 . Plugging (2) into (15), we obtain

Vn(b) = max
a∈A

min
pan∈Pa

(∑
s∈S

b(s) r(s, a)

+ γ
∑
z∈Z

max
αz∈Λ

(a,z)
n+1

∑
x,s′∈S2

pan(x, z|s′)b(s′)αz(x)

)
(16)

= max
a∈A

min
pan∈Pa

∑
z∈Z

max
αz∈Λ

(a,z)
n+1

∑
s∈S

b(s)

(
r(s, a)

|Z|

+ γ
∑
t∈S

pan(t, z|s)αz(t)
)
, (17)

where we change the variables, s′ and x, to s and t, respec-
tively, in the last equality.

For a given pan(·, z|s) and a given αz , we can see that∑
s∈S

b(s)

(
r(s, a)

|Z|
+ γ

∑
t∈S

pan(t, z|s)αz(t)
)

(18)

is a linear function of b. The maximum of linear functions
is convex, and so is the sum of convex functions. Thus,∑
z∈Z

max
αz∈Λ

(a,z)
n+1

∑
s∈S

b(s)

(
r(s, a)

|Z|
+ γ

∑
t∈S

pan(t, z|s)αz(t)
)

(19)

is a convex function of b.

The minimum of convex functions is not necessarily con-
vex, but we will see that the following is convex:

Qan(b) ≡ min
pan∈Pa

∑
z∈Z

max
αz∈Λ

(a,z)
n+1

∑
s∈S

b(s)

(
r(s, a)

|Z|

+ γ
∑
t∈S

pan(t, z|s)αz(t)
)
. (20)

Once this convexity is established,

Vn(b) = max
a∈A

Qan(b) (21)

is convex, because the maximum of convex functions is
convex.

To see the convexity of Qan(b), exchange the summation
over z and the maximum over αz in (20) to obtain

Qan(b) ≡ min
pan∈Pa

max
αz∈Λ

(a,z)
n+1 ,z∈Z

∑
z∈Z

∑
s∈S

b(s)

(
r(s, a)

|Z|

+ γ
∑
t∈S

pan(t, z|s)αz(t)
)
. (22)

Now, consider a two-person zero-sum game, where the first
player (maximizing Qan(b) by optimally choosing αz, z ∈
Z) receives Qan(b), and the second player (minimizing
Qan(b) by optimally choosing pan) receives −Qan(b). By
letting Λ̄

(a,z)
n+1 be the convex hull of Λ

(a,z)
n+1 and letting

M ≡
∑
z∈Z

∑
s∈S

b(s)

(
r(s, a)

|Z|
+ γ

∑
t∈S

pan(t, z|s)αz(t)
)
,

(23)

Loomis’ Minimax Theorem (Theorem 2.3 from Motwani
& Raghavan (1995)) implies that

min
pan∈Pa

max
αz∈Λ

(a,z)
n+1 ,z∈Z

M = max
αz∈Λ̄

(a,z)
n+1 ,z∈Z

min
pan∈Pa

M (24)

if pan on the left-hand side is chosen from mixed strategies,
and αz, z ∈ Z on the right-hand side is chosen from mixed
strategies. Our key assumption is the convexity of Pas . The
second player chooses pan from the convex set, which can
be represented with a mixed strategy. Note that an arbitrary
probabilistic mixture of the transition probabilities corre-
sponding to the extreme points in Pas is the transition prob-
ability corresponding to a point in Pas . Thus, the pan on
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the left-hand side is chosen from mixed strategies. On the
left-hand side of (24), αz, z ∈ Z is chosen from pure (de-
terministic) strategies. On the right-hand side of (24), we
consider the convex hull Λ̄

(a,z)
n+1 , and this can be interpreted

as choice from mixed strategies. In the expression of (23),
the coefficient of αz is a probability, so that the expression
of (23) is an expectation. Thus, replacing αz, z ∈ Z with
a convex combination of alpha vectors is equivalent to ran-
domly choosing an alpha vector, following the distribution
determined by the coefficients of the convex combination,
and calculating the expected value.

By (24), we obtain from (20) that

Qan(b) = max
αz∈Λ̄

(a,z)
n+1 ,z∈Z

min
pan∈Pa

∑
z∈Z

∑
s∈S

b(s)

(
r(s, a)

|Z|

+ γ
∑
t∈S

pan(t, z|s)αz(t)
)
. (25)

Because pan ∈ Pa means pan(·, ·|s) ∈ Pas ,∀s ∈ S, we have
from (25) that

Qan(b) = max
αz∈Λ̄

(a,z)
n+1 ,z∈Z

∑
s∈S

b(s) min
pan(·,·|s)∈Pa

s

(
r(s, a)

+ γ
∑

t,z∈S×Z
pan(t, z|s)αz(t)

)
. (26)

The last expression shows that Qan(b) can be represented
with the maximum of a possibly infinite number of func-
tions that are linear with respect to b. Therefore, Qan(b) is
convex with respect to b, which completes the proof of the
theorem.

B. Proof of Theorem 2
By the Banach fixed-point theorem (Theorem 6.2.3 from
Puterman (2005)), it suffices to show that the robust Bell-
man operator, L, is a contraction mapping. Here, L is the
operator that maps Vn+1(·) to Vn(·) in (1). Consider two
functions, V and U . Each of these functions maps a belief
state to a real number.

For a fixed belief state, b, let

a? ≡ argmax
a∈A

min
pa∈Pa

∑
s∈S

b(s)

(
r(s, a)

+ γ
∑

t,z∈S×Z
pa(t, z|s)V (b′b,a,z)

)
(27)

pa,? ≡ argmin
pa∈Pa

∑
s∈S

b(s)

(
r(s, a)

+ γ
∑

t,z∈S×Z
pa(t, z|s)U(b′b,a,z)

)
,∀a ∈ A, (28)

where b′b,a,z is defined with (2). Note that a? is defined
with V , while pa,? is defined with U .

Suppose that LU(b) ≤ LV (b). Then we have

0 ≤LV (b)− LU(b) (29)

≤
∑
s∈S

b(s)
(
r(s, a?)+γ

∑
t,z∈S×Z

pa
?,?(t, z|s)V (b′b,a?,z)

)
−
∑
s∈S

b(s)
(
r(s, a?)+γ

∑
t,z∈S×Z

pa
?,?(t, z|s)U(b′b,a?,z)

)
.

(30)

Here, the second inequality follows from (27) and (28).
Specifically, a? is the maximizer for V , and pa,? is the min-
imizer forU . Hence, the first term of (30) is no smaller than
LV (b), and the second term is no greater than LU(b).

Simplifying (30), we obtain

0≤γ
∑
s∈S

b(s)
∑

t,z∈S×Z
pa

?,?(t, z|s)
(
V (b′b,a?,z)− U(b′b,a?,z)

)
≤γ

∑
s∈S

b(s)
∑

t,z∈S×Z
pa

?,?(t, z|s)
∣∣V (b′b,a?,z)− U(b′b,a?,z)

∣∣
≤γ

∑
s∈S

b(s)
∑

t,z∈S×Z
pa

?,?(t, z|s) ||V − U ||0

=γ ||V − U ||0, (31)

where

||V − U ||0 = sup
b∈B
|V (b)− U(b)|. (32)

Analogously, we can establish the following when we as-
sume LV (b) ≤ LU(b):

0 ≤ LU(b)− LV (b) ≤ γ ||V − U ||0. (33)

Hence, for any b, we have

|LV (b)− LU(b)| ≤ γ ||V − U ||0. (34)

Then

||LV − LU ||0 = sup
b∈B
|LV (b)− LU(b)| ≤ γ ||V − U ||0.

(35)

For 0 < γ < 1, this establishes that L is a contraction
mapping.
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