
Coordinate Descent Converges Faster with the

Gauss-Southwell Rule Than Random Selection:

Appendix

Julie Nutini1, Mark Schmidt1, Issam H. Laradji1, Michael Friedlander2, Hoyt Koepke3

1University of British Columbia, 2University of California, Davis, 3Dato

In this document, we derive several results and present additional experiments that were omitted from
the main paper due to space limitations. To allow easy referencing, the sections are numbered according to
the location in the main paper that they are referenced.

2 Efficient calculation of GS rules for sparse problems

We first give additional details on how to calculate the GS rule efficiently for sparse instances of problems
h1 and h2. We will consider the case where each gi is smooth, but the ideas can be extended to allow a
non-smooth gi. Further, note that the efficient calculation does not rely on convexity, so these strategies can
also be used for non-convex problems.

Problem h2

Problem h2 has the form

h2(x) :=
∑
i∈V

gi(xi) +
∑

(i,j)∈E

fij(xi, xj),

where each gi and fij are differentiable and G = {V,E} is a graph where the number of vertices |V | is the
same as the number of variables n. If all nodes in the graph have a degree (number of neighbours) bounded
above by some constant d, we can implement the GS rule in O(d log n) after an O(n+ |E|) time initialization
by maintaining the following information about xk:

1. A vector containing the values ∇igi(xki).

2. A matrix containing the values∇ifij(xki , xkj) in the first column and∇jfij(xki , xkj) in the second column.

3. The elements of the gradient vector ∇h2(xk) stored in a binary max heap data structure [see Cormen
et al., 2001, Chapter 6].

Given the heap structure, we can compute the GS rule in O(1) by simply reading the index value of the root
node in the max heap. The costs for initializing these structures are:

1. O(n) to compute gi(x
0
i) for all n nodes.

2. O(|E|) to compute ∇ijfij(x0i , x0j) for all |E| edges.

3. O(n + |E|) to sum the values in the above structures to compute ∇h(x0), and O(n) to construct the
initial max heap.

1

Thus, the one-time initialization cost is O(n + |E|). The costs of updating the data structures after we
update xkik to xk+1

ik
for the selected coordinate ik are:

1. O(1) to compute gik(xk+1
ik

).

2. O(d) to compute ∇ijfij(xk+1
i , xk+1

j) for (i, j) ∈ E and i = ik or j = ik (only d such values exist by
assumption, and all other ∇ijfij(xi, xj) are unchanged).

3. O(d) to update up to d elements of ∇h(xk+1) that differ from ∇h(xk) by using differences in changed
values of gi and fij , followed by O(d log n) to perform d updates of the heap at a cost of O(log n) for
each update.

The most expensive part of the update is modifying the heap, and thus the total cost is O(d log n).1

Problem h1

Problem h1 has the form

h1(x) :=

n∑
i=1

gi(xi) + f(Ax),

where gi and f are differentiable, and A is an m by n matrix where we denote column i by ai and row j by
aTj . Note that f is a function from IRm to IR, and we assume ∇jf only depends on aTj x. While this is a
strong assumption (e.g., it rules out f being the product function), this class includes a variety of notable
problems like the least squares and logistic regression models from the main paper. If A has z non-zero
elements, with a maximum of c non-zero elements in each column and r non-zero elements in each row, then
with a pre-processing cost of O(z) we can implement the GS rule in this setting in O(cr log n) by maintaining
the following information about xk:

1. A vector containing the values ∇igi(xki).

2. A vector containing the product Axk.

3. A vector containing the values ∇f(Axk).

4. A vector containing the product AT∇f(Axk).

5. The elements of the gradient vector ∇h1(xk) stored in a binary max heap data structure.

The heap structure again allows us to compute the GS rule in O(1), and the costs of initializing these
structures are:

1. O(n) to compute gi(x
0
i) for all n variables.

2. O(z) to compute the product Ax0.

3. O(m) to compute ∇f(Ax0) (using that ∇jf only depends on aTj x
0).

4. O(z) to compute AT∇f(Ax0).

5. O(n) to add the ∇igi(x0i) to the above product to obtain ∇h1(x0) and construct the initial max heap.

As it is reasonable to assume that z ≥ m and z ≥ n (e.g., we have at least one non-zero in each row and
column), the cost of the initialization is thus O(z). The costs of updating the data structures after we update
xkik to xk+1

ik
for the selected coordinate ik are:

1For less-sparse problems where n < d logn, using a heap is actually inefficient and we should simply store ∇h(xk) as a
vector. The initialization cost is the same, but we can then perform the GS rule in O(n) by simply searching through the vector
for the maximum element.

2

1. O(1) to compute gik(xk+1
ik

).

2. O(c) to update the product using Axk+1 = Axk + (xk+1
ik
− xkik)ai, since ai has at most c non-zero

values.

3. O(c) to update up to c elements of ∇f(Axk+1) that have changed (again using that ∇jf only depends
on aTj x

k+1).

4. O(cr) to perform up to c updates of the form AT∇f(Axk+1) = AT∇f(Axk) + (∇jf(Axk+1) −
∇jf(Axk))(ai)

T , where each update costs O(r) since each ai has at most r non-zero values.

5. O(cr log n) to update the gradients in the heap.

The most expensive part is again the heap update, and thus the total cost is O(cr log n).

4 Relationship between µ1 and µ

We can establish the relationship between µ and µ1 by using the known relationship between the 2-norm
and the 1-norm,

‖x‖1 ≥ ‖x‖ ≥
1√
n
‖x‖1.

In particular, if we assume that f is µ-strongly convex in the 2-norm, then for all x and y we have

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2

≥ f(x) + 〈∇f(x), y − x〉+
µ

2n
‖y − x‖21,

implying that f is at least µ
n -strongly convex in the 1-norm. Similarly, if we assume that a given f is

µ1-strongly convex in the 1-norm then for all x and y we have

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ1

2
‖y − x‖21

≥ f(x) + 〈∇f(x), y − x〉+
µ1

2
‖y − x‖2,

implying that f is at least µ1-strongly convex in the 2-norm. Summarizing these two relationships, we have

µ

n
≤ µ1 ≤ µ.

4.1 Analysis for separable quadratic case

We first establish an equivalent definition of strong-convexity in the 1-norm, along the lines of Nesterov
[2004, Theorem 2.1.9]. Subsequently, we use this equivalent definition to derive µ1 for a separable quadratic
function.

Equivalent definition of strong-convexity

Assume that f is µ1-strongly convex in the 1-norm, so that for any x, y ∈ IRn we have

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ1

2
‖y − x‖21.

Reversing x and y in the above gives

f(x) ≥ f(y) + 〈∇f(y), x− y〉+
µ1

2
‖x− y‖21,

3

and adding these two together yields

〈∇f(y)−∇f(x), y − x〉 ≥ µ1‖y − x‖21. (1)

Conversely, assume that for all x and y we have

〈∇f(y)−∇f(x), y − x〉 ≥ µ1‖y − x‖21,

and consider the function g(τ) = f(x+ τ(y − x)) for τ ∈ IR. Then

f(y)− f(x)− 〈∇f(x), y − x〉 = g(1)− g(0)− 〈∇f(x), y − x〉

=

∫ 1

0

dg

dτ
(τ)− 〈∇f(x), y − x〉 dτ

=

∫ 1

0

〈∇f(x+ τ(y − x)), y − x〉 − 〈∇f(x), y − x〉 dτ

=

∫ 1

0

〈∇f(x+ τ(y − x))−∇f(x), y − x〉 dτ

≥
∫ 1

0

µ1

τ
‖τ(y − x)‖21 dτ

=

∫ 1

0

µ1τ‖y − x‖21 dτ

=
µ1

2
τ2‖y − x‖21

∣∣∣∣1
0

=
µ1

2
‖y − x‖21.

Thus, µ1-strong convexity in the 1-norm is equivalent to having

〈∇f(y)−∇f(x), y − x〉 ≥ µ1‖y − x‖21 ∀ x, y. (2)

Strong-convexity constant µ1 for separable quadratic functions

Consider a strongly convex quadratic function f with a diagonal Hessian H = ∇2f(x) = diag(λ1, . . . , λn),
where λi > 0 for all i = 1, . . . , n. We show that in this case

µ1 =

(
n∑
i=1

1

λi

)−1
.

From the previous section, µ1 is the minimum value such that (2) holds,

µ1 = inf
x 6=y

〈∇f(y)−∇f(x), y − x〉
‖y − x‖21

.

4

Using ∇f(x) = Hx+ b for some b and letting z = y − x, we get

µ1 = inf
x6=y

〈(Hy − b)− (Hx− b), y − x〉
‖y − x‖21

= inf
x6=y

〈H(y − x), y − x〉
‖y − x‖21

= inf
z 6=0

zTHz

‖z‖21
= min
‖z‖1=1

zTHz

= min
eT z=1

n∑
i=1

λiz
2
i ,

where the last two lines use that the objective is invariant to scaling of z and to the sign of z (respectively),
and where e is a vector containing a one in every position. This is an equality-constrained strictly-convex
quadratic program, so its solution is given as a stationary point (z∗, η∗) of the Lagrangian,

Λ(z, η) =

n∑
i=1

λiz
2
i + η(1− eT z).

Differentiating with respect to each zi for i = 1, . . . , n and equating to zero, we have for all i that 2λiz
∗
i −η∗ =

0, or

z∗i =
η∗

2λi
. (3)

Differentiating the Lagrangian with respect to η and equating to zero we obtain 1−eT z∗ = 0, or equivalently

1 = eT z∗ =
η∗

2

∑
j

1

λj
,

which yields

η∗ = 2

∑
j

1

λj

−1 .
Combining this result for η∗ with equation (3), we have

z∗i =
1

λi

∑
j

1

λj

−1 .

5

This gives the minimizer, so we evaluate the objective at this point to obtain µ1,

µ1 =

n∑
i=1

λi(z
∗
i)2

=

n∑
i=1

λi

 1

λi

 n∑
j=1

1

λj

−1


2

=

n∑
i=1

1

λi

 n∑
j=1

1

λj

−2

=

 n∑
j=1

1

λj

−2(n∑
i=1

1

λi

)

=

 n∑
j=1

1

λj

−1 .
Interpretation in terms of ‘working together’

In this separable quadratic case, µ1 is given by the harmonic mean of the eigenvalues of the Hessian divided
by n. The harmonic mean is dominated by its smallest values, and the harmonic mean divided by n has a
particular interpretation in terms of processes ‘working together’ [Ferger, 1931]. If each λi represents the
time taken by each process to finish a task (e.g., large values of λi correspond to slow workers), then µ is the
time needed by the fastest worker to complete the task, and µ1 is the time needed to complete the task if all
processes work together (and have independent effects). Using this interpretation, the GS rule provides the
most benefit over random selection when working together is not efficient, meaning that if the n processes
work together, then the task is not solved much faster than if the fastest worker performed the task alone.
This explains the non-intuitive scenario where GS provides the most benefit: if all workers have the same
efficiency, then working together solves the problem n times faster. Similarly, if there is one slow worker
(large λi), then the problem is solved roughly n times faster by working together. On the other hand, if
most workers are slow (many large λi), then working together has little benefit.

5.1 Gauss-Southwell, exact optimization: convergence rate

We can obtain a faster convergence for GS using exact coordinate optimization for sparse variants of problems
h1 and h2, by observing that the convergence rate can be expressed in terms of the sequence of (1−µ1/Lik)
values,

f(xk)− f(x∗) ≤

 k∏
j=1

(
1− µ1

Lij

) [f(x0)− f(x∗)].

The worst case occurs when the sequence of (1−µ1/Lik) values is as large as possible. However, using exact
coordinate optimization guarantees that, after we have updated coordinate i, the GS rule will never select
it again until one of its neighbours has been selected. Thus, we can obtain a tighter bound on the worst-
case convergence rate using GS with exact coordinate optimization on iteration k, by solving the following
combinatorial optimization problem defined on a weighted graph:

Problem 1. We are given a graph G = (V,E) with n nodes, a number Mi associated with each node i, and
an iteration number k. Choose a sequence {it}kt=1 that maximizes the sum of the Mit , subject to the following

6

constraint: after each time node i has been chosen, it cannot be chosen again until after a neighbour of node
i has been chosen.

We can use the Mi chosen by this problem to obtain an upper-bound on the sequence of log(1−µ1/Li) values,
and if the largest Mi values are not close to each other in the graph, then this rate can be much faster than
the rate obtained by alternating between the largest Mi values. In the particular case of chain-structured
graphs, a worst-case sequence can be constructed that spends all but O(n) iterations in one of two solution
modes: (i) alternate between two nodes i and j that are connected by an edge with the highest value of
Mi+Mj

2 , or (ii) alternate between three nodes {i, j, k} with the highest value of
Mi+Mj+Mk

3 , where there is
an edge from i to j and from j to k, but not from i to k. To show that these are the two solution modes,
observe that the solution must eventually cycle because there are a finite number of nodes. If you have more
than three nodes in the cycle, then you can always remove one node from the cycle to obtain a better average
weight for the cycle without violating the constraint. We will fall into mode (i) if the average of Mi and Mj

in this mode is larger than the average of Mi, Mj and Mk in the second mode. We can construct a solution
to this problem that consists of a ‘burn-in’ period, where we choose the largest Mi, followed by repeatedly
going through the better of the two solution modes up until the final three steps, where a ‘burn-out’ phase
arranges to finish with several large Mi. By setting Mi = log(1− µ1/Li), this leads to a convergence rate of
the form

f(xk)− f(x∗) ≤ O
(
max{ρG2 , ρG3 }k

)
[f(x0)− f(x∗)],

where ρG2 is the maximizer of
√

(1− µ1/Li)(1− µ1/Lj) among all consecutive nodes i and j in the chain,

and ρG3 is the maximizer of 3
√

(1− µ1/Li)(1− µ1/Lj)(1− µ1/Lk) among consecutive nodes i, j, and k. The
O() notation gives the constant due to choosing higher (1− µ1/Li) values during the burn-in and burn-out
periods.The implication of this result is that, if the large Li values are more than two edges away from each
other in the graph, the convergence rate can be much faster.

6.2 Gauss-Southwell-Lipschitz rule: convergence rate

The coordinate-descent method with a constant step-size of Lik uses the iteration

xk+1 = xk − 1

Lik
∇ikf(xk)eik .

Because f is coordinate-wise Lik -Lipschitz continuous, we obtain the following bound on the progress made
by each iteration:

f(xk+1) ≤ f(xk) +∇ikf(xk)(xk+1 − xk)ik +
Lik
2

(xk+1 − xk)2ik

= f(xk)− 1

Lik
(∇ikf(xk))2 +

Lik
2

[
1

Lik
∇ikf(xk)

]2
= f(xk)− 1

2Lik
[∇ikf(xk)]2

= f(xk)− 1

2

[
∇ikf(xk)√

Lik

]2
.

(4)

By choosing the coordinate to update according to the Gauss-Southwell-Lipchitz (GSL) rule,

ik = argmax
i

|∇if(xk)|√
Li

,

we obtain the tightest possible bound on (4). We define the following norm,

‖x‖L =

n∑
i=1

√
Li|xi|, (5)

7

which has a dual norm of

‖x‖∗L = max
i

1√
Li
|xi|.

Under this notation, and using the GSL rule, (4) becomes

f(xk+1) ≤ f(xk)− 1

2

(
‖∇f(xk)‖∗L

)2
,

Measuring strong-convexity in the norm ‖ · ‖L, we get

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µL
2
‖y − x‖2L.

Minimizing both sides with respect to y we get

f(x∗) ≥ f(x)− sup
y
{〈−∇f(x), y − x〉 − µL

2
‖y − x‖2L}

= f(x)−
(µL

2
‖ · ‖2L

)∗
(−∇f(x))

= f(x)− 1

2µL

(
‖∇f(x)‖∗L

)2
.

Putting these together we get

f(xk+1)− f(x∗) ≤ (1− µL)[f(xk)− f(x∗)]. (6)

6.2 Comparing µL to µ1 and µ

By the logic of Section 4 of this document, to establish a relationship between different strong-convexity
constants under different norms, it is sufficient to establish the relationships between the squared norms. In
this section, we use this to establish the relationship between µL defined in (5) and both µ1 and µ.

Relationship between µL and µ1

We have
c‖x‖1 − ‖x‖L = c

∑
i

|xi| −
∑
i

√
Li|xi| =

∑
i

(c−
√
Li)|xi|,

Assuming c ≥
√
L, where L = maxi{Li}, the expression is non-negative and we get

‖x‖L ≤
√
L‖x‖1.

By using

c‖x‖L − ‖x‖1 =
∑
i

(c
√
Li − 1)|xi|,

and assuming c ≥ 1√
Lmin

, where Lmin = mini{Li}, this expression is nonnegative and we get

‖x‖1 ≤
1√
Lmin

‖x‖L.

The relationship between µL and µ1 is based on the squared norm, so in summary we have

µ1

L
≤ µL ≤

µ1

Lmin
.

8

Relationship between µL and µ

Let ~L denote a vector with elements
√
Li, and we note that

‖~L‖ =

(∑
i

(
√
Li)

2

)1/2

=

(∑
i

Li

)1/2

=
√
nL̄, where L̄ =

1

n

∑
i

Li.

Using this, we have

‖x‖L = xT (sign(x) ◦ ~L) ≤ ‖x‖‖ sign(x) ◦ ~L‖ =
√
nL̄‖x‖.

This implies that
µ

nL̄
≤ µL.

Note that can also show that µL ≤ µ
Lmin

, but this is less tight than the upper bound from the previous
section because µ1 ≤ µ.

Equivalence of Gauss-Southwell-Lipschitz and nearest neighbour search

Dhillon et al. [2011] discuss an interesting connection between the GS rule and the nearest neighbour search
(NNS) problem for problems of the form

min
x∈IRn

F (x) = f(Ax). (7)

This is a special case of h1 with no gi functions, and its gradient has the special form

∇F (x) = AT r(x),

where r(x) = ∇f(Ax). We use the symbol r because r(x) is the residual vector (Ax− b) in the special case
of least squares. For this problem structure the GS rule has the form

ik = argmax
i
|r(x)Tai|,

where in this section we again use ai to denote column i of A for i = 1, . . . , n. Here, we also need a notation
for its negation; for this, we also use ai to denote −(ai−n) for i = (n+1), . . . , 2n. Under this notation, Dhillon
et al. [2011] propose to approximate the above argmax by solving the following NNS problem

ik = argmin
i∈[2n]

‖r(x)− ai‖,

where if i in the argmin is greater than n, we return (i − n). We can justify this approximation using the
logic

ik = argmin
i∈[2n]

‖r(x)− ai‖

= argmin
i∈[2n]

1

2
‖r(x)− ai‖2

= argmin
i∈[2n]

1

2
‖r(x)‖2︸ ︷︷ ︸
constant

−r(x)Tai +
1

2
‖ai‖2

= argmax
i∈[2n]

r(x)Tai −
1

2
‖ai‖2

= argmax
i∈[n]

|r(x)Tai| −
1

2
‖ai‖2.

9

Thus, the nearest neighbour search computes an approximation to the GS rule that is biased towards
coordinates where ‖ai‖ is small. Note that this formulation is equivalent to the GS rule in the special case
that ‖ai‖ = 1 (or any other constant) for all i. Shrivastava and Li [2014] have more recently considered the
case where ‖ai‖ ≤ 1 and incorporate powers of ‖ai‖ in the NNS to yield a better approximation.

In the next 2 sections, we explore the connection between the GSL rule and the NNS problem. We in
particular show the surprising result that for many problems of the form (7) we can formulate the exact GSL
rule as a NNS problem (i.e., it is not an approximation as it is for the GS rule). We start by doing this for
least squares, then consider more general scenarios.

Equivalence of GSL and NNS for least squares

The classic least squares problem is defined by

min
x∈IRn

f(x) ≡ 1

2
‖Ax− b‖2,

where we will use the same notation as Section 2 for problem h1 for rows and columns of A. The gradient
and Hessian for this problem have the form

∇f(x) = AT (Ax− b), ∇2f(x) = ATA.

Using r(x) = Ax− b, the gradient elements have the form

∇if(x) = r(x)Tai.

Since the diagonals of the Hessian are constant, we have that

Li = ∇2
iif(x) = (ai)

Tai = ‖ai‖2.

Using these properties, we can compute the GSL rule by finding the index i corresponding to a solution of
a normalized NNS problem

ik = argmin
i∈[2n]

∣∣∣∣∣∣∣∣r(x)− ai
‖ai‖

∣∣∣∣∣∣∣∣ . (8)

The exactness of this formula follows because

ik = argmin
i∈[2n]

1

2
‖r(x)− ai/‖ai‖‖2

= argmin
i∈[2n]

1

2
‖r(x)‖2︸ ︷︷ ︸
constant

−r(x)Tai
‖ai‖

+
1

2

‖ai‖2

‖ai‖2︸ ︷︷ ︸
constant

= argmax
i∈[n]

|r(x)Tai|
‖ai‖

= argmax
i∈[n]

|∇if(x)|√
Li

.

Thus, the form of the Lipschitz constant conveniently removes the bias towards smaller values of ‖ai‖ when
we try to formulate the classic GS rule as a NNS problem.

Equivalence of GSL and NNS for linear prediction

Consider the more general scenario where we have

min
x∈IRn

F (x) =

m∑
i=1

f(aTi x),

10

for some twice-differentiable univariate function f where f ′ is γ-Lipschitz continuous. This includes least
squares and logistic regression as a special case, and indeed this is a common abstraction in machine learning
and statistics. For this problem structure we have

∇iF (x) =

m∑
j=1

aijf
′(aTj x) = r(x)Tai,

where we define r(x) = [f ′(aT1 x), f ′(aTi x), . . . , f ′(aTmx)]T . The diagonals of the Hessian have the form

∇2
iiF (x) =

m∑
j=1

a2ijf
′′(aTj x).

By using that f ′ is γ-Lipschitz continuous we have

Li = sup
x∈IRn

∇2
iiF (x)

= sup
x∈IRn

m∑
j=1

a2ijf
′′(aTj x)

≤
m∑
j=1

a2ij sup
x∈IRn

f ′′(aTj x)

≤ ‖ai‖2 sup
x∈IR

f ′′(x)

= γ‖ai‖2,

where the inequalities will typically hold with equality (e.g., because we can typically achieve the supremum
with a common x like x = 0, and because each aj will have at least one non-zero element so aTj x spans IR).
We now show that the normalized NNS problem (8) is also equivalent to the GSL rule for this problem,

ik = argmin
i∈[2n]

1

2
‖r(x)− ai/‖ai‖‖2

= argmin
i∈[2n]

1

2
‖r(x)‖2︸ ︷︷ ︸
constant

−r(x)Tai
‖ai‖

+
1

2

‖ai‖2

‖ai‖2︸ ︷︷ ︸
constant

= argmax
i∈[n]

|r(x)Tai|√
γ‖ai‖

= argmax
i∈[n]

|∇if(x)|√
Li

,

where we have used that γ > 0. Interestingly, we thus do not need to know γ to implement the GSL rule as
a NNS problem. If we had a different function fi for each training example and they each had a different γi,
it would break the equivalence of GSL with normalized NNS. On the other hand, the GSL rule is equivalent
to a NNS for general functions of the form f(Ax), whenever for all i we have that Li = γ‖ai‖2 for some
constant γ.

7.2 Approximate Gauss-Southwell with additive error

In the additive error regime, the approximate Gauss-Southwell rule chooses an ik satisfying

|∇ikf(xk)| ≥ ‖∇f(xk)‖∞ − εk, where εk ≥ 0 ∀k,

11

and we note that we can assume εk ≤ ‖∇f(xk)‖∞ without loss of generality because we must always choose
an i with |∇ikf(xk)| ≥ 0. Applying this to our bound on the iteration progress, we get

f(xk+1) ≤ f(xk)− 1

2L

[
∇ikf(xk)

]2
≤ f(xk)− 1

2L

(
‖∇f(xk)‖∞ − εk

)2
= f(xk)− 1

2L

(
‖∇f(xk)‖2∞ − 2εk‖∇f(xk)‖∞ + ε2k

)
= f(xk)− 1

2L
‖∇f(xk)‖2∞ +

εk
L
‖∇f(xk)‖∞ −

ε2k
2L

(9)

We first give a result that assumes f is L1-Lipschitz continuous in the 1-norm. This implies an inequality
that we prove next, followed by a convergence rate that depends on L1. However, note that L ≤ L1 ≤ Ln,
so this potentially introduces a dependency on n. We subsequently give a slightly less concise result that
has a worse dependency on ε but does not rely on L1.

Gradient bound in terms of L1

We say that ∇f is L1-Lipschitz continuous in the 1-norm if we have for all x and y that

‖∇f(x)−∇f(y)‖∞ ≤ L1‖x− y‖1.

Similar to Nesterov [2004, Theorem 2.1.5], we now show that this implies

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
1

2L1
‖∇f(y)−∇f(x)‖2∞, (10)

and subsequently that

‖∇f(xk)‖∞ = ‖∇f(xk)−∇f(x∗)‖∞ ≤
√

2L1(f(xk)− f(x∗)) ≤
√

2L1(f(x0)− f(x∗)), (11)

where we have used that f(xk) ≤ f(xk−1) for all k and any choice of ik−1 (this follows from the basic bound
on the progress of coordinate descent methods).

We first show that ∇f being L1-Lipschitz continuous in the 1-norm implies that

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L1

2
‖y − x‖21,

12

for all x and y. Consider the function g(τ) = f(x+ τ(y − x)) with τ ∈ IR. Then

f(y)− f(x)− 〈∇f(x), y − x〉 = g(1)− g(0)− 〈∇f(x), y − x〉

=

∫ 1

0

dg

dτ
(τ)− 〈∇f(x), y − x〉 dτ

=

∫ 1

0

〈∇f(x+ τ(y − x)), y − x〉 − 〈∇f(x), y − x〉 dτ

=

∫ 1

0

〈∇f(x+ τ(y − x))−∇f(x), y − x〉 dτ

≤
∫ 1

0

‖∇f(x+ τ(y − x))−∇f(x)‖1‖y − x‖∞ dτ

≤
∫ 1

0

L1τ‖y − x‖1 ‖y − x‖∞ dτ

≤
∫ 1

0

L1τ‖y − x‖21 dτ

=
L1

2
τ2‖y − x‖21

∣∣∣∣1
0

=
L1

2
‖y − x‖21.

To subsequently show (10), fix x ∈ IRn and consider the function

φ(y) = f(y)− 〈∇f(x), y〉,

which is convex on IRn and also has an L1-Lipschitz continuous gradient in the 1-norm, as

‖φ′(y)− φ′(x)‖∞ = ‖(∇f(y)−∇f(x))− (∇f(x)−∇f(x))‖∞
= ‖∇f(y)−∇f(x)‖∞
≤ L1‖y − x‖1.

As the minimizer of φ is x (i.e., φ′(x) = 0), for any y ∈ IRn we have

φ(x) = min
v
φ(v) ≤ min

v
φ(y) + 〈φ′(y), v − y〉+

L1

2
‖v − y‖21

= φ(y)− sup
v
〈−φ′(y), v − y〉 − L1

2
‖v − y‖21

= φ(y)− 1

2L1
‖φ′(y)‖2∞.

Substituting in the definition of φ, we have

f(x)− 〈∇f(x), x〉 ≤ f(y)− 〈∇f(x), y〉 − 1

2L1
‖∇f(y)−∇f(x)‖2∞

⇐⇒ f(x) ≤ f(y) + 〈∇f(x), x− y〉 − 1

2L1
‖∇f(y)−∇f(x)‖2∞

⇐⇒ f(y) ≥ f(x) + 〈∇f(x), y − x〉+
1

2L1
‖∇f(y)−∇f(x)‖2∞.

13

Additive error bound in terms of L1

Using (11) in (9) and noting that εk ≥ 0, we obtain

f(xk+1) ≤ f(xk)− 1

2L
‖∇f(xk)‖2∞ +

εk
L
‖∇f(xk)‖∞ −

ε2k
2L

≤ f(xk)− 1

2L
‖∇f(xk)‖2∞ +

εk
L

√
2L1(f(x0)− f(x∗))− ε2k

2L

≤ f(xk)− 1

2L
‖∇f(xk)‖2∞ + εk

√
2L1

L

√
f(x0)− f(x∗).

Applying strong convexity (taken with respect to the 1-norm), we get

f(xk+1)− f(x∗) ≤
(

1− µ1

L

)[
f(xk)− f(x∗)

]
+ εk

√
2L1

L

√
f(x0)− f(x∗),

which implies

f(xk+1)− f(x∗) ≤
(

1− µ1

L

)k[
f(x0)− f(x∗)

]
+

k∑
i=1

(
1− µ1

L

)k−i
εi

√
2L1

L

√
f(x0)− f(x∗)

=

(
1− µ1

L

)k[
f(x0)− f(x∗) +

√
f(x0)− f(x∗)Ak

]
,

where

Ak =

√
2L1

L

k∑
i=1

(
1− µ1

L

)−i
εi.

Additive error bound in terms of L

By our additive error inequality, we have

|∇ikf(xk)|+ εk ≥ ‖∇f(xk)‖∞.

Using this again in (9) we get

f(xk+1) ≤ f(xk)− 1

2L
‖∇f(xk)‖2∞ +

εk
L
‖∇f(xk)‖∞ −

ε2k
2L

≤ f(xk)− 1

2L
‖∇f(xk)‖2∞ +

εk
L

(
|∇ikf(xk)|+ εk

)
− ε2k

2L

= f(xk)− 1

2L
‖∇f(xk)‖2∞ +

εk
L
|∇ikf(xk)|+ ε2k

2L
.

Further, from our basic progress bound that holds for any ik we have

f(x∗) ≤ f(xk+1) ≤ f(xk)− 1

2L

[
∇ikf(xk)

]2
≤ f(x0)− 1

2L

[
∇ikf(xk)

]2
,

which implies

|∇ikf(xk)| ≤
√

2L(f(x0)− f(x∗)).

14

and thus that

f(xk+1) ≤ f(xk)− 1

2L
‖∇f(xk)‖2∞ +

εk
L

√
2L(f(x0)− f(x∗)) +

ε2k
2L

= f(xk)− 1

2L
‖∇f(xk)‖2∞ + εk

√
2

L

√
f(x0)− f(x∗) +

ε2k
2L
.

Applying strong convexity and applying the inequality recursively we obtain

f(xk+1)− f(x∗) ≤
(

1− µ1

L

)k[
f(x0)− f(x∗)

]
+

k∑
i=1

(
1− µ1

L

)k−i(
εi

√
2

L

√
f(x0)− f(x∗) +

ε2i
2L

)

=

(
1− µ1

L

)k[
f(x0)− f(x∗) +Ak

]
,

where

Ak =

k∑
i=1

(
1− µ1

L

)−i(√
2

L
εi
√
f(x0)− f(x∗) +

ε2i
2L

)
.

Although uglier than the expression depending on L1, this expression will tend to be smaller unless εk is not
small.

8. Convergence Analysis of GS-s, GS-r, and GS-q Rules

In this section, we consider problems of the form

min
x∈IRn

F (x) = f(x) + g(x) = f(x) +

n∑
i=1

gi(xi),

where f satisfies our usual assumptions, but the gi can be non-smooth. We first introduce some notation
that will be needed to state our result for the GS-q rule, followed by stating the result and then showing
that it holds in two parts. We then turn to showing that the rule cannot hold in general for the GS-s and
GS-r rules.

Notation and basic inequality

To analyze this case, an important inequality we will use is that the L-Lipschitz-continuity of ∇if implies
that for all x, i, and d that

F (x+ dei) = f(x+ dei) + g(x+ dei) ≤ f(x) + 〈∇f(x), dei〉+
L

2
d2 + g(x+ dei)

= f(x) + g(x) + 〈∇f(x), dei〉+
L

2
d2 + gi(xi + d)− gi(xi)

= F (x) + Vi(x, d),

(12)

where

Vi(x, d) ≡ 〈∇f(x), dei〉+
L

2
d2 + gi(xi + d)− gi(xi).

Notice that the GS-q rule is defined by

ik = argmin
i
{min

d
Vi(x, d)},

15

We use the notation dki = argmind Vi(x
k, d) and we will use dk to denote the vector containing these values

for all i. When using the GS-q rule, the iteration is defined by

xk+1 = xk + dikeik

= xk + argmin
d
{Vik(x, d)}eik .

(13)

In this notation the GS-r rule is given by

jk = argmax
i
|dki |.

We will use the notation xk+ to be the step that would be taken at xk if we update coordinate jk according
the GS-r rule

xk+ = xk + djkejk .

From the optimality of dki , we have for any i that

−L[(xki −
1

L
∇if(xk))− (xki + dki)] ∈ ∂gi(xki + dki), (14)

and we will use the notation ski for the unique element of ∂gj(x
k
j + dkj) satisfying this relationship. We use

sk to denote the vector containing these values.

Convergence bound for GS-q rule

Under this notation, we can show that coordinate descent with the GS-q rule satisfies the bound

F (xk+1)− F (x∗) ≤ min
{(

1− µ

Ln

)
[f(xk)− f(x∗)],

(
1− µ1

L

)
[f(x0)− f(x∗)] + εk

}
, (15)

where
εk ≤

µ1

L

(
g(xk+)− g(xk + dk) + 〈sk, (xk + dk)− xk+〉

)
,

We note that if g is linear then εk = 0 and this convergence rate reduces to

F (xk+1)− F (x∗) ≤
(

1− µ1

L

)[
F (xk)− F (x∗)

]
.

Otherwise, εk depends how far g(xk+) lies above a particular linear underestimate extending from (xk + dk),
as well as the conditioning of f . We show this result by first showing that the GS-q rule makes at least
as much progress as randomized selection (first part of the min), and then showing that the GS-q rule also
makes at least as much progress as the GS-r rule (second part of the min).

16

GS-q is at least as fast as random

Our argument in this section follows a similar approach to Richtárik and Takáč [2014]. In particular,
combining (12) and (13) we have the following upper bound on the iteration progress

F (xk+1) ≤ F (xk) + min
i∈{1,2,...,n}

{
min
d∈IR

Vi(x
k, d)

}
,

= F (xk) + min
i∈{1,2,...,n}

{
min
y∈IRn

Vi(x
k, yi − xki)

}
,

= F (xk) + min
y∈IRn

{
min

i∈{1,2,...,n}
Vi(x

k, yi − xki)

}
,

≤ F (xk) + min
y∈IRn

{
1

n

n∑
i=1

Vi(x
k, yi − xk)

}

= F (xk) +
1

n
min
y∈IRn

{
〈∇f(xk), y − xk〉+

L

2
‖y − xk‖2 + g(y)− g(xk)

}
=

(
1− 1

n

)
F (xk) +

1

n
min
y∈IRn

{
f(xk) + 〈∇f(xk), y − xk〉+

L

2
‖y − xk‖2 + g(y)

}
.

From strong convexity of f , we have that F is also µ-strongly convex and that

f(xk) ≤ f(y)− 〈∇f(xk), y − xk)〉 − µ

2
‖y − xk‖2,

F (αx∗ + (1− α)xk) ≤ αf(x∗) + (1− α)f(xk)− α(1− α)µ

2
‖xk − x∗‖2,

for any y ∈ IRn and any α ∈ [0, 1] [see Nesterov, 2004, Theorem 2.1.9]. Using these gives us

F (xk+1)

≤
(

1− 1

n

)
F (xk) +

1

n
min
y∈IRn

{
f(y)− µ

2
‖y − x‖2 +

L

2
‖y − xk‖2 + g(y)

}
=

(
1− 1

n

)
F (xk) +

1

n
min
y∈IRn

{
F (y) +

L− µ
2
‖y − xk‖2

}
≤
(

1− 1

n

)
F (xk) +

1

n
min
α∈[0,1]

{
F (αx∗ + (1− α)xk) +

α2(L− µ)

2
‖xk − x∗‖2

}
≤
(

1− 1

n

)
F (xk) +

1

n
min
α∈[0,1]

{
αF (x∗) + (1− α)F (xk) +

α2(L− µ)−α(1− α)µ

2
‖xk − x∗‖2

}
≤
(

1− 1

n

)
F (xk) +

1

n

[
α∗F (x∗) + (1− α∗)F (xk)

] (
choosing α∗ =

µ

L
∈ (0, 1]

)
=

(
1− 1

n

)
F (xk) +

α∗

n
F (x∗) +

(1− α∗)
n

F (xk)

= F (xk)− α∗

n
[F (xk)− F (x∗)].

Subtracting F (x∗) from both sides of this inequality gives us

F (xk+1)− F (x∗) ≤
(

1− µ

nL

)
[F (xk)− F (x∗)].

17

GS-q is at least as fast as GS-r

In this section we derive the right side of the bound (15) for the GS-r rule, but note it also applies to the
GS-q rule because from (12) and (13) we have

F (xk+1) ≤ F (xk) + min
i
Vi(x, d

k
i) (GS-q rule)

≤ F (xk) + Vjk(x, dkjk) (jk selected by the GS-r rule)

Note that we lose progress by considering a bound based on the GS-r rule, but its connection to the∞-norm
will make it easier to derive an upper bound.

By the convexity of gjk we have

gjk(xkjk) ≥ gjk(xkjk + dkjk) + skjk(xkjk − (xkjk + dkjk))

= gjk(xkjk + dkjk)− (−Ldkjk −∇jkf(xk))(dkjk)

= gjk(xkjk + dkjk) +∇jkf(xk)dkjk + L(dkjk)2,

where ski is defined by (14). Using this we have that

F (xk+1) ≤ F (xk) + Vj(x, d
k
jk

)

= F (xk) +∇jf(xk)(dkjk) +
L

2
(dkjk)2 + gi(x

k
jk

+ dkjk)− gi(xkjk)

≤ F (xk) +∇jf(xk)(dkjk) +
L

2
(dkjk)2 −∇jkf(xk)dkjk − L(dkjk)2

= F (xk)− L

2
(dkjk)2.

Adding and subtracting F (x∗) and noting that jk is selected using the GS-r rule, we obtain the upper bound

F (xk+1)− F (x∗) ≤ F (xk)− F (x∗)− L

2
||dk||2∞. (16)

Recall that we use xk+ to denote the iteration that would result if we chose jk and actually performed the
GS-r update. Using the Lipschitz continuity of the gradient and definition of the GS-q rule again, we have

F (xk+1) ≤ F (xk) +∇f(xk)T (xk+1 − xk) +
L

2
||xk+1 − xk||2 + g(xk+1)− g(xk)

≤ F (xk) +∇f(xk)T (xk+ − xk) +
L

2
||xk+ − xk||2 + g(x+k)− g(xk)

= f(xk) +∇f(xk)T (xk+ − xk) +
L

2
‖dk‖2∞ + g(xk+)

By the strong-convexity of f , for any y ∈ IRN we have

f(xk) ≤ f(y)−∇f(xk)T (y − xk)− µ1

2
‖y − xk‖21,

and using this we obtain

F (xk+1) ≤ f(y) +∇f(xk)T (xk+ − y)− µ1

2
‖y − xk‖21 +

L

2
‖dk‖2∞ + g(xk+). (17)

By the convexity of g and sk ∈ ∂g(xk + dk), we have

g(y) ≥ g(xk + dk) + 〈sk, y − (xk + dk)〉.

18

Combining (17) with the above inequality, we have

F (xk+1)− F (y) ≤ 〈∇f(xk), xk+ − y〉 −
µ1

2
‖y − xk‖21 +

L

2
‖dk‖2∞

+ g(xk+)− g(xk + dk) + 〈sk, (xk + dk)− y〉.

We add and subtract 〈sk, xk+〉 on the right-hand side to get

F (xk+1)− F (y) ≤ 〈∇f(xk) + sk, xk+ − y〉 −
µ1

2
‖y − xk‖21 +

L

2
‖dk‖2∞

+ g(xk+)− g(xk + dk) + 〈sk, (xk + dk)− xk+〉.

Let ck = g(xk+)− g(xk + dk) + 〈sk, (xk + dk)− xk+〉, which is non-negative by the convexity g. Making this
substitution, we have

F (y) ≥ F (xk+1) + 〈−Ldk, y − xk+〉+
µ1

2
‖y − xk‖21 −

L

2
‖dk‖2∞ − ck.

Now add and subtract 〈−Ldk, xk〉 to the right-hand side and use (14) to get

F (y) ≥ F (xk+1) + 〈−Ldk, y − xk〉+
µ1

2
‖y − xk‖21 −

L

2
‖dk‖2∞ − L〈dk, xk − xk+〉 − ck.

Minimizing both sides with respect to y results in

F (x∗) ≥ F (xk+1)− L2

2µ1
‖dk‖2∞ −

L

2
‖dk‖2∞ − L〈dk, xk − xk+〉 − ck

≥ F (xk+1)− L2

2µ1
‖dk‖2∞ −

L

2
‖dk‖2∞ + L‖dk‖2∞ − ck

= F (xk+1)− L(L− µ1)

2µ1
‖dk‖2∞ − ck,

where we’ve used that xk+ = xk + dkjkejk and |dkjk | = ‖d
k‖∞. Combining this with equation (16), we get

F (xk+1)− F (x∗) ≤ F (xk)− F (x∗)− L

2
‖dk‖2∞

F (xk+1)− F (x∗) ≤ F (xk)− F (x∗)− µ1

(L− µ1)

[
F (xk+1)− F (x∗)− ck

]
(

1 +
µ1

(L− µ1)

)[
F (xk+1)− F (x∗)

]
≤ F (xk)− F (x∗) + εk

µ1

(L− µ1)

F (xk+1)− F (x∗) ≤ (L− µ1)

L

[
F (xk)− F (x∗)

]
+ ck

µ1

L

F (xk+1)− F (x∗) ≤
(

1− µ1

L

)[
F (xk)− F (x∗)

]
+ ck

µ1

L
.

Lack of progress of the GS-s rule

We now show that the rate (1 − µ1/L), and even the slower rate (1 − µ/Ln), cannot hold for the GS-s
rule. We do this by constructing a problem where an iteration of the GS-s method does not make sufficient
progress. In particular, consider the bound-constrained problem

min
x∈C

f(x) =
1

2
‖Ax− b‖22,

19

where C = {x : x ≥ 0}, and

A =

(
1 0
0 0.7

)
, b =

(
−1
−3

)
, x0 =

(
1

0.1

)
, x∗ =

(
0
0

)
.

We thus have that

f(x0) =
1

2
((1 + 1)2 + (.07 + 3)2) ≈ 6.7

f(x∗) =
1

2
((−1)2 + (−3)2) = 5

∇f(x0) = AT (Ax0 − b) ≈
(

2.0
2.1

)
∇2f(x) = ATA =

(
1 0
0 0.49

)
.

The parameter values for this problem are

n = 2

µ = λmin = 0.49

L = λmax = 1

µ1 =

(
1

λ1
+

1

λ2

)−1
= 1 +

1

0.49
≈ 0.33,

where the λi are the eigenvalues of ATA, and µ and µ1 are the corresponding strong-convexity constants for
the 2-norm and 1-norm, respectively.

The proximal operator of the indicator function is the projection onto the set C, which involves setting
negative elements to zero. Thus, our iteration update is given by

xk+1 = proxδC [xk − 1

L
∇ikf(xk)eik] = max(xk − 1

L
∇ikf(xk)eik , 0),

For this problem, the GS-s rule is given by

i = argmax
i
|ηki |,

where

ηki =

{
∇if(xk), if xki 6= 0 or ∇if(xk) < 0

0, otherwise
.

Based on the value of ∇f(x0), the GS-s rule thus chooses to update coordinate 2, setting it to zero and
obtaining

f(x1) =
1

2
((1 + 1)2 + (−3)2) = 6.5.

Thus we have
f(x1)− f(x∗)

f(x0)− f(x∗)
≈ 6.5− 5

6.7− 5
≈ 0.88,

even though the bounds obtain the faster rates of(
1− µ

Ln

)
=

(
1− 0.49

2

)
≈ 0.76,(

1− µ1

L

)
≈ (1− 0.33) = 0.67.

20

Thus, the GS-s rule does not satisfy either bound. On the other hand, the GS-r and GS-q rules are given in
this context by

ik = argmax
i

∣∣∣∣max

(
xk − 1

L
∇if(xk)ei, 0

)
− xk

∣∣∣∣ ,
and thus both these rules choose to update coordinate 1, setting it to zero to obtain f(x1) ≈ 5.2 and a
progress ratio of

f(x1)− f(x∗)

f(x0)− f(x∗)
≈ 5.2− 5

6.7− 5
≈ 0.12,

which clearly satisfies both bounds.

Lack of progress of the GS-r rule

We now turn to showing that the GS-r rule does not satisfy these bounds in general. It will not be possible
to show this for a simple bound-constrained problem since the GS-r and GS-q rules are equivalent for these
problems. Thus, we consider the following `1-regularized problem

min
x∈IR2

1

2
‖Ax− b‖22 + λ‖x‖1 ≡ F (x).

We use the same A as the previous section, so that n, µ, L, and µ1 are the same. However, we now take

b =

(
2
−1

)
, x0 =

(
0.4
0.5

)
, x∗ =

(
1
0

)
, λ = 1,

so we have

f(x0) ≈ 3.1, f(x∗) = 2

The proximal operator of the absolute value function is given by the soft-threshold function, and our coor-
dinate update of variable ik is given by

xk+1
ik

= proxλ|·|[x
k+ 1

2
ik

] = sgn(x
k+ 1

2
ik

) ·max(x
k+ 1

2
ik
− λ/L, 0),

where we have used the notation

x
k+ 1

2
i = xki −

1

L
∇if(xk)ei.

The GS-r rule is defined by
ik = argmax

i
|dki |,

where dki = proxλ|·|[x
k+ 1

2
i]− xki and in this case

d0 =

(
0.6
−0.5

)
.

Thus, the GS-r rule chooses to update coordinate 1. After this update the function value is

F (x1) ≈ 2.9,

so the progress ratio is
F (x1)− F (x∗)

F (x0)− F (x∗)
≈ 2.9− 2

3.1− 2
≈ 0.84.

However, the bounds suggest faster progress ratios of(
1− µ

Ln

)
≈ 0.76,

21

Epochs
0 5 10 15 20 25 30

O
b
j
e
c
t
i
v
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cyclic

Random

Lipschitz

G
S

G
SL

Graph-based label propagation

Figure 1: Comparison of coordinate selection rules for graph-based semi-supervised learning.

(
1− µ1

L

)
≈ 0.67,

so the GS-r rule does not satisfy either bound. In contrast, in this setting the GS-q rule chooses to update
coordinate 2 and obtains F (x1) ≈ 2.2, obtaining a progress ratio of

F (x1)− F (x∗)

F (x0)− F (x∗)
≈ 2.2− 2

3.1− 2
≈ 0.16,

which satisfies both bounds by a substantial margin. Indeed, we used a genetic algorithm to search for a
setting of the parameters of this problem (values of x0, λ, b, and the diagonals of A) that would make the
GS-q not satisfy the bound depending on µ1, and it easily found counter-examples for the GS-s and GS-r
rules but was not able to produce a counter example for the GS-q rule.

9. Experiments on Graph-Based Label-Propagation

Here, we consider an instance of problem h2, performing label propagation for semi-supervised learning in
the ‘two moons’ dataset [Zhou et al., 2004]. We generate 500 samples from this dataset, randomly label
five points in the data, and connect each node to its five nearest neighbours. This high level of sparsity is
typical of graph-based methods for semi-supervised learning, and allows the exact Gauss-Southwell rule to
be implemented efficiently. We use the quadratic labeling criterion of Bengio et al. [2006], which allows exact
coordinate optimization and is normally optimized with cyclic coordinate descent. We plot the performance
under different selection rules in Figure 1. Here, we see that even cyclic coordinate descent outperforms
randomized coordinate descent, but that the GS and GSL rules give even better performance. We note that
the GS and GSL rules perform similarly on this problem since the Lipschitz constants do not vary much.

Runtime Experiments

In Figure 2 we plot the objective against the runtime for the `2-regularized sparse least squares problem
from the main paper. Although runtimes are very sensitive to exact implementation details and we believe
that more clever implementations than our naive Python script are possible, this figure does show that the
GS and GSL rules offer benefits in terms of runtime with our implementation and test hardware.

22

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Running time for l2 - regularized sparse least squares

Runtime (seconds)

O
b

je
c

ti
v

e

Cyclic

Random

Lipschitz

GS

GSL

Figure 2: Comparison of coordinate selection rules for `2-regularized sparse least squares.

References

Y. Bengio, O. Delalleau, and N. Le Roux. Label propagation and quadratic criterion. Semi-Supervised
Learning, pages 193–216, 2006.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press Cambridge,
second edition, 2001.

I. S. Dhillon, P. K. Ravikumar, and A. Tewari. Nearest neighbor based greedy coordinate descent. Advances
in Neural Information Processing Systems, 2011.

W. F. Ferger. The nature and use of the harmonic mean. Journal of the American Statistical Association,
26(173):36–40, 1931.

Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 2004.

P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate descent methods for mini-
mizing a composite function. Mathematical Programming, 144:1–38, 2014.

A. Shrivastava and P. Li. Asymmetric LSH (ALSH) for sublinear time maximum inner product search
(MIPS). Advances in Neural Information Processing Systems, 2014.

D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with local and global consistency.
Advances in Neural Information Processing Systems, 2004.

23

