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Abstract

The minimization of the logistic loss is a popular

approach to batch supervised learning. Our paper

starts from the surprising observation that, when

fitting linear classifiers, the minimization of the

logistic loss is equivalent to the minimization of

an exponential rado-loss computed (i) over trans-

formed data that we call Rademacher observa-

tions (rados), and (ii) over the same classifier as

the one of the logistic loss. Thus, a classifier

learnt from rados can be directly used to classify

observations. We provide a learning algorithm

over rados with boosting-compliant convergence

rates on the logistic loss (computed over exam-

ples). Experiments on domains with up to mil-

lions of examples, backed up by theoretical ar-

guments, display that learning over a small set

of random rados can challenge the state of the art

that learns over the complete set of examples. We

show that rados comply with various privacy re-

quirements that make them good candidates for

machine learning in a privacy framework. We

give several algebraic, geometric and computa-

tional hardness results on reconstructing exam-

ples from rados. We also show how it is possi-

ble to craft, and efficiently learn from, rados in a

differential privacy framework. Tests reveal that

learning from differentially private rados brings

non-trivial privacy vs accuracy tradeoffs.

1. Introduction

This paper deals with the following fundamental question:

What information is sufficient for learning, and what

guarantees can it bring that regular data cannot ?
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By “regular”, we mean the usual inputs provided to a

learner. In our context of batch supervised learning, this is

a training set of examples, each of which is an observation

with a class, and learning means inducing in reduced time

an accurate function from observations to classes, a classi-

fier. It turns out that we do not need the detail of classes to

learn a linear classifier: an aggregate, whose size is the di-

mension of the observation space, is minimally sufficient,

the mean operator (Patrini et al., 2014).

But do we need examples ?

This perhaps surprising and non-trivial question is becom-

ing crucial now that the nature of stored and processed

signals intelligence data is heavily debated in the public

sphere (Landau, 2015; Sproull et al., 2015). In the context

of machine learning (ML), the objective of being accurate

is more and more frequently subsumed by more complex

goals, sometimes involving challenging tradeoffs in which

accuracy does not ultimately appear in the topmost require-

ments. Privacy is one such crucial goal (Duchi et al., 2014;

Enserink & Chin, 2015; Goroff, 2015). There are vari-

ous models to capture the privacy requirement, such as se-

cure multi-party computation and differential privacy (DP,

(Dwork & Roth, 2014)). The former usually relies on cryp-

tographic protocols, which can be heavy even for bare clas-

sification and simple algorithms (Bost et al., 2014). The

latter usually relies on the power of randomization to en-

sure that any “local” change cannot be spotted from the out-

put delivered (Dwork et al., 2010; Dwork & Roth, 2014).

In a ML setting, randomization can be performed at vari-

ous stages, from the examples to the output of a classifier.

We focus on the upstream stage of the process, i.e. the input

to the learner, which grants the benefits that all subsequent

stages also comply with differential privacy. Randomiza-

tion has its power: it also has its limits in this case, as it

may significantly degrade the performance of learners.

The way we address this problem starts from a surprising

observation, whose relevance to supervised ML goes be-

yond learning with private data: learning a linear classifier

over examples throughout the minimization of the expected

logistic loss is equivalent to learning the same classifier
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by minimizing an exponential loss over a complete set of

transformed data that we call Rademacher observations, ra-

dos. Each rado is the sum of edge vectors over examples

(edge = observation × label). We also show that efficient

learning from all rados may also be achieved when carried

out over subsets of all possible rados.

This is our first contribution, and we expect it to be useful

in several other areas of supervised learning. In the context

of learning with private data, our other contributions can be

summarized as showing how rados may yield new privacy

guarantees — not limited to differential privacy — while

authorizing boosting-compliant rates for learning. More

precisely, our second contribution is to propose a rado-

based learning algorithm, which has boosting-compliant

convergence rates over the logistic loss computed over the

examples. Thus, we learn an accurate classifier over rados,

and the same classifier is accurate over examples as well.

The fact that efficient learning may be achieved through

subset of rados is interesting because it opens the prob-

lem of designing this particular subset to address domain-

specific requirements that add to the ML accuracy require-

ment. Among our other contributions, we provide one im-

portant design example, showing how to build differentially

private mechanisms for rado delivery, such as when pro-

tecting specific sensitive features in data. Experiments con-

firm in this case that learning from differentially private ra-

dos may still be competitive with learning from examples.

We provide another design which pairs to our rado-based

boosting algorithm, with the crucial property that when

examples have been DP-protected by the popular Gaus-

sian mechanism (Dwork & Roth, 2014), the joint pair (rado

delivery design, boosting algorithm) may achieve conver-

gence rates comparable to the noise-free setting with high

probability, even over strong DP protection regimes. Our

last contribution is to show that rados may protect the pri-

vacy of the original examples not only in the DP frame-

work, but also from several algebraic, geometric and even

computational-complexity theoretic standpoints.

The remainder of this paper is organized as follows.

Section §2 presents Rademacher observations, shows the

equivalence between learning from examples and learning

from rados, and how learning from subsets of rados may

be sufficient for efficient learning; §3 presents our rado-

based boosting algorithm, and §4 presents experiments

with this algorithm; §5 presents our results in DP models,

§6 presents related experiments; §7 provides results on the

hardness of reconstructing examples from rados from alge-

braic, geometric and computational standpoints. To keep a

readable paper, proofs and additional experiments are given

in a companion ArXiv paper (Nock et al., 2015).

2. Rados and supervised learning

Let [n] = {1, 2, ..., n}. We are given a set of m exam-

ples S
.
= {(xi, yi), i ∈ [m]}, where xi ∈ X ⊆ R

d is

an observation and yi ∈ {−1, 1} is a label, or class. X

is the domain. A linear classifier θ ∈ Θ for some fixed

Θ ⊆ R
d gives a label to x ∈ X equal to the sign of

θ⊤x ∈ R. Our results can be lifted to kernels (at least with

finite dimension feature maps) following standard argu-

ments (Quadrianto et al., 2009). We let Σm
.
= {−1, 1}m.

Definition 1 For any σ ∈ Σm, the Rademacher observa-

tion πσ with signature σ is πσ

.
= (1/2) ·∑i(σi + yi)xi.

The simplest way to randomly sample rados is to pick σ as

i.i.d. Rademacher variables, hence the name. Reference to

S is implicit in the definition of πσ. A Rademacher obser-

vation sums edge vectors (the terms yixi), over the subset

of examples for which yi = σi. When σ = y is the vec-

tor of classes, πσ = mµS is m times the mean operator, a

minimal sufficient statistics for the class (Quadrianto et al.,

2009; Patrini et al., 2014). Thus, up to the normalization

by m, any rado is a minimal sufficient statistic for the class

in a subset of the training sample. A popular approach to

learn θ over S is to minimize the surrogate risk Flog (S, θ)
built from the logistic loss (logloss):

Flog (S, θ)
.
=

1

m

∑

i

log
(

1 + exp
(

−yiθ⊤xi

))

.(1)

We define the exponential rado-risk F r
exp(S, θ,U), com-

puted on any U ⊆ Σm with cardinal |U| = n, as:

F r
exp(S, θ,U)

.
=

1

n

∑

σ∈U

exp
(

−θ⊤
πσ

)

. (2)

It turns out that Flog = g(F r
exp) for some continuous

strictly increasing g and specific choice of U (in fact, U =
Σm); hence, minimizing one criterion is equivalent to min-

imizing the other and vice versa. This is formalized below.

Lemma 2 The following holds true, for any θ and S:

Flog(S, θ) = log(2) +
1

m
logF r

exp(S, θ,Σm) . (3)

Lemma 2 shows that learning with examples via the mini-

mization of Flog (S, θ), and learning with all rados via the

minimization of F r
exp(S, θ,Σm), are essentially equivalent

tasks. Since the cardinal |Σm| = 2m is exponential, it is

unrealistic, even on moderate-size samples, to pick that lat-

ter option. This raises however a very interesting question:

if we replace Σm by subset U of size ≪ 2m,what does

the relationship between examples and rados in eq. (3) be-

come? We answer this question under the setting that:
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(i) instead of Σm, we consider a predefined Σr ⊆ Σm;

(ii) instead of considering U = Σr, we sample uniformly

i.i.d. U ∼ Σr for n ≥ 1 rados.

While (ii) is directly targeted at reducing the number of

rados, (i) is an upper-level strategic design to tackle ad-

ditional constraints, such as differential privacy. We now

need following definition of the logistic rado-risk:

F r
log (S, θ,U)

.
= log(2) +

1

m
logF r

exp(S, θ,U) , (4)

for any U ⊆ Σm, so that Flog (S, θ) = F r
log (S, θ,Σm). We

also define the open ball B(0, r)
.
= {x ∈ R

d : ‖x‖2 < r}.

Theorem 3 Assume Θ ⊆ B(0, rθ), for some rθ > 0. Let:

̺
.
=

supθ′∈Θmaxπσ∈Σr
exp(−θ′⊤

πσ)

F r
exp(S, θ,Σr)

,

̺′
.
=

F r
exp(S, θ,Σr)

F r
exp(S, θ,Σm)

,

where Σr follows (i) above. Then ∀η > 0, there is proba-

bility ≥ 1− η over the sampling of U in (ii) above that:

Flog (S, θ) ≤ F r
log(S, θ,U) +Q− 1

m
· log

(

1− q√
n

)

,(5)

with

q=Ω

(

̺ ·
√

rθ max
Σr

‖πσ‖2 + d log
2en

d
+ log

1

η

)

(6)

and Q
.
= −(1/m) · log ̺′ satisfies Q = 0 if Σr = Σm and

Q ≤ rθ
(

‖∇θF
r
log (S, θ,Σm) ‖2 + πr

)

(7)

otherwise, letting πr
.
= ‖Eσ∼Σr

(1/m) · πσ‖2. Further-

more, ∀0 ≤ β < 1/2, if m is sufficiently large, then letting

π∗
r

.
= maxΣr

‖(1/m) · πσ‖2, ineq. (5) becomes:

Flog (S, θ) ≤ F r
log(S, θ,U) +Q

+O

(

̺

mβ
·
√

rθπ∗
r

n
+

d

nm
log

2en

dη

)

.(8)

Theorem 3 does not depend on the algorithm that learns

θ. The right-hand side of ineq. (5) shows two penalties.

Q arises from the choice of Σr and is therefore structural.

Regardless of Σr, when the classifier is reasonably accurate

over all rados and expected examples edges in Σr average

to a ball of reduced radius, the upperbound on Q in ineq.

(7) can be very small. The other penalty, which depends on

q, is statistical and comes from the sampling in Σr. Theo-

rem 3 shows that when Σr = Σm, even when n ≪ m, the

Algorithm 1 Rado boosting (RADOBOOST)

Input set of rados Sr
.
= {π1,π2, ...,πn}; T ∈ N∗;

Step 1 : let θ0 ← 0, w0 ← (1/n)1 ;

Step 2 : for t = 1, 2, ..., T
Step 2.1 : [d] ∋ ι(t)← WFI(Sr,wt);
Step 2.2 : let

rt ← 1

π∗ι(t)

n
∑

j=1

wtjπjι(t) ; (9)

αt ← 1

2π∗ι(t)
log

1 + rt
1− rt

; (10)

Step 2.3 : for j = 1, 2, ..., n

w(t+1)j ← wtj ·
(

1− rtπjι(t)

π∗ι(t)

1− r2t

)

; (11)

Return θT defined by θTk
.
=
∑

t:ι(t)=k αt , ∀k ∈ [d];

minimization of F r
log (S, θ,U) may still bring, with high

probability, guarantees on the minimization of Flog (S, θ).
Thus, a lightweight optimization procedure over a small

number of rados may bring guarantees on the minimization

of the expected logloss over examples for the same clas-

sifier. The following Section exhibits one such algorithm.

3. Boosting using rados

Algorithm 1 provides a boosting algorithm, RADOBOOST,

that learns from a set of Rademacher observations Sr
.
=

{π1,π2, ...,πn}. Their (unknown) Rademacher assign-

ments are denoted U
.
= {σ1,σ2, ...,σn} ⊆ Σm. These

rados have been computed from some sample S, unknown

to RADOBOOST. In the statement of the algorithm, πjk

denotes coordinate k of πj , and π∗k
.
= maxj |πjk|. More

generally, the coordinates of some vector z ∈ R
d are de-

noted z1, z2, ..., zd. Step 2.1 gets a feature index ι(t) from a

weak feature index oracle, WFI. In its general form, WFI re-

turns a feature index maximizing |rt| in (9). The weight up-

date was preferred to AdaBoost’s because rados can have

large feature values and the weight update prevents numer-

ical precision errors that could otherwise occur using Ad-

aBoost’s exponential weight update. We now prove a key

Lemma on RADOBOOST, namely the fast convergence of

the exponential rado-riskF r
exp(S, θ,U) under a weak learn-

ing assumption (WLA). We shall then obtain the conver-

gence of the logistic rado-risk (4), and, via Theorem 3, the

convergence with high probability of Flog (S, θ).

(WLA) ∃γ > 0 such that ∀t ≥ 1, the feature returned by WFI

in Step 2.2 (9) satisfies |rt| ≥ γ.
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ADABOOST ADABOOST(n) RADOBOOST

Domain m d 100σ err±σ err±σ n

m
err±σ n

2m
p p′

Abalone 4 177 8 – 22.96±1.44 23.20±1.44 0.24 25.14±1.83 [3:−[1:3]] ε ε
Wine-white 4 898 11 1 30.93±3.42 30.44±3.25 0.20 32.48±3.55 [3:−[1:3]] ε ε

Magic 19 020 10 – 21.07±0.98 20.91±0.99 0.05 22.75±1.51 [3:−[5:3]] ε 0.01
EEG 14 980 14 14 46.04±1.38 44.36±1.99 0.07 44.23±1.73 [4:−[4:3]] ε 0.86

Hardware 28 179 95 – 16.82±0.72 16.76±0.73 0.04 7.61±3.24 [2:−[8:3]] ε ε
Twitter 583 250 77 44 53.75±1.48 53.09±11.23 [1:−3] 6.00±0.77 [1:−[1:5]] ε ε
SuSy 5 000 000 17 – 27.76±0.14 27.43±0.19 [2:−4] 27.26±0.55 [1:−[1:6]] 0.02 0.39
Higgs 11 000 000 28 – 42.55±0.19 45.39±0.28 [9:−5] 47.86±0.06 [1:−[1:7]] ε ε

Table 1. Comparison of RADOBOOST (n random rados), ADABOOST (Schapire & Singer, 1999) (full training fold) and

ADABOOST(n) (n random examples in training fold); domains ranked in increasing d · m value. Column “n/m” (resp. “n/2m”)

for ADABOOST(n) (resp RADOBOOST) is proportion of training data wrt fold size (resp. full set of rados). Notation [a:b] is shorthand

for a × 10b . Column “100σ” is the number of features with outlier values distant from the mean by more than 100σ in absolute value.

Column p (resp. p′) is p-value for a two-tailed paired t-test on ADABOOST (resp. ADABOOST(n)) vs RADOBOOST. ε means < 0.01.

Lemma 4 Suppose the (WLA) holds. Then after T rounds

of boosting in RADOBOOST, the following upperbound

holds on the exponential rado-loss of θT :

F r
exp(S, θT ,U) ≤ exp

(

−Tγ2/2
)

. (12)

We now consider Theorem 3 with Σr = Σm, and there-

fore Q = 0. Blending Lemma 4 and Theorem 3 using (4)

yields that, under the (WLA), we may observe with high

probability (again, fixing Σr = Σm, so Q = 0 in Theorem

3):

Flog (S, θT ) ≤ log(2)− Tγ2

2m
+Q′ , (13)

where Q′ is the rightmost term in ineq. (5) or ineq. (8).

So provided n ≪ 2m is sufficiently large, minimizing

the exponential rado-risk over a subset of rados brings a

classifier whose average logloss on the whole set of exam-

ples may decrease at rate Ω(γ2/m) under a weak learn-

ing assumption made over rados only. This rate competes

with those for direct approaches to boosting the logloss

(Nock & Nielsen, 2008), and we now show that our weak

learning assumption is also essentially equivalent to the one

done in boosting over examples (Schapire & Singer, 1999).

Let us rewrite rt(w) as the normalized edge in (9), making

explicit the dependence in the current rado weights. Let

rext (w̃)
.
=

1

x∗ι(t)

m
∑

i=1

wixiι(t) (14)

be the normalized edges for the same feature ι(t) as the

one picked in step 2.1 of RADOBOOST, but computed over

examples using some weight vector w̃ ∈ P
m; here, Pm is

the m-dim probability simplex and x∗ι(t)
.
= maxi |xik|.

Lemma 5 ∀wt ∈ P
n, ∀γ > 0, there exists w̃ ∈ P

m and

γex > 0 such that |rt(wt)| ≥ γ iff |rext (w̃)| ≥ γex.

The proof of the Lemma gives clues to explain why the

presence of outlier feature values may favor RADOBOOST.

4. Basic experiments with RADOBOOST

We have compared RADOBOOST to its main contender,

ADABOOST (Schapire & Singer, 1999), using the same

weak learner; in ADABOOST, it returns a feature maxi-

mizing |rt| as in eq. (14). In these basic experiments, we

have deliberately not optimized the set of rados in which

we sample U for RADOBOOST; hence, we have Σr = Σm.

We have performed comparisons with 10 folds stratified

cross-validation (CV) on 16 domains of the UCI reposi-

tory (Bache & Lichman, 2013) of varying size. For space

considerations, Table 1 presents the results on the 8 largest

domains. SI presents the complete experiments. Each al-

gorithm was ran for a total number of T = 1000 iterations;

furthermore, the classifier kept for testing is the one min-

imizing the empirical risk throughout the T iterations; in

doing so, we also assessed the early convergence of algo-

rithms. We fixed n = min{1000, train fold size/2}. Table

1 displays that RADOBOOST compares favourably to AD-

ABOOST, and furthermore it tends to be all the better as

m and d increase. On some domains like Hardware and

Twitter, the difference is impressive and clearly in favor of

RADOBOOST. Experimentally, we interpret it by the fact

that random rados may have large norms on big domains,

which may yield large boosting leveraging coefficients. On

domains like Twitter, this boosts convergence. Also, out-

lier features (see column 100σ in Table 1) can trick AD-

ABOOST in picking the wrong sign for αt for a large num-

ber of iterations. This drawback can be easily corrected (SI

(Nock et al., 2015)) by enforcing minimal |rt| values. This

improves ADABOOST on Hardware and Twitter. Improve-

ments observed on RADOBOOST are even more favorable.

5. Rados and differential privacy

We discuss the delivery of rados to comply with DP con-

straints and their eventual impact on boosting. We thus

adress both levels (i+ii) of rado delivery in §2. Our model is

the standard DP model (Dwork & Roth, 2014). Intuitively,
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S DP

(a) LS

S DP L’

L’

(b)

DP

(c) R

R

Figure 1. Summary of the DP-related contributions of Section 5

(in color). (a) : usual DP mechanism that protects examples (S)

prior to delivery to learner (L); (b) : mechanism that crafts differ-

entially private rados (R) from unprotected examples (§5.1); (c)

: mechanism crafting rados from DP examples with objective to

improve performances of rado-based learner L’ (§5.2).

Algorithm 2 Feature-wise DP rados (DP-FEAT)

Input set of examples S, sensitive feature j∗ ∈ [d], num-

ber of rados n, differential privacy parameter ǫ > 0;

Step 1 : let β ← 1/(1 + exp(ǫ/2)) ∈ [0, 1/2);
Step 2 : sample σ1,σ2, ...,σn i.i.d. (uniform) in Σβ,j∗

m ;

Return set of rados {πσ : σ sampled in Step 2};

an algorithm is DP if for any two neighboring datasets, it

assigns similar probability to any possible output O. In

other words, any particular record has only limited influ-

ence on the probability of any given output of the algo-

rithm, and therefore the output discloses very little infor-

mation about any particular record in the input. Formally,

a randomized algorithm A is (ǫ, δ)-differentially-private

(Dwork et al., 2006) for some ǫ, δ > 0 iff:

PA[O|S] ≤ exp(ǫ) · PA[O|S′] + δ, ∀S ≈ S
′, O,(15)

where the probability is over the coin tosses of A. This

model is very strong, especially when δ = 0, and in the

context of ML, maintaining high accuracy in strong DP

regimes is generally a tricky tradeoff (Duchi et al., 2014).

Because rados are an intermediate step between training

sample S and a rado-based learner, there are two ways to

design rados with respect to the DP framework: crafting DP

rados from unprotected examples, or crafting rados from

DP examples with the aim to improve the performance of

the rado-based learner (Figure 5.2). These scenarii can be

reduced to the design of Σr.

5.1. A feature-wise DP mechanism for rados

In this Subsection, we consider a relaxation of differential-

privacy, namely feature-wise differential privacy, where the

differential privacy requirement applies to j∗-neighboring

datasets: we say that two samples S, S′ are j∗-neighbors,

noted S ≈j∗ S′, if they are the same except for the value

of the jth∗ ∈ [d] observation feature of some example. We

further assume that the feature is boolean. For example,

we may have a medical database containing a column rep-

resenting the HIV status of a doctor’s patients (1 row =

+1

+1−1

−1

S ≈j∗ S ′0

−(m−mj∗(+))

m−mj∗(+) mj∗(+)

mj∗(+)

s

S (coord. j∗)

S ′

11

∅

Figure 2. How DP-FEAT works: neighbor samples S and S
′ differ

by one value for feature j∗ (i.e. one edge coordinate, represented);

the rado whose support relies only on the “-1” in S (dashed lines)

yields infinite ratio PA[O|I ]/PA[O|I ′] in (15). This rado would

never be sampled by DP-FEAT. On the other hand, a rado that

sums an equal number s of “+1” and “-1” (dotted lines) may yield

ratio very close to 1 (such a rado can be sampled by DP-FEAT).

a patient), and we do not wish that changing a single pa-

tient HIV status significantly changes the density of that

feature’s values in rados. This setting would also be very

useful in genetic applications to hide in rados gene disor-

ders that affect one or few genes. Feature-wise DP is anal-

ogous to the concept of α-label privacy (Chaudhuri & Hsu,

2011), where differential privacy is guaranteed with respect

to the label. Algorithm A in ineq. (15) is given in Algo-

rithm 2. It relies on the following subsetΣr
.
= Σβ,j∗

m ⊆ Σm

(m+
.
= |{i : yixij∗ = +1}| − (m/2)):

Σβ,j∗
m

.
= {σ∈Σm :πσj∗∈[m+−∆β,m++∆β ]} , (16)

with ∆β
.
= (m/2) − β(m + 1). The key feature of this

mechanism is that it does not alter the examples in the sense

that DP rados belong to the set of cardinal 2m that can be

generated from S. Usual data-centered DP mechanisms

would rather alter data, e.g. via noise injection (Goroff,

2015). Algorithm 2 exploits the fact that it is the tails of

feature j∗ that leak sensitive information about the feature

in rados (see Figure 2).

Theorem 6 If ǫ = Ω(1/m) and ǫ = o(1), DP-

FEAT maintains (n ·ǫ, n · δ)-differential privacy on feature

j∗ for some δ = o(1/m).

We have implemented Step 2 in Algorithm DP-FEAT in the

simplest way, using Rademacher rejection sampling where

each σj is picked i.i.d. as σj ∼ Σm until σj ∈ Σβ,j∗
m . The

following Theorem shows its algorithmic efficiency.

Theorem 7 For any η > 0, let n∗
η

.
= η(1 − exp(2β −

1))/(4β), and let nR denote the total number of rados sam-

pled in Σm until n rados are found in Σβ,j∗
m . Then for any

η > 0, there is probability≥ 1− η that

nR ≤ n ·
{

1 if n ≤ n∗
η

⌈

1
mDBE(1−β‖1/2) log

n
n∗

η

⌉

otherwise
,

where DBE is the bit-entropy divergence: DBE(p‖q) =
p log(p/q)+(1−p) log((1−p)/(1− q)), for p, q ∈ (0, 1).
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Remark that replacing Σm by Σr = Σβ,j∗
m would

not necessarily impair the boosting convergence of

RADOBOOST trained from rados samples from DP-

FEAT (Lemma 4). The only systematic change would be

in ineq. (13) where we would have to integrate the struc-

tural penalty Q from Theorem 3 to further upperbound

Flog (S, θT ). In this case, the upperbound in (7) reveals that

at least when the mean operator in Σβ,j∗
m has small norm —

which may be the case even when some examples in S have

large norm — and the gradient penalty is small, thenQ may

be small as well.

Finally, the tail truncation design exploited in DP-

FEAT can be fairly simply generalized in two directions, to

handle (a) real-valued features, and/or (b) several sensitive

features instead of one.

5.2. Boosting from DP examples via rados

We now show how to craft rados from DP protected ex-

amples so as to approximately keep the convergence rates

of RADOBOOST. More precisely, since edge vectors are

sufficient to learn (eq. 1), we assume that edge vectors are

DP (neighbor samples, S ≈ S′, would differ on one edge

vector). A gold standard to protect data in the DP frame-

work is to convolute data with noise. One popular mech-

anism is the Gaussian mechanism (Dwork & Roth, 2014;

Hardt & Price, 2014), which convolutes data with indepen-

dent Gaussian random variables N(0, ς2I), whose standard

deviation ς depends on the DP requirement (ǫ, δ). Strong

DP regimes are tricky to handle for learning algorithms.

For example, the approximation factor ρ of the singular

vectors under DP noise of the noisy power method roughly

behaves as ρ = Ω(ς/∆) (Hardt & Price, 2014) (Corollary

1.1) where ∆ = O(d) is a difference between two singular

values. When ς is small, this is a very good bound. When

the DP requirement blows up, the bound remains relevant

if d increases, which may be hard to achieve in practice —

it is easier in general to increase m than d, which requires

to compute new features for past examples.

We consider ineq. (15) with neighbors I and I ′ being two

sets of m edge vectors differing by one edge vector, and O
is a noisified set of m edge vectors generated through the

Gaussian mechanism (Dwork & Roth, 2014) (Appendix

A). We show the following non-trivial result: provided

we design another particular Σr, the convergence rate of

RADOBOOST, as measured over non-noisy rados, essen-

tially survives noise injection in the edge vectors through

the Gaussian mechanism, even under strong noise regimes,

as long as m is large enough. The intuition is straightfor-

ward: we build rados summing a large number of edge vec-

tors only (this is the design of Σr), so that the i.i.d. noise

component gets sufficiently concentrated for the algorithm

to be able to learn almost as fast as in the noise-free set-

ting. We emphasize the non-trivial fact that convergence

rate is measured over the non-noisy rados, which of course

RADOBOOST does not see. The result is of independent

interest in the boosting framework, since it makes use of

a particular weak learner (WFI), which we call prudential,

which picks features with |rt| (9) upperbounded.

We start by renormalizing coefficients αt (eq. (10)) in

RADOBOOST by a parameter κ ≥ 1 given as input, so that

we now have αt ← (1/(κπ∗ι(t))) log((1+ rt)/(1− rt)) in

Step 2.2. It is not hard to check that the convergence rate of

RADOBOOST now becomes, prior to applying the (WLA)

F r
log(S, θT ,U) ≤ log(2)− 1

2κm

∑

t

r2t . (17)

We say that WFI is λp-prudential for λp > 0 iff it selects

at each iteration a feature such that |rt| ≤ λp. Edges vec-

tors have been DP-protected as yi(xi + xr
i ), with xr

i ∼
N(0, ς2I) (for i ∈ [m]). Let mσ

.
= |{i : σi = yi}| denote

the support of a rado, and (m∗ > 0 fixed):

Σr = Σm∗

m
.
= {σ ∈ Σm : mσ = m∗} . (18)

Theorem 8 ∀U ⊆ Σr, ∀τ > 0, if
√
m∗ = Ω(ς ln(1/τ)),

then ∃λp > 0 such that RADOBOOST having access to

a λp-prudential weak learner returns after T iteration a

classifier θT which meets with probability≥ 1− τ:

F r
log(S, θT ,U) ≤ log(2)− 1

4κm

∑

t

r2t . (19)

The proof details parameters and dependencies hidden in

the statement. The use of a prudential weak learner is rather

intuitive in a noisy setting since αt blows up when |rt| is

close to 1. Theorem 8 essentially yield that a sufficiently

large support for rados is enough to keep with high prob-

ability the convergence rate of RADOBOOST within noise-

free regime. Of course, the weak learner is prudential,

which implies bounded |rt| < 1, and furthermore the lever-

aging coefficientsαt are normalized, which implies smaller

margins. Still, Theorem 8 is a good theoretical argument to

rely on rados when learning from DP edge vectors.

6. Experiments on differential privacy

Table 2 presents a subset of the experiments carried out

with RADOBOOST and ADABOOST in the contexts of Sub-

sections 5.1 and 5.2. Due to size constraints, the full Ta-

ble (and more extensive experiments) can be found in SI

(Nock et al., 2015). Unless otherwise stated, experimen-

tal settings (cross validation, number of rados for learning,

etc.) are the same as in Section 4.
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Table 2. Left table: RADOBOOST on feature-wise DP rados (Subsection 5.1, showing standard deviations) vs RADOBOOST on plain ran-

dom rados baseline and ADABOOST baseline (trained with complete fold). Center: test error of RADOBOOST minus ADABOOST’s (also

showing ADABOOST error on right axis, dotted line), for rados with fixed support s (= m∗, in green, red, blue) and plain random rados

(dotted grey). Right: test error of RADOBOOST using fixed support s rados and a prudential learner, minus RADOBOOST using plain

random rados and “strong” learner of Section 4. See text and SI (Nock et al., 2015)).

In a first set of experiments, we have assessed the impact

on learning of the feature-wise DP mechanism: on each

tested domain, we have selected at random a binary fea-

ture, and then used Algorithm DP-FEAT to protect the fea-

ture for different values of DP parameter ǫ, in a range that

covers usual DP experiments (Hsu et al., 2014) (Table 1).

The main conclusion that can be drawn from the exper-

iments is that learning from DP rados can compete with

learning from random rados, and even learning from exam-

ples (ADABOOST), even for rather small ǫ.

We then have assessed the impact on learning of exam-

ples that have been protected using the Gaussian mecha-

nism (Dwork & Roth, 2014), with or without rados, with

or without a prudential weak learner for boosting, and with

or without using a fixed support for rado computation. SI

(Nock et al., 2015) provides extensive results for all do-

mains but the largest ones (Twitter, SuSy, Higgs). In the

central column (see also SI (Nock et al., 2015)), comput-

ing the differences between RADOBOOST’s error and AD-

ABOOST’s reveals that, on domains where it is beaten by

ADABOOST when there is no noise, RADOBOOST almost

always rapidly becomes competitive with ADABOOST as

noise increases. Hence, RADOBOOST is a good contender

from the boosting family to learn from differentially private

(or noisy) data. Second, using a prudential weak learner

which picks the median feature (instead of the more ef-

ficient weak learner that picks the best as in Section 4)

can have RADOBOOST with fixed support rados compete

or beat RADOBOOST with plain random rados, at least

for small noise levels (see Transfusion and Magic in the

right column of Table 2 and SI (Nock et al., 2015)). Re-

placing the median-prudential weak learner by a strong

learner can actually degrade RADOBOOST’s results (see SI

(Nock et al., 2015)). These two observations advocate in

favor of the theory developed in Subsection 5.2. Finally,

using rados with fixed support instead of plain random ra-

dos (Section 4) can significantly improve the performances

of RADOBOOST (see SI (Nock et al., 2015)).

7. From rados to examples: hardness results

The problem we address here is how we can recover ex-

amples from rados, and when we cannot recover examples

from rados. This last setting is particularly useful from the

privacy standpoint, as this may save us costly obfuscation

techniques that impede ML tasks (Bost et al., 2014).

7.1. Algebraic and geometric hardness

For any m ∈ N∗, we define matrix Gm ∈ {0, 1}m×2m as:

Gm
.
=

[

0
⊤
2m−1 1

⊤
2m−1

Gm−1 Gm−1

]

(20)

if m > 1, and G1
.
= [0 1] otherwise (zd denotes a vector in

R
d). Each column of Gm is the binary indicator vector for

the edge vectors considered in a rado. Hereafter, we let E ∈
R

d×m the matrix of columnwise edge vectors from S, Π ∈
R

d×n the columnwise rado matrix and U ∈ {0, 1}2m×n in

which each column gives the index of a rado computed in

Sr. By construction, we have:

Π = EGmU , (21)

and so we have the following elementary results for the

(non) reconstruction of E (proof omitted).

Lemma 9 (a) when recoverable, edge-vectors satisfy: E =
ΠU⊤G⊤

m(GmUU⊤G⊤
m)−1; (b) when U, Π, m are known but

n < m, there is not a single solution to eq. (21) in general.

Lemma 9 states that even when U, Π and m are known,

elementary constraints on rados can make the recovery of
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edge vectors hard — notice that such constraints are met in

our experiments with RADOBOOST in Sections 4 and 6.

But this represents a lot of unnecessary knowledge to learn

from rados: RADOBOOST just needs Π to learn. We now

explore the guarantees that providing this sole information

brings in terms of (not) reconstructing E. ∀M ∈ R
a×b,

we let C(M) denote the set of column vectors, and for any

C ⊆ R
d, we let C ⊕ ǫ

.
= ∪z∈CB(z, ǫ). We define the

Hausdorff distance, DH(E, E′), between E and E′:

DH(E, E
′)

.
= inf{ǫ : C(E) ⊆ C(E

′)⊕ ǫ ∧ C(E
′) ⊆ C(E)⊕ ǫ} .

The following Lemma shows that if the only information

known is Π, then there exist samples that bring the same

set of rados C(Π) as the unknown E but who are at distance

proportional to the “width” of the domain at hand.

Lemma 10 For any Π ∈ R
d×n, suppose eq. (21) holds,

for some unknowns m > 0, E ∈ R
d×m, U ∈ {0, 1}2m×n.

Suppose C(E) ⊂ B(0, R) for some R > 0. Then there

exists E′ ∈ R
d×(m+1), U′ ∈ {0, 1}2m+1×n such that

C(E
′) ⊂ B(0, R) and Π = E

′
Gm+1U

′ , (22)

but

DH(E, E
′) = Ω

(

R log d√
d logm

)

(23)

if m ≥ 2d, and DH(E, E′) = Ω(R/
√
d) otherwise.

Hence, without any more knowledge, leaks, approxima-

tions or assumptions on the domain at hand, the recovery

of E pays in the worst case a price proportional to the ra-

dius of the smallest enclosing B(0, .) ball for the unknown

set of examples. We emphasize that this inapproximability

result does not rely on the computational power at hand.

7.2. Computational hardness

In this Subsection, we investigate two important problems

in the recovery of examples. The first problem addresses

whether we can approximately recover sparse examples

from a given set of rados, that is, roughly, solve (21) with a

sparsity constraint on examples. The first Lemma we give

is related to the hardness of solving underdetermined lin-

ear systems for sparse solutions (Donoho & Tanner, 2005).

The sparsity constraint can be embedded in the compressed

sensing framework (Donoho, 2006) to yield finer hardness

and approximability results, which is beyond the scope of

our paper. We define problem “Sparse-Approximation” as:

(Instance) : set of rados Sr = {π1,π2, ...,πn}, m ∈ N∗,

r, ℓ ∈ R+, ‖.‖p, Lp-norm for p ∈ R+;

(Question) : Does there exist set S
.
= {(xi, yi), i ∈ [m]}

and set U
.
= {σ1,σ2, ...,σn} ∈ {−1, 1}m such that:

‖xi‖p ≤ ℓ , ∀i ∈ [m] , (Sparse examples)

‖πj − πσj
‖p ≤ r , ∀j ∈ [n] . (Rado approx.)

Lemma 11 Sparse-Approximation is NP-Hard.

In the context of rados, the second problem we address has

very large privacy applications. Suppose entity A© has a

huge database of people (e.g. clients), and obtains a set

of rados emitted by another entity B©. An important ques-

tion that A© may ask is whether the rados observed can be

approximately constructed by its database, for example to

figure out which of its clients are also its competitors’. We

define this as problem “Probe-Sample-Subsumption”:

(Instance) : set of examples S, set of rados Sr =
{π1,π2, ...,πn}, m ∈ N∗, p, r ∈ R+.

(Question) : Does there exist S′
.
= {(xi, yi), i ∈ [m]} ⊆ S

and set U
.
= {σ1,σ2, ...,σn} ∈ {−1, 1}m such that:

‖πj − πσj
‖p ≤ r , ∀j ∈ [n] . (Rado approx.)

Lemma 12 Probe-Sample-Subsumption is NP-Hard.

This worst-case result calls for interesting domain-specific

qualifications, such as in genetics where the privacy of in-

dividual genomes can be compromised by population-wise

statistics (Homer et al., 2008; Nietfeld et al., 2011).

8. Conclusion

We have introduced novel quantities that are sufficient for

efficient learning, Rademacher observations. The fact that

a subset of these can replace traditional examples for effi-

cient learning opens interesting problems on how to craft

these subsets to cope with additional constraints. We have

illustrated these constraints in the field of efficient learn-

ing from privacy-preserving data, from various standpoints

that include differential privacy as well as algebraic, ge-

ometric and computational considerations. In that last

case, results rely on NP-Hardness, and thus go beyond the

“hardness” of factoring integers on which rely some pop-

ular cryptographic techniques (Bost et al., 2014). Rados

are also cryptography-compliant: homomorphic encryp-

tion schemes can be used to compute rados in the encrypted

domain from encrypted edge vectors or examples — rado

computation can thus be easily distributed in secure multi-

party computation applications. Finally, rados may allow

significant memory savings for learning, and could be of

use in areas where speed matters, like on-line learning.
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