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1. Another variant

To benefit from the empirical advantages of random pro-
jection hashing, Shrivastava and Li (2014) also proposed a
modified asymmetric LSH, which we refer to here as SIGN-
ALSH(SL). SIGN-ALSH(SL) uses two different mappings
P(z), Q(q), similar to those of L2-ALSH(SL), but then
uses a random projection hash h,(z), as is the one used
by SIMPLE-LSH, instead of the quantized hash used in L2-
ALSH(SL). In this appendix we show that our theoretical
observations about L2-ALSH(SL) are also valid for SIGN-
ALSH(SL).

SIGN-ALSH(SL) uses the pair of mappings:

P(z) = [Uz;1/2 — |Uz|;...;1/2 — |Uz|*"]
Qy) = [y;0;0;...;0],

where m and U are parameters, as in L2-ALSH(SL). SIGN-
ALSH(LS) is then given by f(z) = h.(P(z)), 9(y) =
ha(Q(x)), where h, is the random projection hash given
in (11). SIGN-ALSH(LS) therefor depends on two parame-
ters, and uses a binary alphabet I' = {£1}.

)

In this section, we show that, like L2-ALSH(LS), SIGN-
ALSH(LS) is not a universal ALSH over X,, ), and more-
over for any S > 0 and 0 < ¢ < 1itis not an (S, cS)-
ALSH over Xg = YV,

Lemma 1. For any m,U,r, and for any 0 < S < 1 and
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SIGN-ALSH(SL) is not an (S, ¢S)-ALSH for inner product
similarity over Xy = {z|||z| < 1} and Vs = {ql|l¢|| = 1}.

Proof. Assume for contradiction that:
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and SIGN-ALSH(SL) is an (5, ¢S)-ALSH. For any query
point ¢ € V., let x € X, be a vector s.t. ¢'z = S and
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The monotonicity of 1 — % establishes a contradic-
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tion. To get the other bound on ¢, let a,;, = 2m+11/ 25:14222
and assume for contradiction that:
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and SIGN-ALSH(SL) is an (5, ¢S)-ALSH. For any query
point ¢ € )., let z € X, be a vector s.t. '« = S and
[z]l2 = 1 and let y = (&, /U)q. By the monotonicity of
1-— %1(””) to get a contradiction is enough to show that
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Since this is the maximum value of the function f(U) =
U2/(m/4A+U>""):
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which is a contradiction. O

Corollary 1.1. For any U,m and r, SIGN-ALSH(SL) is
not a universal ALSH for inner product similarity over
Xe = {ollz] <1} and Yo = {alllg| = 1}. Further-
more, for any c < 1, and any choice of U, m,r there exists
0 < S < 1 for which SIGN-ALSH(SL) is not an (S, ¢S)-
ALSH over X,,),, and for any S < 1 and any choice of
U, m,r there exists 0 < ¢ < 1 for which SIGN-ALSH(SL)
is not an (S, ¢S)-ALSH over X, ).

Lemma 2. Forany S > 0and 0 < ¢ < 1 there are no U
and m such that SIGN-ALSH(SL) is an (S, ¢S)-ALSH for
inner product similarity over Xo = Yo = {z | ||z|] < 1}.

Proof. Similar to the proof of Theorem 5.2, for any S > 0
and 0 < ¢ < 1, let ¢; and x; be unit vectors such that
qlT:rl = S. Let x5 be a unit vector and define ¢o = cSxs.
For any U and m:
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Now, the same arguments as in Lemma 1 using monotonic-

ity of collision probabilities in ||P(x) — Q(q)|| establish
SIGN-ALSH(SL) is not an (.5, ¢S)-ALSH. O

2. Max-norm and margin complexity
MAX-NORM

The max-norm (aka ~y9:{1—{, norm) is defined as (Srebro
et al., 2005):

. 2
X e = i max([U7], s [V

S I )

where ||U||2,00 is the maximum over {2 norms of rows of
matrix U, i.e. |U|2,00 = max; |U[{]||.

For any pair of sets ({x;}1<i<n,{%}1<i<m) and hashes
(f, g) over them, let P be the collision probability matrix,
ie. P(i,7) = P[f(z;) = g(y;)]. In the following lemma
we prove that [|P|| < 1:

Lemma 3. For any two sets of objects and hashes
over them, if P is the collision probability matrix, then
HPHmax S 1

Proof. For each f and g, define the following biclustering
matrix:

L f@i) = g(y;)

0 otherwise.

Kifg(i,J) = { 3)
For any function f : Z — T, let Ry € {0,1}"*ITI be the
indicator of the values of function f:

1L h(xs) =7
0 otherwise,

Ry(i,v) = { )
and define R, € {0,1}"*ITl similarly. It is easy to show
that kg, = RyR) and since ||Rfl2.00 = [|Rgll2,00 =
1, by the definition of the max-norm, we can conclude
that [|rf g4l .. < 1. But the collision probabilities are
given by P = El[ky 4], and so by convexity of the max-

norm and Jensen’s inequality, || P .. = [E[xy ]|l .. <
Ell[# 5,6l max] < 1-

It is also easy to see that 1,,x,, = RRT where R = 1,,41.
Therefore for any 6 € R,

||07L><n||1nax = 0 ||1n><n||max S ‘0|

MARGIN COMPLEXITY

For any sign matrix Z, the margin complexity of Z is de-
fined as:

min [V 0 )
st. Y(i,/)X(6,5)>1 Vi,j

Let Z € {1}V be a sign matrix with +1 on and above
the diagonal and -1 below it. Forster et al. (2003) prove that
the margin complexity of matrix Z is Q(log N).

References

Forster, J., Schmitt, N., Simon, H., and Suttorp, T. (2003).
Estimating the optimal margins of embeddings in eu-
clidean half spaces. Machine Learning, 51:263281.

Shrivastava, A. and Li, P. (2014). Improved asymmetric lo-
cality sensitive hashing (alsh) for maximum inner prod-
uct search (mips). arXiv:1410.5410.

Srebro, N., Rennie, J., and Jaakkola, T. (2005). Maximum
margin matrix factorization. NIPS.



