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1. Another variant
To benefit from the empirical advantages of random pro-
jection hashing, Shrivastava and Li (2014) also proposed a
modified asymmetric LSH, which we refer to here as SIGN-
ALSH(SL). SIGN-ALSH(SL) uses two different mappings
P (x), Q(q), similar to those of L2-ALSH(SL), but then
uses a random projection hash ha(x), as is the one used
by SIMPLE-LSH, instead of the quantized hash used in L2-
ALSH(SL). In this appendix we show that our theoretical
observations about L2-ALSH(SL) are also valid for SIGN-
ALSH(SL).

SIGN-ALSH(SL) uses the pair of mappings:

P (x) = [Ux; 1/2− ‖Ux‖2 ; . . . ; 1/2− ‖Ux‖2
m

]

Q(y) = [y; 0; 0; . . . ; 0],
(1)

where m and U are parameters, as in L2-ALSH(SL). SIGN-
ALSH(LS) is then given by f(x) = ha(P (x)), g(y) =
ha(Q(x)), where ha is the random projection hash given
in (11). SIGN-ALSH(LS) therefor depends on two parame-
ters, and uses a binary alphabet Γ = {±1}.

In this section, we show that, like L2-ALSH(LS), SIGN-
ALSH(LS) is not a universal ALSH over X•,Y◦, and more-
over for any S > 0 and 0 < c < 1 it is not an (S, cS)-
ALSH over X• = Y•:
Lemma 1. For any m,U, r, and for any 0 < S < 1 and

min

{√
1− U2m+1(1− S2m+1)

U2m+1 +m/4
,

2m+1
√

(m/2)
2m+1−2

SU

}
≤ c < 1

SIGN-ALSH(SL) is not an (S, cS)-ALSH for inner product
similarity overX• = {x|‖x‖ ≤ 1} and Y◦ = {q|‖q‖ = 1}.

Proof. Assume for contradiction that:√
1− U2m+1(1− S2m+1)

U2m+1 +m/4
≤ c < 1

and SIGN-ALSH(SL) is an (S, cS)-ALSH. For any query
point q ∈ Y◦, let x ∈ X• be a vector s.t. q>x = S and

‖x‖2 = 1 and let y = cSq, so that q>y = cS. We have
that:

(P (y)>Q(q))2

‖P (y)‖2
=

c2S2U2

m/4 + ‖y‖2
m+1

=
c2S2U2

m/4 + (cSU)2m+1

Using 1− U2m+1
(1−S2m+1

)

U2m+1+m/4
≤ c2 < 1:

>
c2S2U2

m/4 + (SU)2m+1

≥ S2U2

m/4 + U2m+1

=
(P (x)>Q(q))2

‖P (x)‖2

The monotonicity of 1 − cos−1(x)
π establishes a contradic-

tion. To get the other bound on c, let αm = 2m+1
√

(m/2)
2m+1−2

and assume for contradiction that:

αm
SU

=

2m+1
√

(m/2)
2m+1−2

SU
≤ c < 1

and SIGN-ALSH(SL) is an (S, cS)-ALSH. For any query
point q ∈ Y◦, let x ∈ X• be a vector s.t. q>x = S and
‖x‖2 = 1 and let y = (αm/U)q. By the monotonicity of
1− cos−1(x)

π , to get a contradiction is enough to show that

P (x)>Q(q)

‖P (x)‖
≤ P (y)>Q(q)

‖P (y)‖

We have:

(P (y)>Q(q))2

‖P (y)‖2
=

α2
m

m/4 + ‖αm‖2
m+1

=

2m
√

(m/2)
2m+1−2

m/4 + (m/2)
2m+1−2
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Since this is the maximum value of the function f(U) =

U2/(m/4 + U2m+1

):

≥ U2

m/4 + U2m+1

≥ S2U2

m/4 + U2m+1

=
(P (x)>Q(q))2

‖P (x)‖2

which is a contradiction.

Corollary 1.1. For any U,m and r, SIGN-ALSH(SL) is
not a universal ALSH for inner product similarity over
X• = {x|‖x‖ ≤ 1} and Y◦ = {q|‖q‖ = 1}. Further-
more, for any c < 1, and any choice of U,m, r there exists
0 < S < 1 for which SIGN-ALSH(SL) is not an (S, cS)-
ALSH over X•,Y◦, and for any S < 1 and any choice of
U,m, r there exists 0 < c < 1 for which SIGN-ALSH(SL)
is not an (S, cS)-ALSH over X•,Y◦.
Lemma 2. For any S > 0 and 0 < c < 1 there are no U
and m such that SIGN-ALSH(SL) is an (S, cS)-ALSH for
inner product similarity over X• = Y• = {x | ‖x‖ ≤ 1}.

Proof. Similar to the proof of Theorem 5.2, for any S > 0
and 0 < c < 1, let q1 and x1 be unit vectors such that
q>1 x1 = S. Let x2 be a unit vector and define q2 = cSx2.
For any U and m:

P (x2)>Q(q2)

‖P (x2)‖ ‖Q(q2)‖
=

cSU

cS

√
m/4 + ‖U‖2

m+1

=
U√

m/4 + ‖U‖2
m+1

≥ SU√
m/4 + ‖U‖2

m+1

=
P (x1)>Q(q1)

‖P (x1)‖ ‖Q(q1)‖

Now, the same arguments as in Lemma 1 using monotonic-
ity of collision probabilities in ‖P (x)−Q(q)‖ establish
SIGN-ALSH(SL) is not an (S, cS)-ALSH.

2. Max-norm and margin complexity
MAX-NORM

The max-norm (aka γ2:̀ 1→`∞ norm) is defined as (Srebro
et al., 2005):

‖X‖max = min
X=UV >

max(‖U‖22,∞, ‖V ‖22,∞) (2)

where ‖U‖2,∞ is the maximum over `2 norms of rows of
matrix U , i.e. ‖U‖2,∞ = maxi ‖U [i]‖.

For any pair of sets ({xi}1≤i≤n, {yi}1≤i≤m) and hashes
(f, g) over them, let P be the collision probability matrix,
i.e. P (i, j) = P[f(xi) = g(yj)]. In the following lemma
we prove that ‖P‖max ≤ 1:
Lemma 3. For any two sets of objects and hashes
over them, if P is the collision probability matrix, then
‖P‖max ≤ 1.

Proof. For each f and g, define the following biclustering
matrix:

κf,g(i, j) =

{
1 f(xi) = g(yj)

0 otherwise.
(3)

For any function f : Z → Γ, let Rf ∈ {0, 1}n×|Γ| be the
indicator of the values of function f :

Rh(i, γ) =

{
1 h(xi) = γ

0 otherwise,
(4)

and define Rg ∈ {0, 1}m×|Γ| similarly. It is easy to show
that κf,g = RfR

>
g and since ‖Rf‖2,∞ = ‖Rg‖2,∞ =

1, by the definition of the max-norm, we can conclude
that ‖κf,g‖max ≤ 1. But the collision probabilities are
given by P = E[κf,g], and so by convexity of the max-
norm and Jensen’s inequality, ‖P‖max = ‖E[κf,g]‖max ≤
E[‖κf,g‖max] ≤ 1.

It is also easy to see that 1n×n = RR> where R = 1n×1.
Therefore for any θ ∈ R,

‖θn×n‖max = θ ‖1n×n‖max ≤ |θ|

MARGIN COMPLEXITY

For any sign matrix Z, the margin complexity of Z is de-
fined as:

min
Y

‖Y ‖max (5)

s.t. Y (i, j)X(i, j) ≥ 1 ∀i, j

Let Z ∈ {±1}N×N be a sign matrix with +1 on and above
the diagonal and -1 below it. Forster et al. (2003) prove that
the margin complexity of matrix Z is Ω(logN).
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