Alpha-Beta Divergences Discover Micro and Macro Structures in Data

Karthik Narayan
University of California, Berkeley, CA, 94720, USA

Ali Punjani
University of Toronto, ON M5S, CANADA

Pieter Abbeel
University of California, Berkeley, CA, 94720, USA

Abstract

Although recent work in non-linear dimension-
ality reduction investigates multiple choices of
divergence measure during optimization (Yang
et al., 2013; Bunte et al., 2012), little work dis-
cusses the direct effects that divergence measures
have on visualization. We study this relationship,
theoretically and through an empirical analysis
over 10 datasets. Our works shows how the o and
[ parameters of the generalized alpha-beta diver-
gence can be chosen to discover hidden macro-
structures (categories, e.g. birds) or micro-
structures (fine-grained classes, e.g. toucans).
Our method, which generalizes t-SNE (van der
Maaten, 2008), allows us to discover such struc-
ture without extensive grid searches over («, 3)
due to our theoretical analysis: such structure is
apparent with particular choices of («, 3) that
generalize across datasets. We also discuss ef-
ficient parallel CPU and GPU schemes which are
non-trivial due to the tree-structures employed in
optimization and the large datasets that do not
fully fit into GPU memory. Our method runs 20x
faster than the fastest published code (Vladymy-
rov & Carreira-Perpinan, 2014). We conclude
with detailed case studies on the following very
large datasets: ILSVRC 2012, a standard com-
puter vision dataset with 1.2M images; SUSY, a
particle physics dataset with SM instances; and
HIGGS, another particle physics dataset with
11M instances. This represents the largest pub-
lished visualization attained by SNE methods.
We have open-sourced our visualization code:
http://rll.berkeley.edu/absne/.
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Figure 1. Discovering micro-structures using the settings a <
1,A = 1, prescribed by the intuition in (Section 4). Using
Caffe fc7 features (Jia et al., 2014), we discover structures in the
ILSVRC 2012 test set, e.g., classes of birds, and visual transitions,
e.g., perched birds transitioning smoothly to swinging monkeys.

1. Introduction and Related Work

Data visualization techniques aim to generate a low-
dimensional representation of a dataset which data scien-
tists and researchers can inspect to gain insight into the
structure and complexity of the data. Vital to data-driven
decision making, visualizations graphically represent la-
tent structure and meaning in the dataset. Many recent
approaches produce low-dimensional embeddings of data
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instances, which we can view via scatter plots (Carreira-
Perpinan, 2010; Hinton & Roweis, 2003; van der Maaten,
2008; Lawrence, 2011; Bunte et al., 2012; Vladymyrov
& Carreira-Perpinan, 2014; Yang et al., 2014). Partic-
ularly, recent variants on stochastic neighborhood em-
bedding (SNE) have become popular (Hinton & Rowesis,
2003); the recently published t-SNE (t-distributed stochas-
tic neighbor embedding) is particularly popular (van der
Maaten, 2008). At a high level, SNEs (i) capture neighbor-
hood information from pairs of points in the original dataset
with m data instances into an m X m data similarity ma-
trix, and (ii) learn a low-dimensional embedding of those
points whose similarity matrix closely matches the origi-
nal. Computing an embedding which matches the structure
of the original data involves minimizing a divergence mea-
sure, e.g., KL-divergence, between the data and embedding
similarity matrices. Indeed, most methods employ the KL-
divergence (Hinton & Roweis, 2003; van der Maaten, 2008;
2013; Yang et al., 2009).

Unfortunately, most proposed methods either (1) are
hyperparameter-free, giving researchers little room to di-
rectly communicate what types of patterns they are search-
ing for in the data, or (2) have non-intuitive hyperparame-
ters that require expensive, tedious grid searches.

Contributions. We propose a method featuring 2 hyperpa-
rameters («, ). Our theoretical analysis predicts that (1)
setting o + 8 < 1 reveals macro-structures (categories,
e.g.,dogs), (2) a < 1 reveals micro-structures (fine-grained
classes, e.g. dalmations), and (3) a + 8 > 1 reveals in-
stances close to class boundaries (e.g., digits that are easily
confused as 1 vs 7 or 4 vs 9) (Section 4). The meaning of
the parameters makes data exploration intuitive, and can
obviate the need for extensive grid searches over hyper-
parameter settings. We emphasize that these settings are
dataset-agnostic, empirically substantiated on 10 datasets
covering a wide swath of sizes (100 — 11M instances)
drawn from a broad set of domains (computer vision, bi-
ology, particle physics). Our method allows for fast paral-
lel CPU/GPU implementations; our GPU implementation
runs 20x faster than the state of the art SNE-based imple-
mentations (Section 5).

Our theoretical analysis additionally answers a question
recently posed in (Bunte et al., 2012): under what cir-
cumstances should we choose a particular divergence to
minimize in the SNE framework, and what consequences
does this choice have? While minimizing divergences
other than the KL-divergence in the SNE objective has
recently been explored computationally, these works do
not answer this question. Yang et. al. demonstrate
that several popular SNE variants arise from varying the
divergence that is being minimized (Yang et al., 2013).
Yang et. al. show that a novel optimization equivalence

theorem between a-divergences, [-divergences, and ~y-
divergences yields a class of methods that build on the best
aspects of graph layout and vectorial embedding. Bunte
et. al. apply t-SNE variants using several Bregman di-
vergences, f-divergences, and y-divergences to two small
datasets (COIL-20 (Nene et al., 1996) and the Olivetti face
dataset (Samaria & Harter, 1994)) (Bunte et al., 2012). Al-
though Bunte et. al. acknowledge that varying divergences
produce different visualizations, they admit that they are
unable to deliver an overall recipe for choosing a particular
divergence in a given task. To the best of our knowledge,
this paper is the first to provide such a recipe.

Past work primarily explores minimizing purely a single
divergence in the SNE framework. We discover that min-
imizing the generalized alpha-beta divergence (a.k.a. AB-
divergence) (Cichocki et al., 2011), which blends the a-
and (- divergences, is crucial to discovering important mi-
cro and macro structures in the data (Section 4).

2. Background: t-distributed Stochastic
Neighborhood Embedding

Given a dataset D = {x1,Xa, - ,X,,}, with data in-
stances x; € R"™, t-distributed Stochastic Neighbor Em-
bedding (t-SNE) (van der Maaten, 2008) aims to learn an
embedding £ = {y1,y2, - ,Ym}, where y; € R (usu-
ally, d = 2 or 3). To achieve this goal, t-SNE defines

exp(—|Ix; — x;(|*/207)

Pl = 5 exp(—lp — a2 D
Pij = (Py; + ]|1)/2m 2)
1 i~y -1

2oL+ llye — YZ||2)71

where additionally, P;; = Q; = 0. Determining the
individual variances o7 involves running a binary search
such that the perplexity (2 raised to the entropy) of the con-
ditional P.|; equals k, a free parameter (van der Maaten,
2013). The embedding employs a Student-t kernel rather
than a Gaussian to prevent embedding points from crowd-
ing near the center of the visualization map without clear
clustering, a.k.a. the “crowding problem.” t-SNE pre-
scribes learning the embedding vectors y; by running gra-
dient descent to minimize the resulting non-convex KL-

divergence, J(€) = 3_,; Pijlog Py /Qj:

a _422 l]Ql] - 1]) (4)
vi o
= 4P;;QiiZ(yi —y;) — >_4Q5 Z(yi — y;)
73 Force 1 ke Force 2
(5)

where Z = 37, (1 + [[yx — yul[*)~". Naively computing
this gradient takes O(m?) time, making visualizations of
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greater than 50K data vectors prohibitively expensive.

Barnes-Hut-SNE (BHSNE) (van der Maaten, 2013) ap-
proximates the t-SNE’s gradient in sub-quadratic time,
yielding nearly identical visualizations to t-SNE while al-
lowing for visualizations of millions of data vectors in a
few hours. To this end, BHSNE only retains P;; where
data vector x; is one of x;’s closest 3k neighbors, and
sets the rest to 0. In practice, BHSNE constructs a van-
tage point tree to execute all nearest neighbor searches
in O(kmnlogm) time (van der Maaten, 2013; Yianilos,
1993). BHSNE computes Force 1 in O(km) time by
adding only terms involving positive P;; and computing
each Q;;Z = (1 + |ly; — y;||*)7" in constant time;
we ignore the dimensionality of the y;, as BHSNE typi-
cally seeks a 2D or 3D embedding. BHSNE employs a
Barnes-Hut approximation algorithm to compute Force 2 in
O(mlogm) time: giveny;,y;, and y; where ||y; —y;| ~
lly: — y&l > |ly; — y«l|. the contributions of y; and y}, to
Force 2 will be roughly equal. The Barnes-Hut algorithm
exploits this in computing the sum of all contributions to
an embedding vector y; by (i) constructing a quadtree over
{y:}, (ii) traversing the quadtree via a depth-first-search,
and (3) at every quadtree node, deciding whether the corre-
sponding cell can summarize the gradient contributions for
all points in that cell. In computing Force 2 for a point
yi, if a cell is sufficiently small and far away from y;,
then Q Z(y; — y;) will be similar for all points y; in
that cell As such, BHSNE approximates the total con-
tribution as Ny - QF;Z(yi — y;) where Neey denotes
the total number of points in the cell. To compute Z ef-
ficiently, BHSNE (i) runs a separate Barnes-Hut procedure
to compute a z; = >, Ko([ly: — y;|[?) for each embed-
ding point 7 and (ii) sums over the z;’s to yield Z. BH-
SNE then uses this value of Z in the Barnes-Hut procedure
to compute Force 2. BHSNE decides whether a cell can
summarize the points that it contains by checking whether
lyi — Yeeull?/reets < 0, where 7. is the length of the
cell diagonal, y..;; is the cell’s center of mass, and 6 is a
threshold that trades off speed and accuracy (larger values
lead to poorer approximations).

3. Alpha-Beta Stochastic Neighborhood
Embedding

Alpha-Beta Stochastic Neighborhood Embedding (AB-
SNE), our proposed method, differs from t-SNE in that it
minimizes the alpha-beta divergence (AB-divergence). We
minimize the cost Japsne(€;a, B) = DA% (P||Q), com-

puted as
Z ( a Pa+,3 + B Qa+ﬁ>
ﬁ i#£j ZJ a+ B o+ 6 ’
(6)
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Figure 2. Functions in the (left) Tsallis deformed g-logarithm and
(right) power families. Dotted lines in the left figure denote abso-
lute values of functions. | Ini—a/(7s;)].

where @ € R\ {0},5 € R are hyperparameters. It is
possible to set 8 = 0 or &« + 8 = 0 by extending the AB-
divergence via continuity, e.g., by applying I’Hopital’s rule
(see (Cichocki et al., 2011)); this does not affect the form
of the gradient we present below (see Supplementary Ma-
terials). We use the definitions of P;; and Q;; employed
in BHSNE (see Section 2). We minimize the ABSNE ob-
jective via gradient descent. The gradient, 0 Jagsne/0Yq,
is computed as

> 42QY(yi — y)(PLQLT QYT — g+ )
J R
Force 1 Force 2
(7

where Ji = 37, PyQ), and Jy = Dkt Q. We
compute ABSNE gradients in O(mlog m + mk) time us-
ing BHSNE’s computational tricks: we can compute Force
1 and J; in O(km) time using P’s sparsity and Force 2
via a Barnes-Hut algorithm similar to the one described in
Section 2 after pre-computing Z and J, using a separate
Barnes-Hut procedure.

4. How « and [ Discover Hidden Structures

The AB-divergence offers two hyperparameters, « and 3,
which have strong intuitive meaning. This conveniently re-
moves the need for tedious grid searches. Defining A =
«a + [, we inspect the updates taken during learning:

L(P|Q) an A1 <P1',j>
Ay; = ——AB - 1=/ Ing_q
Y 33’1 Z Q - Qij
®)
0Q;
=> Q]QA Fng g (75) ©)

J

where In,(z) is the Tsallis deformed g-logarithm! and
ri; = P;;j/Qij. Our theoretical analysis considers how

Ing(z) = (277 = 1)/(1 — q) if ¢ # 1, else Iny(z) = In .
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Figure 3. Empirical evidence of the theory in Section 4: (col. 2) A < 1 reveals macro-structures, (col. 4) o < 1 reveals micro-structures,
and (col. 3) A > 1 reveals instances close to class boundaries (Section 4). Further evidence on larger datasets (1M+ instances) is
provided in Section 6. During data analysis, if supervision is not provided, column 2 may help in identifying classes. If supervision is
provided, the right three plots can help understand “easily confused” (boundary) instances and instances within fine-grained categories.
For reference, the left-most column displays t-SNE’s visualization, i.e., in the limit (a, A) — (1, 1) (this derivation is non-trivial due to

the limits and presented in the Supplementary Materials).

each force f;; = 0Q;;/0y; - Qf‘jfllnl,a(rij) affects
Ay;. The term 0Q;;/Jy; is a vector parallel to the ray
k(y; — y;). Since the t-distribution monotonically de-
creases for positive arguments, we must have k£ < 0,
i.e., f;; points towards y;, implying that f;; attracts y; to-
wards y; if Qf‘fllnl,a(rij) > 0 = r;; > 1 (see Fig-
ure 2) and repulses y; from y; if r;; < 1. Specifically,
non-neighboring point pairs in the original dataset D with
P,; = 0= r;; = 0 < 1repel each other.

We interleave theoretical intuition with empirical verifi-
cation on two datasets (more results presented in Sec-
tion 6): MNIST (LeCun & Cortes, 1998), a dataset of 70K
28 x 28 grayscale images depicting handwritten digits 0-9
and CIFAR-10 (Krizhevsky & Hinton, 2009), a dataset of
32 x 32 color images depicting 10 distinct object classes.
We use the raw pixel data as MNIST’s feature representa-
tion. For CIFAR-10, we train a 3-layer convolutional neu-
ral network with the CUDACONVNET (Krizhevsky, 2011)
architecture using Caffe (Jia et al., 2014) and employ only
third layer convolutional features; we visualize the test set
to avoid having training labels directly influence the em-
bedding. Applying PCA to center and reduce each dataset
to 100 dimensions, we ran ABSNE under various (o, )
for both datasets with perplexity 30 (Figure 3). We initial-
ize all y; in experiments with the same random seed and
run exactly 1000 iterations of gradient descent per configu-
ration (see Section 5 for optimization details), so structural
details across a row should be comparable; the first column
(a = 1.0, A = 1.0) denotes vanilla t-SNE.

Intuition Behind «. To study «, let us fix A = 1. Con-
sider a cluster of embedding points consisting of a few
sub-clusters. After convergence, the sub-clusters will be

placed together in such a way that the attractive and re-
pulsive forces are balanced. According to Figure 2a., de-
creasing « below 1 emphasizes the magnitude of (repul-
sive) forces with r;; < 1 relative to (attractive) forces with
r;; > 1. The emphasized repulsive forces and diminished
attractive forces should cause sub-clusters to be placed fur-
ther apart, implying that ABSNE should tend to produce
lots of small, fine-grained clusters for « < 1. Because
ri; < 1 = Q;; > P;; implies that points y;,y; are
closer than they are supposed to be, the f;; operating on
close-proximity points y;,y; should be emphasized more
than those of far away points, implying that setting o < 1
should lead to fewer global changes in visualization struc-
ture in comparison with t-SNE (o« = XA = 1), but lots of
change in local structure. Similarly, setting o« > 1 should
lead to fewer, larger clusters with more global visualiza-
tion changes. Inspecting columns 4 and 5 in Figure 3, we
notice that varying « yields the anticipated effect of local
clustering: in both CIFAR-10 and MNIST, individual clus-
ters are more tight and fine-grained for o < 1 and loose for
o > 1. As predicted, little global restructuring takes place
for a < 1 in comparison with o > 1. Variations on « could
be useful to a user interested in inspecting the relationships
between sub-clusters arising within larger clusters of the
data at various scales.

Intuition Behind . To study A, let us fix « = 1. Accord-
ing to Figure 2b., setting A < 1 emphasizes f;; with low
Q;; (distant y;, y;), over f;; with high Q;; (near y;,y;).
So, changing A should primarily affect global over local
structure. Thus, A < 1 increases the magnitudes of forces
on distant, repulsive point pairs, exaggerating repulsion of
non-neighboring point pairs in the original dataset, which
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we conjecture leads to greater cluster separation while set-
ting A > 1 leads to low separation. Inspecting column 2,
setting A < 1 yields the anticipated effect of greater cluster
separation: examining MNIST for A = 0.95 < 1, ABSNE
places each cluster of points further away from the others.
Similarly, the purple and brown clusters are more separated
from the other clusters with CIFAR-10. In column 3, set-
ting A = 1.05 > 1 yields a single large glob of points con-
taining smaller globs corresponding to the same class, as
expected. This setting could be useful if the user wishes to
inspect “boundary” cases between embedding points with
known classes.

The Importance of Blending o and 3. While past work
has individually applied the - and S- divergences to the
SNE problem (Yang et al., 2014; Bunte et al., 2012; Yang
et al., 2013), the heavy dependence of the theory on A =
« + [ shows that incorporating both divergences in the ob-
jective is crucial to discovering important micro and macro
structures in data.

5. Parallel CPU and GPU Implementations

While many optimization methods exist for embeddings,
e.g. spectral descent (Memisevic & Hinton, 2005), par-
tial Hessian strategies (Vladymyrov & Carreira-Perpinan,
2012), fast multipole methods with L-BGFGS (Vladymy-
rov & Carreira-Perpindn, 2014), we found that warm-
started gradient descent (van der Maaten, 2013) obtained
strong results: we (1) initialize all y; from a 2D isotropic
Gaussian with variance 10~% and (2) update each y; via
gradient descent (GD) with momentum (step size 200). For
the first 250 descent iterations, we use momentum 0.5 and
multiply all P;; values by a user-defined constant o = 12.
For the last 750 iterations, we use momentum 0.8. We use
a per-parameter adaptive learning rate scheme to speed up
GD convergence (Jacobs, 1988), otherwise known to be
very slow and sensitive to local optima in practice (Vla-
dymyrov & Carreira-Perpinan, 2012). Concrete reason-
ings behind these choices can be found in (van der Maaten,
2008; 2013). We now detail how to compute gradients and
update the y; on the GPU, particularly using the NVIDIA
compute unified device architecture (CUDA).

5.1. Parallel GPU Gradients

We store the y; in two arrays on the GPU, one array per
dimension, to take advantage of cache locality, as done
in (Burtscher & Pingali, 2011). We store the (sparse) affin-
ity matrix P as a list of triplets. We take advantage of
P’s symmetry to minimize the number of memory reads
by storing only the upper half of the matrix. Our imple-
mentation consists of 13 kernels, which we now discuss.

Kernels 1 - 5: Partially Computing Force 2. Recall from
Section 3 that the ABSNE gradient consists of two types
of forces: Force 1 and Force 2. We first compute Force 2,

since it will yield structures useful in computing Force 1.

Discussed in Section 2, computing Force 2 involves build-
ing a quadtree over the y;. To do this, we (Kernel 1) con-
struct a bounding box over the y;, (Kernel 2) hierarchi-
cally subdivide the bounding box until each cell contains at
most a single y;, and (Kernel 3) compute the center of mass
and cumulative mass per cell. Next, we (Kernel 4) perform
an in-order traversal of the quadtree, which approximately
places nearby cells next to each other in the traversal; this is
crucial in accelerating Kernel 5, which actually computes
the forces on the individual y;.

To understand why the in-order traversal is necessary, re-
call that in CUDA, all threads within a single warp will ex-
ecute in lockstep on entering a conditional statement only
if the conditional evaluation is identical for all threads;
otherwise, threads within the warp belonging to different
branches will execute serially, often severely affecting per-
formance. The in-order traversal substantially reduces such
within-warp thread divergence in Kernel 5, leading to an
order of magnitude savings in run-time. For more details,
see (Burtscher & Pingali, 2011), which we follow closely
in implementing these five kernels.

Jointly, this set of kernels computes and stores g3 =
3;42Q%(yi — yj) and g2 = 3,4ZQ%(yi —

yj)Q?jJrB ~!in GPU memory. We incorporate the contri-

butions of .J; and J5 in later kernels.

Kernel 6, 7: Computing J> and Z. We evaluate J, =
Dk QP by (1) computing a JQ@) =D ki 5 per
yi and (2) executing a reduction to compute Jo = ), Jéi).
We efficiently perform (1) by computing auxiliary JQ(i)
variables per y; in executing Kernel 5. We perform the

reduction through the open-source Thrust library (Bell &
Hoberock, 2011). We compute Z similarly.

Kernel 8, 9: Computing J;, Partially Computing Force
1. Rather than computing Force 1 by iterating over each
Y, we iterate through the positive entries of P, whose con-
tributions we add to the prescribed y; (Kernel 8). To par-
allelize computation, we split the list of triplets (i, j, P;;)
across enough blocks to allow for 1024 threads per block;
each thread processes a single triplet and updates points
i and j. One caveat of this approach is that these up-
dates must be made atomically; e.g., parallel updates for
tuples (2, 3) and (3, 5) without atomic updates would yield
a race condition for y3. Kernel 8 computes and stores
g3 =>,42Q%(yi — y;)P&QL; " in GPU memory.

Computing J; entails iterating through the positive entries
of P, computing the associated summands, and executing a
reduce operation (Kernel 9). With large datasets, the GPU
cannot fully store P in memory; so, we swap batches of P
between CPU and GPU memory and apply Kernels 8 and
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Figure 4. Best viewed in color. Timing experiments compar-
ing CPU-NAIVE (van der Maaten, 2008), FMM (Vladymyrov &
Carreira-Perpindn, 2014), CPU-BH (van der Maaten, 2013) with
our CPU-PAR-BH and GPU-BH implementations. Error bars de-
note 2 standard deviations of time across 30 experiments.

9 per batch, accumulating only J; and g3 in GPU memory.

Kernels 10 — 12: Updating y;. Kernel 10 executes the gra-
dient updates per y,;. We compute the gradient by modify-
ing each y; according to the entry in g = gy * (Jo — J1) —
g2 + g3, taking into account momentum and the adaptive
learning rates described in Section 5.

5.2. Parallel CPU Gradients

We use a very similar computation flow in computing par-
allel CPU gradients. In computing Force 2 on the CPU,
we build the quadtree serially, as this step typically takes
less than 10% of the full training time. After constructing
the quadtree, we similarly partially compute Force 2 using
OpenMP to parallelize computations over each y;. We then
compute Z and J5 via OpenMP’s parallel reduce operation,
using similar auxiliary variables as in the GPU implemen-
tation. We compute Force 1 and .J; serially; in practice,
we found that using atomic additions in parallel ran slower.
We then similarly update the y; in parallel.

5.3. Performance Experiments

All experiments in this paper employ a machine with 2x
Intel Xeon X5570 CPUs (8 cores total, 2.93 GHz), 64GB
memory, and an NVIDIA Tesla K40c graphics card. Cor-
roborated by (van der Maaten, 2013), fixing # = 0.25 of-
fers a good tradeoff between speed and accuracy. We ex-
plore the efficiency and scalability of (1) CPU-NAIVE: a
naive CPU implementation (van der Maaten, 2008), (2)
CPU-BH: a serial Barnes-Hut CPU implementation (van der
Maaten, 2013), (3) FMM: a fast multipole method, a
scheme with linear gradient time complexity, the fastest
published code available online) (Vladymyrov & Carreira-

Perpindn, 2014), (4) CPU-PAR-BH: our parallel Barnes-
Hut CPU implementation, and (5) GPU-BH: our Barnes-
Hut GPU implementation. All implementations run t-SNE
by setting &« = 1,8 = 0. FMM runs s-SNE, since code
for t-SNE was not available; timing comparisons are still
valid, since the number of operations involved in comput-
ing s-SNE and t-SNE gradients are similar. In our exper-
iments, we sample subsets of the HIGGS dataset (Baldi
et al., 2014), a large dataset consisting of 11M instances
and 28 features (see Section 6 for dataset details and visu-
alizations); we use a perplexity of 20. Figure 4 summarizes
our findings in a log-log plot. As expected, CPU-NAIVE
timings have a slope of 2 while CPU-BH, GPU-BH, and FMM
timings have slopes close to 1, indicating the expected the-
oretical complexities.

Barnes-Hut CPU Parallel On datasets with more than
50K instances, CPU-PAR-BH yields speedups of more
than 3.5x over CPU-BH, approaching about half of linear
speedup; we do not attain full linear speedup, since Force
1’s computation is not parallelized. Corroborated by (Vla-
dymyrov & Carreira-Perpindn, 2014), FMM runs substan-
tially faster than CPU-BH (20 — 30x); on datasets with more
than 1M instances, CPU-PAR-BH closes this gap to 2.5x.

Barnes-Hut GPU Parallel On datasets with more than
50K instances, GPU-BH yields speedups of 150 —200x over
CPU-BH and 55 — 60x over CPU-PAR-BH. While FMM is
2x faster than GPU-BH on datasets with size < 2K, GPU-BH
is 5 — 10x faster on datasets with size 20 — 500K and more
than 20x faster on datasets with size 1 — 10M. Between
100 and 50K instances, GPU-BH has a slope smaller than 1;
this happens because (i) Force 2 (quadtree) computations
dominate computation time and (ii) we are able to process
ALL data instances simultaneously on the GPU, effectively
yielding O(log m) computation time. At the 100K mark,
Force 1 dominates computation times because (i) we need
to update each data instance’s gradient atomically while (ii)
swapping portions of the sparse matrix P in and out of GPU
memory, causing the slope to return to 1.

6. Case Studies

Evaluating visualization quality is a difficult problem; in
previous work, researchers have used supervised labels in
tandem with a k-nearest neighbors metric to quantitatively
assess performance (van der Maaten, 2008; 2013; Yang
et al., 2009). However, such scores may not directly trans-
late to “better visualization”: For example, a data-miner
aspiring to explore micro, within-class clusters in a dataset
without supervised labels may assign a low score to an em-
bedding that perfectly separates high-level macro clusters.
We now explore ABSNE for use in such goal-driven visu-
alization. We strongly encourage readers to use a computer
in tandem with digital zoom set to around 400% in looking
at the large visualization in this section.
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Figure 5. Please use digital zoom at high levels to view details. (a - ¢) depict ILSVRC 2012’s micro (specific animal species) in the
purple, blue panels and macro (classes under the animal kingdom) structures in the red, green panels. As expected, macro clusters are
more widely separated in (c) than (a) and in the red, green panels than purple, blue panels. (h - j) depict analogous structures in the
HIGGS and SUSY datasets; we are searching for what physical meaning these structures have in the Standard Model of particle physics.
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6.1. ILSVRC 2012: Kingdoms to Species

A subset of ImageNet, ILSVRC 2012 (Deng et al., 2009)
features a training set of 1.28M images of varying size, val-
idation set of 50K images, and 1000 object categories. >
We employ fc7 features yielded by Alexnet (Krizhevsky
et al., 2012) implemented in Caffe (Jia et al., 2014), trained
on the 1.28M images.> We show a t-SNE plot of the val-
idation set in the top-middle of Figure 5; we also present
plots and 2 zoom views for (¢ = 0.8,A = 1) and
(o = 0.95,X = 0.98). Zoom views present a random
subset of images from the plot; displayed images were
not hand-picked. As Section 4 predicts, the top scatter
plots show tight clusters and greater class separation in
(@ = 0.95, X = 0.98) compared with the other settings,
particularly clusters corresponding to birds, mammals, and
dogs. The maroon oval in the purple panel shows a transi-
tion between perched birds to monkeys in trees, while the
blue and orange boxes in the red panel show well-separated
classes. As expected, we found stronger intra-class cluster-
ing for (« = 0.8, \ = 1); the purple panel shows separate
clusters for hummingbirds (green), macaw parrots (yel-
low), toucans (orange), flamingos (blue), chickens (red),
ducks (purple), and birds in the sky (gray). Similarly, the
blue panel separately clusters dalmations (green), Bernese
mountain dogs (blue), black and brown dogs, e.g. Dober-
man Pinschers and German Rottweilers (orange), and black
dogs (red). In comparison, the red panel associated with
(a = 0.95, A = 0.98) shows fewer, vague clusters with all
birds (orange): chickens (red) and swans/ducks (purple).
The green panel shows fewer classes: Bernese mountain
dogs (blue) and black and brown dogs (orange).

6.2. HIGGS: Discovering Higgs Bosons

‘We return to the HIGGS dataset (Baldi et al., 2014), whose
goal is to distinguish between signal processes which pro-
duce Higgs bosons and background processes which do
not. Each data instance consists of 28 features: the first 21
describe kinematic properties measured by detectors in the
accelerator, while the last 7 are high-level functions of the
first 21. Again, we first run t-SNE on the HIGGS dataset
(bottom left of Figure 5). For HIGGS and SUSY, we
first initialize and optimize with 0.5M random instances.
Upon convergence, we place another 0.5M new random in-
stances near their nearest neighbor in the original dataset
with isotropic Gaussian noise with variance 0.01. Repeat-

These classes correspond to leaves in a hierarchical tree of
classes, with “entity” being the root. For convenient visualiza-
tion, we greedily group together classes with the same parent un-
til 11 classes remain of roughly equal cardinality ((Donahue et al.,
2013) employ a similar method).

3We visualize the validation set rather than the training set, be-
cause the training labels were used to train the Caffe model, and
using the training labels themselves would yield perfect separa-
tion in visualization.

ing until all points have been embedded, this produces final
objectives with lower value.

Interestingly, while clustering occurs, the clusters don’t
correspond to the desired classes. Hoping that tighter
global clustering will lead to more intuitive results, we
set & = 0.98 (bottom middle plot). As predicted in Sec-
tion 4, straggling points align with existing clusters to yield
a cleaner plot. While some clusters appear to have slightly
denser concentrations of positive signals, there still is not
any concrete class separation. While we are not aware of
what the resulting clusters mean, we believe that the clus-
ters could yield further insights.

6.3. SUSY: Discovering Supersymmetric Particles

Discovering evidence of supersymmetry (SUSY) consti-
tutes a major goal in the Large Hadron Collider’s central
mission; one ramification of the theory includes the discov-
ery of dark matter candidate particles (Baldi et al., 2014).
We explore the SUSY dataset (Baldi et al., 2014), which
similarly tries to distinguish between processes which do
and do not produce supersymmetric particles. There is
currently a vigorous effort to improve performance in this
classification task (Cheng & Han, 2008; Barr et al., 2003;
Rogan, 2010; Buckley et al., 2013). As with HIGGS, we
found that setting & = 0.98, A\ = 1 yields a cleaner plot
with greater separation than that of t-SNE (not shown due
to lack of space). While we do not observe perfect cluster
separation, there is a distinct purple region corresponding
to observed SUSY particles. Perhaps, replicating experi-
mental conditions leading to particles in this region would
have a higher chance of yielding SUSY particles.

7. Discussion

Although several papers have explored varying divergences
in SNE methods, this is the first paper to theoretically at-
tribute and empirically verify how divergence parameters
qualitatively affect visualization. Our analysis reveals that
parameter variation in («, 8) for the AB-divergence dis-
covers micro and macro structures within data in a dataset-
agnostic fashion. Our well-optimized GPU implementa-
tion yields speedups of more than 20x on datasets with
1 — 10M instances over the state of the art implementa-
tion (Vladymyrov & Carreira-Perpindn, 2014). This yields
the largest published SNE visualization of a dataset (11M
instances).
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