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Abstract
We propose nested sequential Monte Carlo
(NSMC), a methodology to sample from se-
quences of probability distributions, even where
the random variables are high-dimensional.
NSMC generalises the SMC framework by re-
quiring only approximate, properly weighted,
samples from the SMC proposal distribution,
while still resulting in a correct SMC algorithm.
Furthermore, NSMC can in itself be used to pro-
duce such properly weighted samples. Conse-
quently, one NSMC sampler can be used to con-
struct an efficient high-dimensional proposal dis-
tribution for another NSMC sampler, and this
nesting of the algorithm can be done to an arbi-
trary degree. This allows us to consider complex
and high-dimensional models using SMC. We
show results that motivate the efficacy of our ap-
proach on several filtering problems with dimen-
sions in the order of 100 to 1 000.

1. Introduction
Inference in complex and high-dimensional statistical mod-
els is a very challenging problem that is ubiquitous in ap-
plications. Examples include, but are definitely not limited
to, climate informatics (Monteleoni et al., 2013), bioinfor-
matics (Cohen, 2004) and machine learning (Wainwright &
Jordan, 2008). In particular, we are interested in sequential
Bayesian inference, which involves computing integrals of
the form

π̄k(f) := Eπ̄k
[f(X1:k)] =

∫
f(x1:k)π̄k(x1:k)dx1:k, (1)
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Figure 1. Example of a spatio-temporal model where π̄k(x1:k) is
given by a k× 2× 3 undirected graphical model and xk ∈ R2×3.

for some sequence of probability densities

π̄k(x1:k) = Z−1
πk
πk(x1:k), k ≥ 1, (2)

with normalisation constants Zπk
=

∫
πk(x1:k)dx1:k.

Note that x1:k := (x1, . . . , xk) ∈ Xk. The typical scenario
that we consider is the well-known problem of inference
in time series or state space models (Shumway & Stoffer,
2011; Cappé et al., 2005). Here the index k corresponds to
time and we want to process some observations y1:k in a
sequential manner to compute expectations with respect to
the filtering distribution π̄k(dxk) = P(Xk ∈ dxk | y1:k).
To be specific, we are interested in settings where

(i) Xk is high-dimensional, i.e. Xk ∈ Rd with d� 1, and

(ii) there are local dependencies among the latent variables
X1:k, both w.r.t. time k and between the individual
components of the (high-dimensional) vectors Xk.

One example of the type of models we consider are the
so-called spatio-temporal models (Wikle, 2015; Cressie &
Wikle, 2011; Rue & Held, 2005). In Figure 1 we provide
a probabilistic graphical model representation of a spatio-
temporal model that we will explore further in Section 6.

Sequential Monte Carlo (SMC) methods, reviewed in Sec-
tion 2.1, comprise one of the most successful methodolo-
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gies for sequential Bayesian inference. However, SMC
struggles in high-dimensions and these methods are rarely
used for dimensions, say, d ≥ 10 (Rebeschini & van Han-
del, 2015). The purpose of the NSMC methodology is to
push this limit well beyond d = 10.

The basic strategy, described in Section 2.2, is to mimic the
behaviour of a so-called fully adapted SMC algorithm. Full
adaptation can drastically improve the efficiency of SMC
in high dimensions. Unfortunately, it can rarely be imple-
mented in practice since the fully adapted proposal distri-
butions are typically intractable. NSMC addresses this dif-
ficulty by requiring only approximate, properly weighted,
samples from the proposal distribution. The proper weight-
ing condition ensures the validity of NSMC, thus providing
a generalisation of the family of SMC methods. Further-
more, NSMC will itself produce properly weighted sam-
ples. Consequently, it is possible to use one NSMC proce-
dure within another to construct efficient high-dimensional
proposal distributions. This nesting of the algorithm can be
done to an arbitrary degree. For instance, for the model de-
picted in Figure 1 we could use three nested samplers, one
for each dimension of the “volume”.

The main methodological development is concentrated to
Sections 3–4. We introduce the concept of proper weight-
ing, approximations of the proposal distribution, and nest-
ing of Monte Carlo algorithms. Throughout Section 3 we
consider simple importance sampling and in Section 4 we
extend the development to the sequential setting.

We deliberately defer the discussion of the existing body of
related work until Section 5, to open up for a better under-
standing of the relationships to the new developments pre-
sented in Sections 3–4. We also discuss various attractive
features of NSMC that are of interest in high-dimensional
settings, e.g. the fact that it is easy to distribute the com-
putation, which results in improved memory efficiency and
lower communication costs. Finally, Section 6 profiles our
method extensively with a state-of-the-art competing algo-
rithm on several high-dimensional data sets. We also show
the performance of inference and the modularity of the
method on a d = 1 056 dimensional climatological spatio-
temporal model (Fu et al., 2012) structured according to
Figure 1.

2. Background and Inference Strategy
2.1. Sequential Monte Carlo

Evaluating π̄k(f) as well as the normalisation constant Zπk

in (2) is typically intractable and we need to resort to ap-
proximations. SMC methods, or particle filters (PF), con-
stitute a popular class of numerical approximations for se-
quential inference problems. Here we give a high-level in-
troduction to the concepts underlying SMC methods, and

postpone the details to Section 4. For a more extensive
treatment we refer to Doucet & Johansen (2011); Cappé
et al. (2005); Doucet et al. (2001). In particular, we will
use the auxiliary SMC method as proposed by Pitt & Shep-
hard (1999).

At iteration k − 1, the SMC sampler approximates the tar-
get distribution π̄k−1 by a collection of weighted particles
{(Xi

1:k−1,W
i
k−1)}Ni=1. These samples define an empirical

point-mass approximation of the target distribution

π̄Nk−1(dx1:k−1) :=

N∑
i=1

W i
k−1∑

`W
`
k−1

δXi
1:k−1

(dx1:k−1), (3)

where δX(dx) denotes a Dirac measure at X . Each itera-
tion of the SMC method can then conceptually be described
by three steps, resampling, propagation, and weighting.

The resampling step puts emphasis on the most promising
particles by discarding the unlikely ones and duplicating
the likely ones. The propagation and weighting steps es-
sentially correspond to using importance sampling when
changing the target distribution from π̄k−1 to π̄k, i.e. sim-
ulating new particles from a proposal distribution and then
computing corresponding importance weights.

2.2. Adapting the Proposal Distribution

The first working SMC algorithm was the bootstrap PF by
Gordon et al. (1993), which propagates particles by sam-
pling from the system dynamics and computes importance
weights according to the observation likelihood (in the state
space setting). However, it is well known that the bootstrap
PF suffers from weight collapse in high-dimensional set-
tings (Bickel et al., 2008), i.e. the estimate is dominated by
a single particle with weight close to one. This is an effect
of the mismatch between the importance sampling proposal
and the target distribution, which typically gets more pro-
nounced in high dimensions.

More efficient proposals, partially alleviating the degener-
acy issue for some models, can be designed by adapting
the proposal distribution to the target distribution (see Sec-
tion 4.2). In Naesseth et al. (2014a) we make use of the
fully adapted SMC method (Pitt & Shephard, 1999) for do-
ing inference in a (fairly) high-dimensional discrete model
where xk is a 60-dimensional discrete vector. We can then
make use of forward filtering and backward simulation, op-
erating on the individual components of each xk, in order to
sample from the fully adapted SMC proposals. However,
this method is limited to models where the latent space is
either discrete or Gaussian and the optimal proposal can be
identified with a tree-structured graphical model. Our de-
velopment here can be seen as a non-trivial extension of
this technique. Instead of coupling one SMC sampler with
an exact forward filter/backward simulator (which in fact
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reduces to an instance of standard SMC), we derive a way
of coupling multiple SMC samplers and SMC-based back-
ward simulators. This allows us to construct procedures
for mimicking the efficient fully adapted proposals for arbi-
trary latent spaces and structures in high-dimensional mod-
els.

3. Proper Weighting and Nested Importance
Sampling

In this section we will lay the groundwork for the deriva-
tion of the class of NSMC algorithms. We start by consid-
ering the simpler case of importance sampling (IS), which
is a fundamental component of SMC, and introduce the key
concepts that we make use of. In particular, we will use a
(slightly nonstandard) presentation of an algorithm as an
instance of a class, in the object-oriented sense, and show
that these classes can be nested to an arbitrary degree.

3.1. Exact Approximation of the Proposal Distribution

Let π̄(x) = Z−1
π π(x) be a target distribution of in-

terest. IS can be used to estimate an expectation
π̄(f) := Eπ̄[f(X)] by sampling from a proposal dis-
tribution q̄(x) = Z−1

q q(x) and computing the estimator

(
∑N
i=1W

i)−1
∑N
i=1W

if(Xi), with W i =
Zqπ(Xi)
q(Xi) , and

where {(Xi,W i)}Ni=1 are the weighted samples. It is pos-
sible to replace the IS weight by a nonnegative unbiased
estimate, and still obtain a valid (consistent, etc.) algorithm
(Liu, 2001, p. 37). One way to motivate this approach is
by considering the random weight to be an auxiliary vari-
able and to extend the target distribution accordingly. Our
development is in the same flavour, but we will use a more
explicit condition on the relationship between the random
weights and the simulated particles. Specifically, we will
make use of the following key property to formally justify
the proposed algorithms.
Definition 1 (Properly weighted sample). A (random) pair
(X,W ) is properly weighted for an unnormalised distribu-
tion p if W ≥ 0 and E[f(X)W ] = p(f) :=

∫
f(x)p(x)dx

for all measurable functions f .

Note that proper weighting of {(Xi,W i)}Ni=1 implies un-
biasedness of the estimate of the normalising constant
of p. Indeed, taking f(x) ≡ 1 gives E

[
1
N

∑N
i=1W

i
]

=∫
p(x)dx =: Zp.

Interestingly, to construct a valid IS algorithm for our tar-
get π̄ it is sufficient to generate samples that are properly
weighted w.r.t. the proposal distribution q. To formalise
this claim, assume that we are not able to simulate exactly
from q̄, but that it is possible to evaluate the unnormalised
density q point-wise. Furthermore, assume we have access
to a class Q, which works as follows. The constructor of Q

requires the specification of an unnormalised density func-
tion, say, q, which will be approximated by the procedures
of Q. Furthermore, to highlight the fact that we will typ-
ically use IS (and SMC) to construct Q, the constructor
also takes as an argument a precision parameter M , corre-
sponding to the number of samples used by the “internal”
Monte Carlo procedure. An object is then instantiated as
q = Q(q,M). The class Q is assumed to have the follow-
ing properties:

(A1) Let q = Q(q,M). Assume that:

1. The construction of q results in the generation of a (pos-
sibly random) member variable, accessible as Ẑq =

q.GetZ(). The variable Ẑq is a nonnegative, unbiased
estimate of the normalising constant Zq =

∫
q(x)dx.

2. Q has a member function Simulate which returns a
(possibly random) variable X = q.Simulate(), such
that (X, Ẑq) is properly weighted for q.

With the definition of Q in place, it is possible to gen-
eralise1 the basic importance sampler as in Algorithm 1,
which generates weighted samples {(Xi,W i)}Ni=1 target-
ing π̄. Note that Algorithm 1 is different from a random
weight IS, since it approximates the proposal distribution
(and not just the importance weights).

Algorithm 1 Nested IS (steps 1–3 for i = 1, . . . , N )

1. Initialise qi = Q(q,M).

2. Set Ẑiq = qi.GetZ() and Xi = qi.Simulate().

3. Set W i =
Ẑiqπ(Xi)

q(Xi)
.

4. Compute Ẑπ = 1
N

∑N
i=1W

i.

To see the validity of Algorithm 1 we can interpret the
sampler as a standard IS algorithm for an extended target
distribution, defined as Π̄(x, u) := u Q̄(x, u)π̄(x)q−1(x),
where Q̄(x, u) is the joint PDF of the random pair
(q.Simulate(), q.GetZ()). Note that Π̄ is indeed a PDF that
admits π̄ as a marginal; for any measurable subset A ⊆ X,

Π̄(A× R+) =

∫
1A(x)

u π̄(x)

q(x)
Q̄(x, u)dxdu

= E
[
Ẑq

1A(X)π̄(X)

q(X)

]
= q̄

(
1A

π̄

q

)
Zq = π̄(A),

where the penultimate equality follows from the fact that
(X, Ẑq) is properly weighted for q. Furthermore, the stan-
dard unnormalised IS weight for a sampler with target Π̄

1With q.GetZ() 7→ Z and q.Simulate() returning a sample
from q̄ we obtain the standard IS method.
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and proposal Q̄ is given by uπ/q, in agreement with Algo-
rithm 1.

Algorithm 1 is an example of what is referred to as an exact
approximation; see e.g., Andrieu & Roberts (2009); An-
drieu et al. (2010). Algorithmically, the method appears to
be an approximation of an IS, but samples generated by the
algorithm nevertheless target the correct distribution π̄.

3.2. Modularity of Nested IS

To be able to implement Algorithm 1 we need to define a
class Q with the required properties (A1). The modularity
of the procedure (as well as its name) comes from the fact
that we can use Algorithm 1 also in this respect. Indeed, let
us now view π̄—the target distribution of Algorithm 1—as
the proposal distribution for another Nested IS procedure
and consider the following definition of Q:

1. Algorithm 1 is executed at the construction of the ob-
ject p = Q(π,N), and p.GetZ() returns the normalis-
ing constant estimate Ẑπ .

2. p.Simulate() simulates a categorical random variableB
with P(B = i) = W i/

∑N
`=1W

` and returns XB .

A simple computation now yields that for any measurable
f we have E[f(XB)Ẑπ] = π̄(f)Zπ. This implies that
(XB , Ẑπ) is properly weighted for π and that our defini-
tion of Q(π,N) indeed satisfies condition (A1).

The Nested IS algorithm in itself is unlikely to be of direct
practical interest. However, in the next section we will,
essentially, repeat the preceding derivation in the context
of SMC to develop the NSMC method.

4. Nested Sequential Monte Carlo
4.1. Fully Adapted SMC Samplers

Let us return to the sequential inference problem. As be-
fore, let π̄k(x1:k) = Z−1

πk
πk(x1:k) denote the target dis-

tribution at “time” k. The unnormalised density πk can
be evaluated point-wise, but the normalising constant Zπk

is typically unknown. We will use SMC to simulate se-
quentially from the distributions {π̄k}nk=1. In particular,
we consider the fully adapted SMC sampler (Pitt & Shep-
hard, 1999), which corresponds to a specific choice of
resampling weights and proposal distribution, chosen in
such a way that the importance weights are all equal to
1/N . Specifically, the proposal distribution (often referred
to as the optimal proposal) is given by q̄k(xk |x1:k−1) =
Zqk(x1:k−1)−1qk(xk |x1:k−1), where

qk(xk |x1:k−1) := πk(x1:k)/πk−1(x1:k−1).

In addition, the normalising “constant” Zqk(x1:k−1) =∫
qk(xk |x1:k−1)dxk is further used to define the resam-

pling weights, i.e. the particles at time k − 1 are resam-
pled according to Zqk(x1:k−1) before they are propagated
to time k. For notational simplicity, we use the convention
x1:0 = ∅, q1(x1 |x1:0) = π1(x1) and Zq1(x1:0) = Zπ1

.
The fully adapted auxiliary SMC sampler is given in Algo-
rithm 2.

Algorithm 2 SMC (fully adapted)

1. Set Ẑπ0
= 1.

2. for k = 1 to n

(a) Compute Ẑπk
= Ẑπk−1

× 1
N

∑N
j=1 Zqk(Xj

1:k−1).

(b) Draw m1:N
k from a multinomial distribution with

probabilities
Zqk

(Xj
1:k−1)∑N

`=1 Zqk
(X`

1:k−1)
, for j = 1, . . . , N .

(c) Set L← 0

(d) for j = 1 to N
i. Draw Xi

k ∼ q̄k(· |Xj
1:k−1) and let Xi

1:k =

(Xj
1:k−1, X

i
k) for i = L+ 1, . . . , L+mj

k.
ii. Set L← L+mj

k.

As mentioned above, at each iteration k = 1, . . . , n, the
method produces unweighted samples {Xi

k}Ni=1 approxi-
mating π̄k. It also produces an unbiased estimate Ẑπk

of Zπk
(Del Moral, 2004, Proposition 7.4.1). The algo-

rithm is expressed in a slightly non-standard form; at iter-
ation k we loop over the ancestor particles, i.e. the parti-
cles after resampling at iteration k − 1, and let each an-
cestor particle j generate mj

k offsprings. (The variable
L is just for bookkeeping.) This is done to clarify the
connection with the NSMC procedure below. Further-
more, we have included a (completely superfluous) resam-
pling step at iteration k = 1, where the “dummy vari-
ables” {Xi

1:0}Ni=1 are resampled according to the (all equal)
weights {Zq1(Xi

1:0)}Ni=1 = {Zπ1}Ni=1. The analogue of
this step is, however, used in the NSMC algorithm, where
the initial normalising constant Zπ1

is estimated. We thus
have to resample the corresponding initial particle systems
accordingly.

4.2. Fully Adapted Nested SMC Samplers

In analogue with Section 3, assume now that we are not
able to simulate exactly from q̄k, nor compute Zqk . Instead,
we have access to a class Q which satisfies condition (A1).
The proposed NSMC method is then given by Algorithm 3.

Algorithm 3 can be seen as an exact approximation of the
fully adapted SMC sampler in Algorithm 2. (In Naesseth
et al. (2015) we provide a formulation of NSMC with ar-
bitrary proposals and resampling weights.) We replace the
exact computation of Zqk and exact simulation from q̄k, by
the approximate procedures available through Q. Despite
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Algorithm 3 Nested SMC (fully adapted)

1. Set Ẑπ0
= 1.

2. for k = 1 to n

(a) Initialise qj = Q(qk(· |Xj
1:k−1),M) for j =

1, . . . , N .
(b) Set Ẑjqk = qj .GetZ() for j = 1, . . . , N .

(c) Compute Ẑπk
= Ẑπk−1

×
{

1
N

∑N
j=1 Ẑ

j
qk

}
.

(d) Draw m1:N
k from a multinomial distribution with

probabilities
Ẑj

qk∑N
`=1 Ẑ

`
qk

for j = 1, . . . , N .

(e) Set L← 0

(f) for j = 1 to N
i. Compute Xi

k = qj .Simulate() and let Xi
1:k =

(Xj
1:k−1, X

i
k) for i = L+ 1, . . . , L+mj

k.
ii. delete qj .

iii. Set L← L+mj
k.

this approximation, however, Algorithm 3 is a valid SMC
method. This is formalised by the following theorem.

Theorem 1. Assume that Q satisfies condition (A1). Then,
under certain regularity conditions on the function f :
Xk 7→ Rd and for an asymptotic variance ΣMk (f), both
specified in Naesseth et al. (2015), we have

N1/2

(
1

N

N∑
i=1

f(Xi
1:k)− π̄k(f)

)
D−→ N (0,ΣMk (f)),

where {Xi
1:k}Mi=1 are generated by Algorithm 3 and D−→

denotes convergence in distribution.

Proof. See Naesseth et al. (2015).

Remark 1. The key point with Theorem 1 is that, under cer-
tain regularity conditions, the NSMC method converges at
rate
√
N even for a fixed (and finite) value of the precision

parameter M . The asymptotic variance ΣMk (f), however,
will depend on the accuracy and properties of the approx-
imative procedures of Q. We leave it as future work to
establish more informative results, relating the asymptotic
variance of NSMC to that of the ideal, fully adapted SMC
sampler.

4.3. Backward Simulation and Modularity of NSMC

As previously mentioned, the NSMC procedure is modu-
lar in the sense that we can make use of Algorithm 3 also
to define the class Q. Thus, we now view π̄n as the pro-
posal distribution that we wish to approximately sample
from using NSMC. Algorithm 3 directly generates an esti-
mate Ẑπn of the normalising constant of πn (which indeed

is unbiased, see Theorem 2). However, we also need to
generate a sample X̃1:n such that (X̃1:n, Ẑπn) is properly
weighted for πn.

The simplest approach, akin to the Nested IS procedure
described in Section 3.2, is to draw Bn uniformly on
{1, . . . , N} and return X̃1:n = XBn

1:n . This will indeed re-
sult in a valid definition of the Simulate procedure. How-
ever, this approach will suffer from the well known path
degeneracy of SMC samplers. In particular, since we call
qj .Simulate() multiple times in Step 2(f)i of Algorithm 3,
we risk to obtain (very) strongly correlated samples by this
simple approach.

It is possible to improve the performance of the above pro-
cedure by instead making use of a backward simulator
(Godsill et al., 2004; Lindsten & Schön, 2013) to simu-
late X̃1:n. The backward simulator, given in Algorithm 4,
is a type of smoothing algorithm; it makes use of the par-
ticles generated by a forward pass of Algorithm 3 to sim-
ulate backward in “time” a trajectory X̃1:n approximately
distributed according to π̄n.

Algorithm 4 Backward simulator (fully adapted)

1. Draw Bn uniformly on {1, . . . , N}.

2. Set X̃n = XBn
n .

3. for k = n− 1 to 1

(a) Compute W̃ j
k =

πn((Xj
1:k, X̃k+1:n))

πk(Xj
1:k)

for j =

1, . . . , N .
(b) Draw Bk from a categorical distribution with prob-

abilities W̃ j
k∑N

`=1 W̃
`
k

for j = 1, . . . , N .

(c) Set X̃k:n = (XBk

k , X̃k+1:n).

Remark 2. Algorithm 4 assumes unweighted particles and
can thus be used in conjunction with the fully adapted
NSMC procedure of Algorithm 2. If, however, the forward
filter is not fully adapted the weights need to be accounted
for in the backward simulation; see Naesseth et al. (2015).

The modularity of NSMC is established by the following
result.
Definition 2. Let p = Q(πn, N) be defined as follows:

1. The constructor executes Algorithm 3 with target distri-
bution πn and with N particles, and p.GetZ() returns
the estimate of the normalising constant Ẑπn

.
2. p.Simulate() executes Algorithm 4 and returns X̃1:n.

Theorem 2. The class Q defined as in Definition 2 satisfies
condition (A1).

Proof. See Naesseth et al. (2015).
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A direct, and important, consequence of Theorem 2 is that
NSMC can be used as a component of powerful learn-
ing algorithms, such as the particle Markov chain Monte
Carlo (PMCMC) method (Andrieu et al., 2010) and many
of the other methods discussed in Section 5. Since standard
SMC is a special case of NSMC, Theorem 2 implies proper
weighting also of SMC.

5. Practicalities and Related Work
There has been much recent interest in using SMC within
SMC in various ways. The SMC2 by Chopin et al. (2013)
and the recent method by Crisan & Mı́guez (2013) are se-
quential learning algorithms for state space models, where
one SMC sampler for the parameters is coupled with an-
other SMC sampler for the latent states. Johansen et al.
(2012) and Chen et al. (2011) address the state inference
problem by splitting the state variable into different com-
ponents and run coupled SMC samplers for these compo-
nents. These methods differ substantially from NSMC;
they solve different problems and the “internal” SMC sam-
pler(s) is constructed in a different way (for approximate
marginalisation instead of for approximate simulation).
Another related method is the random weights PF of Fearn-
head et al. (2010a), requiring exact samples from q̄ and
where the importance weights are estimated using a nested
Monte Carlo algorithm.

The method most closely related to NSMC is the space-
time particle filter (ST-PF) (Beskos et al., 2014a), which
has been developed independently and in parallel with our
work. The ST-PF is also designed for solving inference
problems in high-dimensional models. It can be seen as a
island PF (Vergé et al., 2013) implementation of the method
presented by Naesseth et al. (2014b). Specifically, for a
spatio-temporal models they run an island PF over both
spatial and temporal dimensions. However, the ST-PF does
not generate an approximation of the fully adapted SMC
sampler.

Another key distinction between NSMC and ST-PF is that
in the latter each particle in the “outer” SMC sampler com-
prises a complete particle system from the “inner” SMC
sampler. For NSMC, on the other hand, the particles will
simply correspond to different hypotheses about the latent
variables (as in standard SMC), regardless of how many
samplers that are nested. This is a key feature of NSMC,
since it implies that it is easily distributed over the parti-
cles. The main computational effort of Algorithm 3 is the
construction of {qj}Nj=1 and the calls to the Simulate pro-
cedure, which can be done independently for each particle.
This leads to improved memory efficiency and lower com-
munication costs. Furthermore, we have found (see Sec-
tion 6) that NSMC can outperform ST-PF even when run
on a single machine with matched computational costs.

Another strength of NSMC methods are their relative ease
of implementation, which we show in Section 6.3. We use
the framework to sample from what is essentially a cubic
grid Markov random field (MRF) model just by implement-
ing three nested samplers, each with a target distribution
defined on a simple chain.

There are also other SMC-based methods designed for
high-dimensional problems, e.g., the block PF studied by
Rebeschini & van Handel (2015), the location particle
smoother by Briggs et al. (2013) and the PF-based meth-
ods reviewed in Djuric & Bugallo (2013). However, these
methods are all inconsistent, as they are based on various
approximations that result in systematic errors.

The previously mentioned PMCMC (Andrieu et al., 2010)
is a related method, where SMC is used as a component
of an MCMC algorithm. We make use of a very similar
extended space approach to motivate the validity of our
algorithm. Note that our proposed algorithm can be used
as a component in PMCMC and most of the other algo-
rithms mentioned above, which further increases the scope
of models it can handle.

6. Experimental Results
We illustrate NSMC on three high-dimensional examples,
both with real and synthetic data. We compare NSMC
with standard (bootstrap) PF and the ST-PF of Beskos et al.
(2014a) with equal computational budgets on a single ma-
chine (i.e., neglecting the fact that NSMC is more easily
distributed). These methods are, to the best of our knowl-
edge, the only other available consistent online methods for
full Bayesian inference in general sequential models. For
more detailed explanations of the models and additional re-
sults, see Naesseth et al. (2015)2.

6.1. Gaussian State Space Model

We start by considering a high-dimensional Gaussian state
space model, where we have access to the true solution
from the Kalman filter (Kalman, 1960). The latent vari-
ables and measurements {X1:k, Y1:k}, with {Xk, Yk} =

{Xk,l, Yk,l}dl=1, are modeled by a d × k lattice Gaussian
MRF, which can be identified with a linear Gaussian state
space model (see Naesseth et al. (2015)). We run a 2-level
NSMC sampler. The outer level is fully adapted, i.e. the
proposal distribution is qk = p(xk |xk−1, yk), which thus
constitute the target distribution for the inner level. To gen-
erate properly weighted samples from qk, we use a boot-
strap PF operating on the d components of the vector xk.
Note that we only use bootstrap proposals where the actual
sampling takes place, and that the conditional distribution

2Code available at https://github.com/can-cs/
nestedsmc

https://github.com/can-cs/nestedsmc
https://github.com/can-cs/nestedsmc


Nested Sequential Monte Carlo Methods

d = 50 d = 100 d = 200

E
SS

1 10 20 30 40 50 60 70 80 90 100
k

0

100

200

300

400

500

600

700

800

NSMC

ST-PF

Bootstrap
1 10 20 30 40 50 60 70 80 90 100

k

0

100

200

300

400

500

600

700

800

NSMC

ST-PF

1 10 20 30 40 50 60 70 80 90 100
k

0

100

200

300

400

500

600

700

800

NSMC

ST-PF

Figure 2. Median (over dimension) ESS (4) and 15–85% percentiles (shaded region). The results are based on 100 independent runs for
the Gaussian MRF with dimension d.

p(xk |xk−1, yk) is not explicitly used.

We simulate data from this model for k = 1, . . . , 100 for
different values of d = dim(xk) ∈ {50, 100, 200}. The
exact filtering marginals are computed using the Kalman
filter. We compare with both the ST-PF and standard (boot-
strap) PF.

The results are evaluated based on the effective sample size
(ESS, see e.g. Fearnhead et al. (2010b)) defined as,

ESS(xk,l) =
(
E
[

(x̂k,l−µk,l)
2

σ2
k,l

])−1

, (4)

where x̂k,l denote the mean estimates and µk,l and σ2
k,l

denote the true mean and variance of xk,l | y1:k obtained
from the Kalman filter. The expectation in (4) is approx-
imated by averaging over 100 independent runs of the in-
volved algorithms. The ESS reflects the estimator accu-
racy, obvious by the definition which is tightly related to
the mean-squared-error. Intuitively the ESS corresponds to
the equivalent number of i.i.d. samples needed for the same
accuracy.

We use N = 500 and M = 2 · d for NSMC and match the
computational time for ST-PF and bootstrap PF. We report
the results in Figure 2. Note that the bootstrap PF is omitted
from d = 100, 200 due to its poor performance already
for d = 50 (which is to be expected). Each dimension
l = 1, . . . , d provides us with a value of the ESS, so we
present the median (lines) and 15–85% percentiles (shaded
regions) in the first row of Figure 2.

We have conducted additional experiments with differ-
ent model parameters and different choices for N and
M (some additional results are given in Naesseth et al.
(2015)). Overall the results seem to be in agreement with
the ones presented here, however ST-PF seems to be more
robust to the trade-off between N and M . A rule-of-thumb
for NSMC is to generally try to keepN as high as possible,
while still maintaining a reasonable estimate of Zqk .

6.2. Non-Gaussian State Space Model

Next, we consider an example with a non-Gaussian SSM,
borrowed from Beskos et al. (2014a) where the full de-

tails of the model are given. The transition proba-
bility p(xk |xk−1) is a localised Gaussian mixture and
the measurement probability p(yk |xk) is t-distributed.
The model dimension is d = 1 024. Beskos et al.
(2014a) report improvements for ST-PF over both the boot-
strap PF and the block PF by Rebeschini & van Han-
del (2015). We use N = M = 100 for both ST-PF
and NSMC (the special structure of this model implies
that there is no significant computational overhead from

1 10 20 30 40 50 60 70 80 90 100
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S

S
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Figure 3. Median ESS with 15 − 85%
percentiles (shaded region) for the non-
Gaussian SSM.

running backward
sampling) and the
bootstrap PF is
given N = 10 000.
In Figure 3 we
report the ESS (4),
estimated accord-
ing to Carpenter
et al. (1999). The
ESS for the boot-
strap PF is close
to 0, for ST-PF
around 1–2, and
for NSMC slightly
higher at 7–8.
However, we note that all methods perform quite poorly
on this model, and to obtain satisfactory results it would be
necessary to use more particles.

6.3. Spatio-Temporal Model – Drought Detection

In this final example we study the problem of detecting
droughts based on measured precipitation data (Jones &
Harris, 2013) for different locations on earth. We look at
the situation in North America during the years 1901–1950
and the Sahel region in Africa during the years 1950–2000,
time frames including the so-called Dust Bowl in the US
during the 1930s (Schubert et al., 2004) and the decades
long drought in the Sahel region in Africa starting in the
1960s (Foley et al., 2003; Hoerling et al., 2006).

We consider the spatio-temporal model defined by Fu et al.
(2012) and compare with the results therein. Each loca-
tion in a region is modelled to be in either a normal state
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Figure 4. Top: Number of locations with estimated p(x = 1) > {0.5, 0.7, 0.9} for the two regions. Bottom: Estimate of p(xt,i = 1)
for all sites over a span of 3 years. All results for N = 100, N1 = {30, 40}, N2 = 20.

0 or in an abnormal state 1 (drought). Measurements are
given by precipitation (in millimeters) for each location and
year. At every time instance k our latent structure is de-
scribed by a rectangular 2D grid Xk = {Xk,i,j}I,Ji=1,j=1;
in essence this is the model showcased in Figure 1. Fu
et al. (2012) considers the problem of finding the maximum
aposteriori configuration, using a linear programming re-
laxation. We will instead compute an approximation of the
full posterior filtering distribution π̄k(xk) = p(xk | y1:k).

· · · Xk−1

N
→

Xk Xk+1 · · ·

M1
→

↓M2 ↓M2 ↓M2

Xk,1:2,1 Xk,1:2,2 Xk,1:2,3

Figure 5. Illustration of the
three-level NSMC.

The rectangular struc-
ture is used to instantiate
an NSMC method that
on the first level targets
the full posterior filtering
distribution, second level
the columns, and third
level the rows of Xk.
Properly weighted sam-
ples are generated using
a bootstrap PF for the
third level. The structure
of our NSMC method
applied to this particular problem is illustrated in Figure 5.

Figure 4 gives the results on the parts of North America that
we consider. The first row shows the number of locations
where the estimate of p(xk,i,j = 1) exceeds {0.5, 0.7, 0.9},
for both regions. These results seems to be in agreement
with Fu et al. (2012, Figures 3, 6). However, we also re-
ceive an approximation of the full posterior and can vi-
sualise uncertainty in our estimates, as illustrated by the
three different levels of posterior probability for drought.

In general, we obtain a rich sample diversity from the pos-
terior distribution. However, for some problematic years
the sampler degenerates, with the result that the three cred-
ibility levels all coincide. This is also visible in the second
row of Figure 4, where we show the posterior estimates
p(xk,i,j | y1:k) for the years 1939–1941, overlayed on the
regions of interest. Naturally, one way to improve the esti-
mates is to run the sampler with a larger number of parti-
cles, which has been kept very low in this proof-of-concept.

We have shown that a straightforward NSMC implementa-
tion with fairly few particles can attain reasonable approxi-
mations to the filtering problem for dimensions in the order
of hundreds, or even thousands. This means that NSMC
methods takes the SMC framework an important step closer
to being viable for high-dimensional statistical inference
problems. However, NSMC is not a silver bullet for solv-
ing high-dimensional inference problems, and the approx-
imation accuracy will be highly model dependent. Hence,
much work remains to be done, for instance on combining
NSMC with other techniques for high-dimensional infer-
ence such as localisation (Rebeschini & van Handel, 2015)
and annealing (Beskos et al., 2014b), in order to solve even
more challenging problems.

Acknowledgments
This work was supported by the projects: Learning of com-
plex dynamical systems (Contract number: 637-2014-466)
and Probabilistic modeling of dynamical systems (Contract
number: 621-2013-5524), both funded by the Swedish Re-
search Council.



Nested Sequential Monte Carlo Methods

References
Andrieu, C. and Roberts, G. O. The pseudo-marginal ap-

proach for efficient Monte Carlo computations. The An-
nals of Statistics, 37(2):697–725, 2009.

Andrieu, Christophe, Doucet, Arnaud, and Holenstein, Ro-
man. Particle Markov chain Monte Carlo methods. Jour-
nal of the Royal Statistical Society: Series B (Statistical
Methodology), 72(3):269–342, 2010.

Beskos, A., Crisan, D., Jasra, A., Kamatani, K., and
Zhou, Y. A stable particle filter in high-dimensions.
ArXiv:1412.3501, December 2014a.

Beskos, Alexandros, Crisan, Dan, and Jasra, Ajay. On
the stability of sequential Monte Carlo methods in high
dimensions. Ann. Appl. Probab., 24(4):1396–1445, 08
2014b.

Bickel, Peter, Li, Bo, and Bengtsson, Thomas. Sharp fail-
ure rates for the bootstrap particle filter in high dimen-
sions, volume Volume 3 of Collections, pp. 318–329.
Institute of Mathematical Statistics, Beachwood, Ohio,
USA, 2008.

Briggs, Jonathan, Dowd, Michael, and Meyer, Renate.
Data assimilation for large-scale spatio-temporal sys-
tems using a location particle smoother. Environmetrics,
24(2):81–97, 2013.
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