
Supplementary Material:
Threshold Influence Model for Allocating Advertising Budgets

Atsushi Miyauchi MIYAUCHI.A.AA@M.TITECH.AC.JP

Graduate School of Decision Science and Technology, Tokyo Institute of Technology, Japan

Yuni Iwamasa YUNI IWAMASA@MIST.I.U-TOKYO.AC.JP

Graduate School of Information Science and Technology, University of Tokyo, Japan

Takuro Fukunaga TAKURO@NII.AC.JP

National Institute of Informatics and JST, ERATO, Kawarabayashi Large Graph Project, Japan

Naonori Kakimura KAKIMURA@GLOBAL.C.U-TOKYO.AC.JP

Graduate School of Arts and Sciences, University of Tokyo, Japan

A. Proof of Theorem 1 (in Section 2)
Proof. We reduce the maximum thresholds coverage problem to the cost-effective version of the problem. Suppose that
we are given a bipartite graph G = (S, T ;E) with weight wt and threshold θt for each t ∈ T and budget k being a positive
integer. We consider the unweighted case, i.e., wt = 1 for each t ∈ T . We add p > k · |T | new nodes u1, . . . , up to T .
Each vertex ui is connected to all the nodes in S, and has threshold θui

= k. The resulting graph is denoted by G′. Note
that fG′(X) = fG(X) if |X| < k and fG′(X) = fG(X) + p otherwise.

We claim that any most cost-effective solution for G′ has to have size k. Indeed, for any X,Y ⊆ S with |X| < k and
|Y | = k,

fG′(X)

|X|
≤ |T | < p

k
≤ fG(Y) + p

|Y |
=

fG′(Y)

|Y |
.

Moreover, for any X,Y ⊆ S with |X| > k and |Y | = k,

fG′(X)

|X|
≤ |T |+ p

|X|
<

p

k
≤ fG(Y) + p

|Y |
=

fG′(Y)

|Y |
.

Thus the claim holds.

Therefore, a vertex subset X is the most cost-effective solution for G′ if and only if X is an optimal solution for G. Thus
the theorem holds.

B. Proof of Lemma 1 (in Section 3)
Proof. For each s ∈ S, we make us copies (s, 1), . . . , (s, us) of s, and connect each (s, i) to the neighbors of s in G.
The resulting graph is denoted by G̃, which has node sets S̃ = {(s, i) | s ∈ S, i = 1, . . . , us} and T . From the given
function ft : ZΓ(t)

+ → R, construct a set function f̃t : 2
S̃t → R as mentioned in the main text, where S̃t = {(s, i) | s ∈

Γ(t), i ∈ {0, 1, . . . , us}}. Moreover, we define the cost c(s, i) = csi as the weight of (s, i) ∈ S̃. Then consider solving
this problem to find a solution X ⊆ S̃ that satisfies

∑
(s,i)∈X c(s, i) ≤ B and maximizes f̃(X). Suppose that X ⊆ S̃ is

an α-approximate solution for the problem. The corresponding vector is denoted by x. Then we have f(x) = f̃(X) and∑
s∈S csxs ≤

∑
(s,i)∈X csi ≤ B. Hence x is a feasible solution to the original instance, whose objective value is f̃(X).

Since the optimal value to the original instance is equal to that of the reduced instance, x is an α-approximate solution to
the original instance.

Supplementary Material: Threshold Influence Model for Allocating Advertising Budgets

Since |S̃| =
∑

s∈S us, the size of the reduced problem is pseudo-polynomial in the input size. Thus the obtained instance
has size pseudo-polynomial in the input size.

C. Proof of Theorem 2 (in Section 3)
Proof. First suppose that cs = 1 for each s ∈ S and wt = 1 for each t ∈ T . Then the contribution ∆(X, s) is always
an integer from 0 to |T |. We maintain |T | + 1 doubly-linked lists, each of which contains source nodes with the same
contribution. Each iteration of Algorithm 2 involves identifying and removing the node with the smallest contribution, and
updating the lists.

We can find s∗ with the smallest contribution in O(|Γ(s∗)|) time by checking the lists from below, and remove it from
the list in constant time. For each t ∈ Γ(s∗), we compute the value of ft in β time, and check whether it still exceeds
the threshold θt. If it is lower than θt, we move the source nodes in Γ(t) to the appropriate lists, which can be done in
O(|Γ(t)|) time. Note that for each node in T , this happens at most once.

Thus, the algorithm runs in O(|S| + |T | + β|E|). Using a similar argument, when the weights are integers, the running
time becomes O(|S|+ β|E|+W).

When cs’s are integers, we maintain a priority queue of the source nodes. Throughout the algorithm, we need |S| insert
operations, |S| delete-min operations, and |E| decrease-key operations. If we use a Fibonacci heap (Fredman & Tarjan,
1987), the algorithm runs in O(|S| log |S|+ |T |+ β|E|).

D. Proof of Theorem 3 (in Section 3)
Proof. Suppose that f is monotone and submodular. It is easy to see that f̃ is monotone. Let us prove the submodularity
of f̃ . Let X,Y ⊆ S̃, and x, y be the corresponding vectors defined in the main text, respectively. Then f̃(X) = f(x) and
f̃(Y) = f(y) hold by the definition of f̃ . For each s ∈ S, max{i ∈ Z+ | (s, i) ∈ X ∪Y } is equal to the maximum of x(s)
and y(s), and max{i ∈ Z+ | (s, i) ∈ X ∩ Y } is not larger than the minimum of x(s) and y(s). The former fact implies
f̃(X ∪ Y) = f(x ∨ y), and the latter one implies f̃(X ∩ Y) ≤ f(x ∧ y) together with the monotonicity of f . Therefore,
we have

f̃(X) + f̃(Y) = f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y) ≥ f̃(X ∪ Y) + f̃(X ∩ Y).

Next, suppose that f̃ is monotone and submodular. For vectors x, y ∈ ZS
+, define X = {(s, i) | s ∈ S, i ≤ x(s)} and

Y = {(s, i) | s ∈ S, i ≤ y(s)}. Then f̃(X) = f(x) and f̃(Y) = f(y). Moreover, we have f̃(X ∩ Y) = f(x ∧ y) and
f̃(X ∪ Y) = f(x ∨ y). These relationships show

f(x) + f(y) = f̃(X) + f̃(Y) ≥ f̃(X ∪ Y) + f̃(X ∩ Y) = f(x ∨ y) + f(x ∧ y).

If x ≤ y, then X ⊆ Y holds, and hence f(x) ≤ f(y) follows from f̃(X) ≤ f̃(Y). Therefore, f is monotone and
submodular.

E. Pseudo-Polynomial-Time (e/(e− 1))-Approximation Algorithm for the Submodular
Maximization over Integer Lattice (in Section 3)

Consider maximizing a monotone submodular function f(x) over integer lattice subject to a budget constraint
∑

i∈S cixi ≤
B and an upper bound x ≤ u. From the given monotone submodular function f : ZS

+ → R, construct a set function
f̃ : 2S̃ → R as mentioned in the main text, where S̃ = {(s, i) | s ∈ S, i ∈ {0, 1, . . . , u(s)}}. Moreover, we regard a cost
c(s, i) = csi as the weight of (s, i) ∈ S̃. Then solve the submodular maximization problem with a budget constraint to
find a solution X ⊆ S̃ that satisfies

∑
(s,i)∈X c(s, i) ≤ B and maximizes f̃(X). Suppose that X ⊆ S̃ is an α-approximate

solution for the problem. Then, letting x be the corresponding vector, we have f(x) = f̃(X) and
∑

s∈S c(s, xs) ≤∑
(s,i)∈X c(s, i) ≤ B. Therefore, x is an α-approximate solution to the original instance. Since the reduced problem has

an (e/(e − 1))-approximation algorithm running in polynomial time, we obtain an (e/(e − 1))-approximation algorithm
that runs in pseudo-polynomial time.

Supplementary Material: Threshold Influence Model for Allocating Advertising Budgets

F. Proof of Theorem 4 (in Section 4)
Proof. Let X∗ ⊆ S be an optimal solution for the problem. Choose an arbitrary node s ∈ X∗. Then, by the optimality of
X∗, it holds that

d(X∗) =
f(X∗)

c(X∗)
≥ f(X∗ \ {s})

c(X∗)− cs
.

By using the fact f(X∗ \ {s}) ≥ f(X∗)−
∑

t∈T (X∗)∩Γ(s) wt, this can be transformed to (c(X∗)− cs)d(X
∗) ≥ f(X∗)−∑

t∈T (X∗)∩Γ(s) wt. Since f(X∗) = c(X∗)d(X∗), we have

d(X∗) ≤ ∆(X∗, s). (F.1)

Consider the first iteration when some node s∗ ∈ X∗ is removed by the algorithm. Let X denote the subset of nodes
at this moment just before the removal. Clearly, we have X∗ ⊆ X . Let us choose an arbitrary node s ∈ X . Then
∆(X, s) ≥ ∆(X, s∗) holds by the choice of s∗. Moreover, ∆(X, s∗) ≥ ∆(X∗, s∗) because T (X) ⊇ T (X∗). Combining
with (F.1), we have ∆(X, s) ≥ ∆(X, s∗) ≥ ∆(X∗, s∗) ≥ d(X∗).

Therefore, we obtain

d(X) =
1

c(X)

∑
t∈T (X)

wt ≥
1

γc(X)

∑
s∈X

∑
t∈T (X)∩Γ(s)

wt

=
1

γc(X)

∑
s∈X

cs∆(X, s) ≥ 1

γc(X)

∑
s∈X

csd(X
∗) =

1

γ
d(X∗).

Thus the output is γ-approximation.

G. Proof of Lemma 2 (in Section 4)
Proof. For X ⊆ S, we construct a solution (x, y) of (LP) as follows:

xs =

{
1

|X| s ∈ X,

0 otherwise,
yt =

{
1

|X| t ∈ T (X),

0 otherwise.

The first constraints in (LP) are satisfied. Indeed, if t ∈ T (X) (i.e., yt = 1
|X|), then we have |X ∩ Γ(t)| ≥ θt, which

implies that for any J ⊆ Γ(t) with |J | = pt, there exists s ∈ J that satisfies s ∈ X (i.e., xs =
1

|X|). The second constraint
in (LP) is also satisfied because

∑
s∈S xs =

∑
s∈X xs = 1. Therefore, (x, y) is feasible for (LP). The objective value of

(x, y) is ∑
t∈T

wtyt =
∑

t∈T (X)

wtyt =
1

|X|
∑

t∈T (X)

wt = d(X).

This completes the proof.

H. Proof of Lemma 3 (in Section 4)
Proof. We begin by showing the existence of r ≥ 0 that satisfies d(X(r)) ≥ λ/p. Without loss of generality, we can
assume that yt = min{

∑
s∈J xs | J ⊆ Γ(t), |J | = pt} for each t ∈ T . We define a sequence of subsets Y (r) = {t ∈ T |

yt ≥ r}. If t ∈ Y (r), then min{
∑

s∈J xs | J ⊆ Γ(t), |J | = pt} ≥ r, which means that the ptth smallest xs is at least
r/pt ≥ r/p. Hence at least |Γ(t)|−pt+1 = θt elements in Γ(t) are contained in X(r). Thus we see that Y (r) ⊆ T (X(r)).

Since for any r ≥ 0,
1

|X(r)|
∑

t∈T (X(r))

wt ≥
1

|X(r)|
∑

t∈Y (r)

wt,

Supplementary Material: Threshold Influence Model for Allocating Advertising Budgets

it suffices to show that there exists r ≥ 0 such that

1

|X(r)|
∑

t∈Y (r)

wt ≥
λ

p
.

Suppose not, that is, for any r ≥ 0, ∑
t∈Y (r)

wt <
λ

p
· |X(r)|. (H.2)

For each t ∈ T , define an indicator function Zt(r) : [0, 1] → {0, 1} to be 1 if r ≤ yt and 0 otherwise. Integrating the
left-hand side of (H.2) from 0 to 1, we have

∫ 1

0

 ∑
t∈Y (r)

wt

 dr =

∫ 1

0

(∑
t∈T

wtZt(r)

)
dr =

∑
t∈T

wt

∫ 1

0

Zt(r)dr =
∑
t∈T

wtyt = λ.

On the other hand, for each s ∈ S, define an indicator function Zs(r) : [0, p] → {0, 1} to be 1 if r/p ≤ xs and 0 otherwise.
Integrating the right-hand side of (H.2) from 0 to 1, we have

λ

p

∫ 1

0

|X(r)|dr =
λ

p

∫ 1

0

(∑
s∈S

Zs(r)

)
dr =

λ

p

∑
s∈S

∫ 1

0

Zs(r)dr ≤ λ

p

∑
s∈S

∫ p

0

Zs(r)dr =
λ

p

∑
s∈S

pxs ≤ λ,

which is a contradiction. Thus, we have the existence of r ≥ 0 that satisfies d(X(r)) ≥ λ/p.

From the definition of X(r), we can enumerate all distinct sets of X(r) by putting r = pxs for all s ∈ S. This completes
the proof.

References
Fredman, M. L. and Tarjan, R. E. Fibonacci heaps and their uses in improved network optimization algorithms. Journal of

the ACM, 34(3):596–615, 1987.

