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A. Proof of Theorem 1 (in Section 2)

Proof. We reduce the maximum thresholds coverage problem to the cost-effective version of the problem. Suppose that
we are given a bipartite graph G = (S, T'; ) with weight w; and threshold 6, for each ¢ € T and budget k being a positive
integer. We consider the unweighted case, i.e., wy = 1 foreacht € T. We add p > k - |T'| new nodes uy,...,u, to T
Each vertex w; is connected to all the nodes in .S, and has threshold 6,,, = k. The resulting graph is denoted by G’. Note
that fo/ (X) = fa(X) if | X| < k and fo/(X) = fa(X) + p otherwise.

We claim that any most cost-effective solution for G’ has to have size k. Indeed, for any X,Y C S with | X| < k and
Y=k
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Moreover, for any X, Y C S with | X| > k and |Y| = F,
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Thus the claim holds.

Therefore, a vertex subset X is the most cost-effective solution for G’ if and only if X is an optimal solution for G. Thus
the theorem holds. O

B. Proof of Lemma 1 (in Section 3)

Proof. For each s € S, we make u, copies (s,1),...,(s,us) of s, and connect each (s,7) to the neighbors of s in G.
The resulting graph is denoted by G, which has node sets S = {(s,7) | s € S,i = 1,...,us} and T". From the given

function f;: Zi(t) — R, construct a set function f;: 25© — R as mentioned in the main text, where S; = {(s,4) | s €

['(t),i € {0,1,...,us}}. Moreover, we define the cost c(s,i) = ci as the weight of (s,i) € S. Then consider solving
this problem to find a solution X C S that satisfies 3 ;< ¢(s,i) < B and maximizes f(X). Suppose that X C S is

an a-approximate solution for the problem. The corresponding vector is denoted by . Then we have f(z) = f(X) and
D oseg CsTs < Z(s Hex ¢st < B. Hence z is a feasible solution to the original instance, whose objective value is f(X).
Since the optimal value to the original instance is equal to that of the reduced instance, x is an a-approximate solution to

the original instance.
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Since |§ | = > _.cs Us, the size of the reduced problem is pseudo-polynomial in the input size. Thus the obtained instance
has size pseudo-polynomial in the input size. O

C. Proof of Theorem 2 (in Section 3)

Proof. First suppose that ¢, = 1 for each s € S and w; = 1 for each ¢ € T. Then the contribution A(X, s) is always
an integer from O to |T'|. We maintain |T'| + 1 doubly-linked lists, each of which contains source nodes with the same
contribution. Each iteration of Algorithm 2 involves identifying and removing the node with the smallest contribution, and
updating the lists.

We can find s* with the smallest contribution in O(|I'(s*)|) time by checking the lists from below, and remove it from
the list in constant time. For each ¢ € T'(s*), we compute the value of f; in 5 time, and check whether it still exceeds
the threshold 6;. If it is lower than 6;, we move the source nodes in I'(¢) to the appropriate lists, which can be done in
O(|T'(t)|) time. Note that for each node in T, this happens at most once.

Thus, the algorithm runs in O(|S| + |T'| + S| E|). Using a similar argument, when the weights are integers, the running
time becomes O(|S| + B|E| + W).

When c¢,’s are integers, we maintain a priority queue of the source nodes. Throughout the algorithm, we need | S| insert
operations, |S| delete-min operations, and |F| decrease-key operations. If we use a Fibonacci heap (Fredman & Tarjan,
1987), the algorithm runs in O(|S|log |S| + |T| + B|E|)- O

D. Proof of Theorem 3 (in Section 3)

Proof. Suppose that f is monotone and submodular. It is easy to see that f is monotone. Let us prove the submodularity
of f. Let X,Y C S, and z, y be the corresponding vectors defined in the main text, respectively. Then f(X) = f(z) and
f(Y) = f(y) hold by the definition of f. For each s € S, max{i € Z, | (s,i) € X UY } is equal to the maximum of z(s)
and y(s), and max{i € Z; | (s,i) € X NY} is not larger than the minimum of z(s) and y(s). The former fact implies
f(XUY) = f(z Vy), and the latter one implies f(X NY) < f(z A y) together with the monotonicity of f. Therefore,
we have

FXO)+ )= f(2) + fly) = flaVy) + flz Ay) = F(XUY)+ f(XNY).

Next, suppose that f is monotone and submodular. For vectors x,y € Z%, define X = {(s,i) | s € S,i < x(s)} and
Y = {(s,i) | s € S,i < y(s)}. Then f(X) = f(z) and f(Y) = f(y). Moreover, we have f(X NY) = f(z A y) and
f(XUY) = f(z Vy). These relationships show

F@)+ fy) = FX) +JYV) 2 J(XUY) + [(XNY) = fzVy) + flzAy).

If © < y, then X C Y holds, and hence f(z) < f(y) follows from f(X) < f(Y). Therefore, f is monotone and
submodular. O

E. Pseudo-Polynomial-Time (¢/(e — 1))-Approximation Algorithm for the Submodular
Maximization over Integer Lattice (in Section 3)

Consider maximizing a monotone submodular function f(z) over integer lattice subject to a budget constraint ) ;5 c;z; <
B and an upper bound z < wu. From the given monotone submodular function f: ZS — R, construct a set function
f: 25 — R as mentioned in the main text, where S = {(s,i) | s € S,i € {0,1,...,u(s)}}. Moreover, we regard a cost
c(s,1) = csi as the weight of (s,i) € S. Then solve the submodular maximization problem with a budget constraint to
find a solution X C S that satisfies Z (5.4)EX ¢(s,i) < B and maximizes f(X). Suppose that X C S is an a-approximate

solution for the problem. Then, letting x be the corresponding vector, we have f(z) = f(X) and Y osesc(s,rs) <
Z(s, Hex ¢(s,i) < B. Therefore, z is an a-approximate solution to the original instance. Since the reduced problem has
an (e/(e — 1))-approximation algorithm running in polynomial time, we obtain an (e/(e — 1))-approximation algorithm
that runs in pseudo-polynomial time.



Supplementary Material: Threshold Influence Model for Allocating Advertising Budgets

F. Proof of Theorem 4 (in Section 4)

Proof. Let X* C S be an optimal solution for the problem. Choose an arbitrary node s € X*. Then, by the optimality of
X*, it holds that

FOC) _ FX\ s
o(X*) T e(X*)—es

d(X*) =

By using the fact f(X*\ {s}) > f(X™) = X icr(x«)nr(s) Wt this can be transformed to (c(X™) — ¢;)d(X™) > f(X™) —
Dter(x)nr(s) We- Since f(X*) = ¢(X*)d(X™), we have

d(X*) < A(X*, s). (F.1)

Consider the first iteration when some node s* € X* is removed by the algorithm. Let X denote the subset of nodes
at this moment just before the removal. Clearly, we have X* C X. Let us choose an arbitrary node s € X. Then
A(X,s) > A(X, s*) holds by the choice of s*. Moreover, A(X, s*) > A(X*, s*) because T'(X) D T(X*). Combining
with (F.1), we have A(X, s) > A(X,s*) > A(X*, s*) > d(X™).

Therefore, we obtain

1 1
d(X) = wy > w
000, 2, 2 0 B i
1 1 1
= csA(X,s) > csd(X™) = =d(X™).
ve(X) g ve(X) ;( gl
Thus the output is y-approximation. [
G. Proof of Lemma 2 (in Section 4)
Proof. For X C S, we construct a solution (Z, ) of (LP) as follows:
_ A oseX, _ e teT(X),
T, = { | XI g, = XI
0 otherwise, 0 otherwise.

The first constraints in (LP) are satisfied. Indeed, if t € T'(X) (ie., 7, = ﬁ), then we have | X NT'(t)| > 6;, which
implies that for any J C I'(¢) with |.J| = p;, there exists s € J that satisfies s € X (i.e., Ts = ‘71|). The second constraint
in (LP) is also satisfied because ) ¢
(z,9)is

= .ex Ts = L. Therefore, (Z,7) is feasible for (LP). The objective value of

Zwtyt: Z wt?tzﬁll Z wt:d(X)-

teT teT(X) teT(X)

This completes the proof.

H. Proof of Lemma 3 (in Section 4)

Proof. We begin by showing the existence of > 0 that satisfies d(X (7)) > A\/p. Without loss of generality, we can
assume that 7, = min{ Y ;7 | J CI'(t),|J| = p;} for each t € T. We define a sequence of subsets Y'(r) = {t € T' |
Yy > v}y Ift € Y(r), thenmin{}_ __,Z, | J C I'(t),|J| = ps} > r, which means that the p;th smallest T, is at least
r/p: > r/p. Hence at least |T'(t)| —p: +1 = 6; elements in I'(¢) are contained in X (r). Thus we see that Y (r) C T'(X (r)).

Since for any r > 0,

E Wt,

teyY (r)

1 1
XO 2“2 Tx0)]

teT (X (r))
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it suffices to show that there exists » > 0 such that

Suppose not, that is, for any r > 0,

A
> we < = X() (H2)
teY (r) p

For each t € T, define an indicator function Z;(r) : [0,1] — {0,1} to be 1 if r < 7, and O otherwise. Integrating the
left-hand side of (H.2) from O to 1, we have

P(5 ) [ (Svmi) - [ - 2o

tey (r) teT teT 0 teT

On the other hand, for each s € .S, define an indicator function Z,(r) : [0,p] — {0,1} tobe 1 if r/p < T, and O otherwise.
Integrating the right-hand side of (H.2) from O to 1, we have

A [t A [ A 1 A » A\ B
;/0 |X(r)|dr:;/0 (ZZS(T‘)> drz;Z/O ZS(T)drSEZ/o Zs(r)dr:EprsgA,

ses ses ses ses
which is a contradiction. Thus, we have the existence of r > 0 that satisfies d(X (r)) > A/p.

From the definition of X (7), we can enumerate all distinct sets of X (r) by putting r = pZ, for all s € S. This completes
the proof. O
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