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Abstract

Parameter inference in mechanistic models based
on non-affine differential equations is computa-
tionally onerous, and various faster alternatives
based on gradient matching have been proposed.
A particularly promising approach is based on
nonparametric Bayesian modelling with Gaus-
sian processes, which exploits the fact that a
Gaussian process is closed under differentiation.
However, two alternative paradigms have been
proposed. The first paradigm, proposed at NIPS
2008 and AISTATS 2013, is based on a product
of experts approach and a marginalization over
the derivatives of the state variables. The second
paradigm, proposed at ICML 2014, is based on
a probabilistic generative model and a marginal-
ization over the state variables. The claim has
been made that this leads to better inference re-
sults. In the present article, we offer a new in-
terpretation of the second paradigm, which high-
lights the underlying assumptions, approxima-
tions and limitations. In particular, we show
that the second paradigm suffers from an intrinsic
identifiability problem, which the first paradigm
is not affected by.

1. Introduction

Many processes in science and engineering can be de-
scribed by dynamical systems models based on ordinary
differential equations (ODEs). Examples range from sim-
ple models of predator-prey interactions in ecosystems
(Lotka, 1932) or activation/deactivation dynamics of spik-
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ing neurons (Nagumo et al., 1962) to increasingly com-
plex mathematical descriptions of biopathways that aim to
predict the time-varying concentrations of different molec-
ular species, like mRNAs and proteins, inside the liv-
ing cell (Pokhilko et al., 2012). ODEs are typically con-
structed from well understood scientific principles and in-
clude clearly interpretable parameters that define the ki-
netics of the processes and the interactions between the
species. However, these parameters are often unknown and
not directly measurable. In principle, the task of statisti-
cally inferring them from data is not different from statisti-
cal inference in more conventional models. For given initial
concentrations and under fairly mild regularity conditions,
the solution of the ODEs is uniquely defined; hence, the
kinetic parameters could be inferred e.g. by minimizing
the mismatch between the data and the ODE solutions in
a maximum likelihood sense. In practice, a closed-form
solution for non-linear ODEs usually does not exist. Any
variation of the kinetic parameters thus requires a numeri-
cal integration of the ODEs, which is computationally ex-
pensive and imposes severe limitations on the number of
parameter adaptation steps that are practically feasible.

To circumvent the high computational complexity of nu-
merically integrating the ODEs, several authors have ex-
plored approximate inference based on gradient matching.
The details vary from method to method, but they all have
in common the combination of a data interpolation (DI)
and a parameter adaptation (PA) step. In the DI step, an
established statistical model or procedure is applied to ob-
tain a set of smooth interpolants from noisy (measured or
observed) concentration time series (for each species). In
the PA step, the time derivatives obtained from the time-
varying slopes of the tangents to the interpolants are com-
pared with the time derivatives predicted by the ODEs, and
the kinetic parameters are adjusted so as to minimize some
measure of mismatch. More advanced methods (see over-
leaf) allow the ODEs to regularize the interpolation, and
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the two steps are thus interconnected and are iterated un-
til some convergence criterion is met. The reduction of
the computational complexity, compared to the direct ap-
proach, results from the fact that the ODEs never have to be
solved explicitly, and the typically unknown initial condi-
tions are effectively profiled over. Representative examples
of this paradigm are the papers by (Ramsay et al., 2007)
and (Liang & Wu, 2008) (using P-splines for interpolation),
(Gonzalez et al., 2013) (proposing an approach based on re-
producing kernel Hilbert spaces), and (Campbell & Steele,
2012) (exploring inference with parallel tempering).

The present paper focuses on a particular approach to gradi-
ent matching based on nonparametric Bayesian modelling
with Gaussian processes (GPs). The key insight, first dis-
cussed in (Solak et al., 2003) and (Graepel, 2003), and
more recently exploited in (Holsclaw et al., 2013), is that
for a differentiable kernel, the time derivative of a GP is
also a GP. Hence a GP in data space imposes a conju-
gate GP in derivative space and thereby provides a natu-
ral framework for gradient matching. This idea has been
exploited in recent high-profile publications, like (Babtie
et al., 2014). The limitation of (Babtie et al., 2014) is
that the interpolant obtained from the GP is kept fixed,
and all subsequent inference critically depends on how ac-
curately this initial interpolant matches the unknown true
process. The implication is that the noise tolerance is typ-
ically low, as seen e.g. from Figure 4A in (Babtie et al.,
2014), and that reliable inference requires tight prior con-
straints on the ODE parameters; see p.2 of the supplemen-
tary material in (Babtie et al., 2014). To improve the ro-
bustness of inference, more advanced methods aim to reg-
ularize the GP by the ODEs themselves. Two alternative
conceptual approaches to this end have been proposed in
the recent machine learning literature. The first paradigm,
originally published in (Calderhead et al., 2008) and more
recently extended in (Dondelinger et al., 2013), where it
was called AGM (for ‘adaptive gradient matching’), is
based on a product-of-experts approach and a marginal-
ization over the derivatives of the state variables. A com-
peting approach, proposed in (Wang & Barber, 2014) and
called GPODE by the authors, formulates gradient match-
ing with GPs in terms of a probabilistic generative model
by marginalizing over the state variables and conditioning
on the state derivatives. (Wang & Barber, 2014) claim
that their proposed paradigm shift achieves an improve-
ment over the first paradigm in three respects: model sim-
plification, tractable inference, and better predictions.

In the present paper, we offer an alternative interpretation
of the GPODE model, which leads to deeper insight into
intrinsic approximations that were not apparent from the
original publication. We discuss that the GPODE model
suffers from an inherent identifiability problem, which
models of the first paradigm are not affected by. We com-
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Figure 1. Gradient matching with Gaussian processes, as pro-
posed in (Calderhead et al., 2008) and (Dondelinger et al., 2013).

plement our theoretical analysis with empirical demonstra-
tions on simulated data, using the same model systems as
in the original publications, (Wang & Barber, 2014) and
(Dondelinger et al., 2013).

2. Paradigm A: the AGM model

We start by summarizing the AGM model of (Dondelinger
et al., 2013), which is an extension of the model proposed
in (Calderhead et al., 2008). Consider a continuous-time
dynamical system in which the evolution of K states or
‘species’ x(t) = [z1(t), x2(t), ...,z (t)]T is represented
by a set of K ordinary differential equations (ODEs) with
parameter vector 6 and initial conditions x(0)

We are typically interested in non-affine systems, for which
f is nonlinear and a closed-form solution does not exist. We
assume that we have noisy observations of the state variable
x for N time points ] < ... < ty:

y(t) = x(t) + €(?). 2)

For simplicity we assume the additive noise €(t) to follow
a Normal distribution, € ~ A (0, D), with diagonal covari-
ance matrix, D;, = aﬁéik. For notational convenience we
introduce the K -by-N matrices

= £(x(t),0,t). (1)

X = [X(tl),...,X(tN)] = [Xl,...,XK]T (3)
Y = [Y(tl)»»Y(tN)] = [Y1a«~~»YK]T (4)
where x; = [zr(t1),...,2r(tn)]" is the k' state se-

quence, and yr = [yx(t1),...,yx(tn)]" are the corre-
sponding noisy observations. Equation (2) can then be



Controversy in mechanistic modelling with Gaussian processs

rewritten as

P(Y|X, o)

TTTI P ®lan(t), on)

k t

ITTIN (@)l (t), o). )
k t

Given that inference based on an explicit numerical solu-
tion of the differential equations tends to incur high com-
putational costs, (Calderhead et al., 2008) proposed an al-
ternative approach based on non-parametric Bayesian mod-
elling with Gaussian processes. The idea is to put a Gaus-
sian process prior on Xy,

P(Xk| g, Pr) = N(Xk|#kac¢k) (6)

where Cg, denotes the covariance matrix, which is de-
fined by some kernel with hyperparameters ¢,. In gen-
eralization of the expressions in (Calderhead et al., 2008)
and (Dondelinger et al., 2013) we here explicitly include a
potentially non-zero mean, g, to allow for the fact that in
many applications the state variables are non-negative (e.g.
species concentrations). Since differentiation is a linear op-
eration, a Gaussian process is closed under differentiation,
and the joint distribution of the state variables x; and their
time derivatives X, is multivariate Gaussian with mean vec-
tor (5., 0)T and covariance functions

cov|zg(t), zr(t)] Cs, (t,1) )

covfin(®), wa(t)] = 80‘*’375:’” =) ®

covfen(t), in(t)] = 804’575’” = 'Co(t.8) ()
2 /

covlzy(t), &L (t)] = % = Cy, (t,t) (10)

where Cy, (t,t') are the elements of the covariance ma-

trix Cy, (Rasmussen & Williams, 2006). We introduce the
definitions of the auto-covariance matrix of the kth state
derivatives C’dﬁk, which contains the elements defined in
(10), and the cross-covariance matrices between the kth
state and its derivatives, C:;bk and 'Cy, , which contain the
elements defined in (8) and (9), respectively. From elemen-
tary transformations of Gaussian distributions, listed e.g.
on p. 87 in (Bishop, 2006), the conditional distribution of
the state derivatives is given by

p(kklxk, @) = N(my, Ay) (11)
where
my = ,C¢kc¢k71(xk — ) Ay = Cgk - /C¢kc¢k71?%55

Assuming additive Gaussian noise with a state-specific er-
ror variance -y, one gets from (1):

p(xk|X, 0. 7,) = N(f:(X,0), 7). (13)
(Calderhead et al., 2008) and (Dondelinger et al., 2013)
combine (11) and (13) with a product of experts approach:
p(Xk|X,0,0,v) o< p(X|xk, @)p(Xk|X, 0, 7k) (14)

= N(%k|mp, Ap)N Gerlfi(X, 0), 7I)

and obtain for the joint distribution:
p(X,X,0,¢,7) = (15)
P(X[X, 0, ,7)p(X|d)p(0)p(#)p(v) =
p(0)p()p(Y) [ [ P(kklX. 0, &, v0)p(xk|by,)
k

where p(0), p(¢), p(7) denote the prior distributions of the
ODE parameters 6, the GP hyperparameters ¢, and the
slack hyperparameters =; the latter define the tightness of
the gradient coupling. Inserting (6) and (14) into (15) gives:

p(X,X,0,0,7) o< p(0)p(d)p(v) (16)
TV G, Ax)N (ki £ (X, 0), DN (xk |ty oy )-
k

The marginalization over the state derivatives X

p(X,0,¢,v) =

o< p(@)p(d)p(v) [ [N Gerlug: Coy)
3

/p(X,X,B,dJﬁ)dX a7

/ N (ki [, Ag)N (k|6 (X, 8), i T)dir

is analytically tractable and yields:

(X, 8,0,7) x p(0)p(ed)p(v)p(X|6, p,7) (18)

N (i ity Con,
p(X|0, ¢.7) «H% 19)
k

(£ — mi) " (Ag + D)~ (Fe — mk)]

N —

exp [—
X exp 712 x;gcflxkqL
2 - Pk

(fx — mk)T(Ak- + %I)_l(fk - mk)) 1

Hk Z (k)

where Z(y;) = (27)F|Ay + 1|, fi is shorthand no-

tation for f;(X,0,t), and my and Aj were defined in
(12). Note that this distribution is a complicated func-
tion of the states X, owing to the nonlinear dependence
via f, = ;,(X, 6, t). For the joint probability distribution
of the whole system this gives:

p(Y,X,0,0,v,0) = (20)
p(Y[X,0)p(X|0, b, v)p(0)p(d)p(v)p(o)

where the first factor, p(Y|X, o), was defined in (5), and
the second factor is given by (18). A graphical represen-
tation of the model is given in Figure 1. Inference is an-
alytically intractable. (Calderhead et al., 2008) introduced
a modularization approximation to (20), which for space
restrictions we cannot discuss here. (Dondelinger et al.,
2013) have developed an effective MCMC scheme to sam-
ple X, 0, ¢,~, o directly from the posterior distribution
p(X,0,¢,v,0|Y) x p(Y,X,0,¢,v,0). Due to space
restrictions, we refer the reader to the original publications
for the methodological details.
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Figure 2. GPODE model, proposed in (Wang & Barber, 2014).

3. Paradigm B: the GPODE model

An alternative approach was proposed by (Wang & Barber,
2014) and termed the GPODE model. As for AGM, the
starting point in (Wang & Barber, 2014) is to exploit the
fact that the derivative of a Gaussian process is also a Gaus-
sian process, and that the joint distribution of the state vari-
ables X and their time derivatives X is multivariate Gaus-
sian with covariance functions given by (7-10). Application
of elementary transformations of Gaussian distributions, as
shown e.g. on p. 93 in (Bishop, 2006), leads to the fol-
lowing conditional distribution of the states given the state
derivatives:

pap(xklkr, @) = N (x|, Ay) 21
where for clarity we refer to the GP with a subscript, and
y = py,+'Ce Ch ~'Xp; A = Cy —'Cy, Cl.~'Cly .

(22)
Note the difference between AGM and GPODE, where
for the former method we compute p(Xxg|xg, ), as ex-
pressed in (11-12), whereas for the latter model we com-
pute p(Xx|Xk, @), as expressed in (21-22). Under the as-
sumption that the observations Y are subject to additive
iid Gaussian noise, (2,5), the marginalization over the state
variables leads to a standard Gaussian convolution integral,
which is analytically tractable with solution

Po(Yk|Xk, P) = /p(Yk|Xk)pGP(Xk|5(k7¢)dxk

/ N (3 l3ck, TN (i g, Al

= N(yp|my, Ay + 021). (23)
The authors factorize

p(Y,X|¢,0) = p(Y|X,¢70)pGP(X|¢) 24)

and obtain the first term by marginalization over the state
derivatives X:

p(Y|X, 6,0) = / (Y, XX, ¢, 0)dX

= /Po(Y\X7¢)pODE(X|X,0)dX
pO(Y|f[X7 6]) d)) (25)

where po (Y |X, @) =1, po(yx|kx, @), with po (y&|%k, @)
given in (23), and assuming that the state derivatives are
deterministically defined by the ODE:s:

rope(X|X,0) = §(X — f[X,8)). (26)
Inserting (25) into (24) gives:

p(Y, X9, 0) = po(Y|f[X, 0], p)par(X[P). (27)

This is a deceptionally simple and elegant formulation, il-
lustrated as a graphical model in Figure 2, with two advan-
tages over the AGM model. Conceptually, the GPODE is
a proper probabilistic generative model, which can be con-
sistently represented by a directed acyclic graph (DAG).
Practically, the normalization constant of the joint distribu-
tion in (27) is known, which facilitates inference.

4. Shortcomings of the GPODE model

The Achilles heel of the GPODE model is equation (23),
which includes a marginalization over the state variables xj,
to obtain p, (y|Xx). The derivations in (24) and (25) then
treat y, as independent of x;, given Xj: p(yi|Xi,Xx) =
Po(yr|Xr), or p(Y|X,X) = p,(Y|X); this is consistent
with the graphical model in Figure 2. Having integrated
the state variables X out in (23), the method subsequently
conditions on them in (25). The underlying assumption the
authors make is that the marginalization over the random
variables x;, in (23) is equivalent to their elimination. How-
ever, marginalization merely means that for the purposes of
inference, the variables that have been integrated out do not
need to be taken into consideration explicitly. However,
these variables remain in the model conceptually. In our
particular model, the data Y consist of noisy observations
of the state variables X, not their derivatives X. Consider,
for instance, the tracking of a set of exoplanets with a space
telescope, where the state variables X are the positions of
the planets. Given the knowledge of the initial conditions
and the velocities of the planets, X, we can compute the po-
sitions of the planets X using established equations from
classical mechanics. This procedure might dispense with
the need to keep detailed records of the planets’ positions.
However, it does not imply that the positions of the planets
have disappeared.

For methodological consistency, we need to reintroduce the
state variables X into the model, as shown in Figure 3,
left panel. However, this leads to the inconsistency that
the same random variables, X, are used in two different
places of the graph. As a further correction, we therefore
introduce a set of dummy variables X, as shown in Fig-
ure 3, centre panel. This is a methodologically consistent
representation of the model, but leaves open the question
what the difference between X and X is. Ideally, there is
no difference, which can be represented mathematically as
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On050

Figure 3. Left panel: GPODE model, as proposed in (Wang & Barber, 2014), but explicitly presenting all random variables included
in the model. The graph is inconsistent, in that the same random variables, X, have been assigned to two different nodes. Centre
panel: Correcting the inconsistency in the notation of (Wang & Barber, 2014). The model distinguishes between the unknown true state
variables X, and their model approximation X. Right panel: In the ideal GPODE model, the true state variables X and their model
approximation X are coupled, ideally via an identity constraint. This introduces an undirected edge between X and X, which is no
longer a consistent probabilistic graphical model represented by a DAG. To reintroduce the DAG constraint, (Wang & Barber, 2014)
have discarded this undirected edge, leading to the model shown in the centre panel. The disadvantage is that the model state variables
X are no longer directly associated with the data. As we discuss in the main text, this leads to an intrinsic identifiability problem.

p(X,X) = §(X—X). However, in this way we have intro-
duced an edge from the node X to X, as shown in Figure 3,
right panel. This causes methodological problems, in what-
ever definition we choose for that edge. If we treat it as an
undirected edge, p(X,X) = §(X — X), as shown in the
right panel of Figure 3, based on the symmetry of the iden-
tity relation between X and X, then we get a chain graph.
A chain graph is not a probabilistic generative model, and
the main objective of (Wang & Barber, 2014) was to ob-
tain the latter. If we introduce a directed edge from X to
X, based on p(X|X) = §(X — X), then we end up with a
directed cycle that violates the DAG constraint. In order to
get a valid probabilistic graphical model, we have to intro-
duce a directed edge in the opposite direction, from X to
X, based on p(X|X) = §(X — X). However, this structure
will require us to define the probability p(X|X, X), and it
is not clear how to do that. For that reason, the approxima-
tion taken in (Wang & Barber, 2014) is to discard the edge
between X and X altogether. This simplification leads to a
probabilistic generative model that can be consistently rep-
resented by a DAG. However, the disadvantage is that the
true state variables X and their approximation X are only
weakly coupled, via their common hyperparameters ®. We
will discuss the consequences below.

The upshot of what has been explained so far is that, by not
properly distinguishing between X and X, equation (27)
introduced in (Wang & Barber, 2014) is misleading. The
correct form is

p(Y,X[¢,0) = po(Y|f[X,0],d)pcr(X|p) (28)

where X are not the unknown true state variables X, but

some model approximation. This subtle difference has non-
negligible consequences. As an illustration, consider the
simple second-order ODE (using & = d?x/dt?)

i4+60% = 0 (29)

which, with the standard substitution (z1,x2) = (x,%),
leads to the linear system of first-order ODE:s:

&1 = z9; &9 = —60%x. (30)
These ODEs have the closed-form solution:

x1(t) = Asin(6t+¢); x2(t) = Abcos(bt+) (31)

where A and ¢ are constants, which are determined by
the initial conditions. Now, according to the GPODE
paradigm, illustrated in the centre panel of Figure 3, x;
and z» in (30) have to be replaced by separate variables:

da(t) = —0%Z:(t)  (32)

where 71 (t) and Z5(¢) are modelled with a GP. Recalling
that x3, = [71(t1), ..., zx(tn)]", we rewrite (32) as:

)'(1 = f1(i1,§(2;9) = iz; )'(2 = fg(il,iz;e) = —025&1.
Inserting these expressions into (28), we get:
p(¥1,¥2, X1, X2[0,0) = (33)
Po(y1, 2| fi[X1, X2, 0], f2[R1, 2, 0], @)p(X1|P)p(X2|¢p) =

Po(y1]f1[X1, X2, 0], d)po (y2| f2[R1, X2, 0], d)p(X1])
P(Ra|@) = po(y1|Ra, P)po(y2| — 0°%1, d)p(X1|d)p(R2|eh).
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We use the subscript in p, to indicate that the functional
form of this probability distribution is given by (23), but
drop the subscript ‘GP’ used in the previous section. Now,
recall that the variable x5 represents the time derivative of
z1 and was introduced as an auxiliary variable to transform
the second-order ODE from (29) into a system of first-order
ODE:s: equation (30). In most applications, only the vari-
ables themselves rather than their derivatives can be mea-
sured or observed, i.e. ys is systematically missing. From
(33) we obtain for missing variables yo:

p(y1,%1,%2|0,0) = /p(Y17Y275<17>~<2|¢»9)dY2
Po(y1]X2, @)p(X1|P)p(X2| )
[ el - 6751, 9y

Do (y1|X2, @)p(X1|9p)p(X2|)(34)

and

p(y1l¢,0)

/ p(y1, &1, %ol b, B) 1 do (35)

/ po(y1|%s, §)p(%olp) A / p(%1| ) d%s

/ po(y1|%2, $)p(3r| )%z = p(y1|b).

This implies that the likelihood, i.e. the probability of a
set of observations y; = [y1(t1),...,y1(tn)]", is inde-
pendent of the ODE parameter 6. Consequently, in the
GPODE model, the parameter of interest — the ODE pa-
rameter @ — is unidentifiable, i.e. it can not be inferred from
the data. Note that this problem is intrinsic to the GPODE
model, not the ODE itself. Equation (29) is a very simple
ODE with a closed form solution for x(t) = z1(t), stated
in (31). If this solution is known, the inference task reduces
to inferring the frequency from noisy observations of a sine
function. Hence, it is straightforward to infer € from noisy
observations y1 (t) = x1(t) + €(t) alone, where ¢(¢) is iid
noise, and no observations of the derivative x5 = ‘fi—f are
required. Even if the explicit solution were not known, it
could be obtained by numerical integration of the ODEs,
again rendering the inference of the ODE parameter 6 a
straightforward task. How do missing observations affect
the AGM model? When y- is systematically missing, we
need to marginalize over yo in (20). This will only af-
fect the first term on the right-hand side of (20), which
as a consequence of the marginalization will reduce from
p(Y|X,0) = p(y1,y2|X, o) to p(y1|X, o). However,
this term does not explicitly depend on the ODE parame-
ters 6. Hence, as opposed to the GPODE model, missing
observations do not systematically eliminate ODE param-
eters from the likelihood. In fact, an inspection of equa-
tion (30) provides an intuitive explanation of how inference
in the AGM can work despite systematically missing val-
ues: noisy observations of 1 provide information about the
missing species x2 via (30), left, using the very principle of
gradient matching. Inference of x5 then enables inference

of the ODE parameter 6 via (30), right. We will demon-
strate, in Section 5, that AGM indeed can successfully infer
the ODE parameter # when observations for species yo are
missing, whereas GPODE systematically fails on this task.

S. Empirical findings

The empirical analysis presented in (Wang & Barber,
2014) suggests that the GPODE model achieves very ac-
curate parameter estimates. However, a closer inspec-
tion of the authors’ study reveals that they used rather
informative priors with relatively tight uncertainty inter-
vals centred on the (known) true parameter values. In the
present study, we have repeated the authors’ simulations
with less informative priors; all GPODE results were ob-
tained with the original software from (Wang & Barber,
2014). We have also integrated the inference for the AGM
model into their software, for a fair comparison between
the two paradigms. Our code can be downloaded from
http://tinyurl.com/otus5xq.

Computational inference. The objective of inference is
to obtain the marginal posterior distributions of the quan-
tities of interest, which are usually the ODE parameters.
This is analytically intractable, and previous authors have
used sampling methods based on MCMC. (Dondelinger
et al., 2013) and (Calderhead et al., 2008) used MCMC
schemes for continuous values, based on Metropolis-
Hastings with appropriate proposal moves. (Wang & Bar-
ber, 2014) used Gibbs sampling as a faster alternative,
based on a discretization of the latent variables, param-
eters and hyperparameters. For a fair comparison be-
tween the model paradigms (AGM versus GPODE), which
is not confounded by the different convergence charac-
teristics and potential discretization artefacts of the two
MCMC schemes (Metropolis-Hastings versus Gibbs sam-
pling), we have implemented the AGM model in the soft-
ware of (Wang & Barber, 2014) to infer all quantities of
interest with the same Gibbs sampling scheme. The basic
idea is that due to the discretization, all quantities can be
marginalized over in the joint probability density, and this
allows the conditional probabilities needed for the Gibbs
sampler to be easily computed. Due to space restrictions,
we refer the reader to Section 3 of (Wang & Barber, 2014)
for the methodological details. For the prior distribution
over the latent variables, the software of (Wang & Bar-
ber, 2014) fits a standard GP to the data and chooses, for
each time point, a uniform distribution with a 3-standard-
deviation width centred on the GP interpolant. For faster
convergence of the MCMC simulations, we set the noise
variance o} equal to the true noise variance, and the mean
w1, equal to the sample mean. The parameters that had to
be inferred (in addition to the latent state variables) were
the ODE parameters, the kernel parameters of the GP, and
the slack hyperparameter + for the AGM. For all simula-
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Figure 4. Inference results for the ODEs (30) with missing
species. Vertical line: true parameter value. Horizontal line: uni-
form prior. Histogram: average posterior distribution obtained
with Gibbs sampling, averaged over ten independent data instan-
tiations. Left panel: GPODE model. Right panel: AGM model.

tions, we used a squared exponential kernel, and chose a
U(5,50) prior for the length scale and a U(0.1,1) prior
for the amplitude hyperparameters, respectively, as in the
paper by (Wang & Barber, 2014). We tried different prior
distributions of the ODE parameters, as specified in the fig-
ure captions; note that these priors are less informative than
those used in (Wang & Barber, 2014). Observational noise
was added in the same way as in (Wang & Barber, 2014).
We monitored the convergence of the MCMC chains with
the diagnostics proposed by (Gelman & Rubin, 1992), and
terminated the burn-in phase when the potential scale re-
duction factor fell below a threshold of 1.1. All simulations
were repeated on ten independent data instantiations.

Simple ODE with missing values. As a first study, we
generated noisy data from the simple ODEs of (30), with
species 2 missing, using a sample size of N = 20 and an
average signal-to-noise ratio of SINR = 10. The results are
shown in Figure 4. They confirm what was discussed be-
low equation (35): paradigm B completely fails to infer the
ODE parameter; in fact, the inferred posterior distribution
is indistinguishable from the prior. Paradigm A succeeds in
inferring the ODE parameter: the posterior distribution is
significantly different from the prior and includes the true
parameter.

The Lotka-Volterra system

&y = 6121 — bhz132; T2 = —O3w2 + Ogx122 (36)
is a simple model for prey-predator interactions in ecol-
ogy (Lotka, 1932), and autocatalysis in chemical ki-
netics (Atkins, 1986). It has four kinetic parameters
01,05,605,0, > 0, which we try to infer. This model was
used for the evaluation of parameter inference in (Don-
delinger et al., 2013) and (Wang & Barber, 2014), and we
repeated the simulations with the same parameters as used

in these studies. First, N = 11 data points were generated
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Figure 5. Inference results for the Lotka-Volterra system (36).
Each column represents one of the four kinetic parameters of the
system, and the histograms show the average posterior distribu-
tions of the respective parameter, averaged over ten data instan-
tiations. Vertical line: true parameter value. Horizontal line or
curve: prior distribution - uniform or I'(4, 0.5). The top two rows
show the results for the AGM model (paradigm A). The bottom
two rows show the results for the GPODE model (paradigm B).

with 0y = 2,0, = 1,03 = 4,0, = 1. Next, iid Gaus-
sian noise with an average signal-to-noise ratio SNR = 4
was added, and ten independent data sets were generated
this way. The results are shown in Figure 5. The AGM
model (paradigm A) shows a consistent performance over
both parameter priors: the Gamma I'(4,0.5) prior and the
uniform prior. In both cases, the inferred posterior distribu-
tions are tightly concentrated on the true parameters. The
GPODE model (paradigm B) sensitively depends on the
prior. The inferred posterior distributions are always more
diffuse than those obtained with paradigm A, and the per-
formance is particularly poor for the uniform prior. Here,
paradigm A clearly outperforms paradigm B.

The Fitz-Hugh Nagumo system

3

=V R G =SV _at8R) 6T
was introduced in (FitzHugh, 1961) and (Nagumo et al.,
1962)) to model the voltage potential across the cell mem-
brane of the axon of giant squid neurons. There are two
species: Voltage (V) and Recovery variable (R), and 3 pa-
rameters; «,  and 1. The model was used in (Campbell
& Steele, 2012) to assess parameter inference in ODEs, us-
ing comparatively large sets of N = 401 observations. For
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Figure 6. Inference results for the Fitz-Hugh Nagumo system
(37). Each column represents one of the three kinetic parame-
ters of the system, and the histograms show the average poste-
rior distributions of the respective parameter, averaged over ten
data instantiations. Vertical line: true parameter value. Horizon-
tal line: prior distribution. The top row shows the results for the
AGM model (paradigm A). The bottom row shows the results for
the GPODE model (paradigm B). Due to space restrictions, only
the results for the uniform prior are shown. The results for the pri-
ors used in (Campbell & Steele, 2012) — a non-negative truncated
N(0,0.4) and a x2(2) distribution — were similar.

the present study, we generated data with the same param-
eters, « = 0.2, # = 0.2 and ¢y = 3, and same initial
values, V = —1, R = 1, but making the inference problem
harder by reducing the training set size to N = 20, cover-
ing the time interval [0, 10]. We emulated noisy measure-
ments by adding iid Gaussian noise with an average signal-
to-noise ratio SNR = 10, and generated ten independent
data instantiations. The results are shown in Figure 6. Here,
both paradigms show a similar performance. The GPODE
model is slightly better than the AGM model in terms of
reduced bias for the third parameter, but slightly worse in
terms of increased posterior variance for the first parameter.
The results are, overall, worse than for the Lotka-Volterra
system. Note that the Fitz-Hugh Nagumo system poses
a challenging problem, though; see (Campbell & Steele,
2012) and recall that our data set is considerably smaller
(5%) than the one used but the authors.

6. Conclusion

Inference in mechanistic models based on non-affine ODEs
is challenging due to the high computational costs of the
numerical integration of the ODEs, and approximate meth-
ods based on adaptive gradient matching have therefore
gained much attention in the last few years. The applica-
tion of nonparametric Bayesian methods based on GPs is
particularly promising owing to the fact that a GP is closed
under differentiation. A new paradigm termed GPODE was
proposed in (Wang & Barber, 2014) at ICML 2014, which
was purported to outperform state-of-the-art GP gradient

matching methods in three respects: providing a simplified
mathematical description, constituting a probabilistic gen-
erative model, and achieving better inference results. The
purpose of the present paper has been to critically review
these claims. It turns out that the simplicity of the model
presented in (Wang & Barber, 2014), shown in Figure 2,
results from equating the marginalization over a random
variable with its elimination from the model. A proper rep-
resentation of the GPODE model leads to a more complex
form, shown in Figure 3. We have shown that the GPODE
model is turned into a probabilistic generative model at the
expense of certain independence assumptions, which have
not been made explicit in (Wang & Barber, 2014). We have
further shown that as a consequence of these independence
assumptions, the GPODE model is susceptible to identifia-
bility problems when data are systematically missing. This
problem is unique to the GPODE model, and is avoided
when gradient matching with GPs follows the product of
experts approach of (Calderhead et al., 2008) and (Don-
delinger et al., 2013) (herein called paradigm A). Unlike
(Wang & Barber, 2014), our empirical comparison has not
shown any performance improvement over paradigm A. On
the contrary, for two data sets (simple ODE with miss-
ing values, and the Lotka-Volterra system), paradigm A
achieves significantly better results. For a third data set
(Fitz-Hugh Nagumo system), both approaches are on a par,
with different bias-variance characteristics.

The right-hand panel of Figure 3 demonstrates that gradient
matching for inference in ODEs intrinsically violates the
DAG constraint. This is because the function to be matched
is both the output of and the input to the ODEs, leading to
a directed cycle. The endeavour to model gradient match-
ing with GPs as a probabilistic generative model based on
a DAG at the expense of implausible dummy variables and
independence assumptions (Figure 3, centre panel) is at the
heart of the problems with the GPODE model, as discussed
previously. We have demonstrated that these problems can
be avoided with gradient matching paradigm A. Our study
suggests that for practical applications, paradigm A is to be
preferred over paradigm B. (Wang & Barber, 2014) argue
that a principled shortcoming of paradigm A is the fact that
the underlying product of experts approach cannot be for-
mulated in terms of a probabilistic generative model. How-
ever, as we have just discussed, this is of little relevance,
given that gradient matching cannot be consistently con-
ceptualized as a probabilistic generative model per se. This
methodological limitation is the price that has to be paid for
the substantial computational advantages over the explicit
solution of the ODEs that gradient matching yields.
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