
Towards a Learning Theory of Cause-Effect Inference

A. Topological and Measurability Considerations
Let (Z, ⌧Z) and (L, ⌧L) be two separable topological spaces, where Z is the input space and L := {�1, 1} is the
output space. Let B(⌧) be the Borel �-algebra induced by the topology ⌧ . Let P be an unknown probability measure on
(Z ⇥ L,B(⌧Z)⌦ B(⌧L)).
Consider also the classifiers f 2 Fk and loss function ` to be measurable.

A.1. Measurability Conditions to Learn from Distributions

The first step towards the deployment of our learning setup is to guarantee the existence of a measure on the space µk(P)⇥L,
where µk(P) = {µk(P ) : P 2 P} ✓ Hk is the set of kernel mean embeddings associated with the measures in P . The
following lemma provides such guarantee. This allows the analysis within the rest of this Section on µk(P)⇥ L.
Lemma 2. Let (Z, ⌧Z) and (L, ⌧L) be two separable topological spaces. Let P be the set of all Borel probability measures
on (Z,B(⌧Z)). Let µk(P) = {µk(P ) : P 2 P} ✓ Hk, where µk is the kernel mean embedding (1) associated to some
bounded continuous kernel function k : Z ⇥ Z ! R. Then, there exists a measure on µk(P)⇥ L.

Proof. The following is a similar result to Szabó et al. (2014, Proof 3).

Start by endowing P with the weak topology ⌧P , such that the map

L(P ) =

Z

Z
f(z)dP (z), (17)

is continuous for all f 2 Cb(Z). This makes (P,B(⌧P)) a measurable space.

First, we show that µk : (P,B(⌧P)) ! (Hk,B(⌧H)) is Borel measurable. Note that Hk is separable due to the separability
of (Z, ⌧Z) and the continuity of k (Steinwart & Christmann, 2008, Lemma 4.33). The separability of Hk implies µk is Borel
measurable iff it is weakly measurable (Reed & Simon, 1972, Thm. IV.22). Note that the boundedness and the continuity of
k imply Hk ✓ Cb(Z) (Steinwart & Christmann, 2008, Lemma 4.28). Therefore, (17) remains continuous for all f 2 Hk,
which implies the Borel measurability of µk.

Second, µk : (P,B(⌧P)) ! (G,B(⌧G)) is Borel measurable, since the B(⌧G) = {A \ G : A 2 B(Hk)} ✓ B(⌧H), where
B(⌧G) is the �-algebra induced by the topology of G 2 B(Hk) (Szabó et al., 2014).

Third, we show that g : (P ⇥ L,B(⌧P) ⌦ B(⌧L)) ! (G ⇥ L,B(⌧G) ⌦ B(⌧L)) is measurable. For that, it suffices to
decompose g(x, y) = (g1(x, y), g2(x, y)) and show that g1 and g2 are measurable (Szabó et al., 2014).

B. Proofs
B.1. Theorem 1

Note that the original statement of Theorem 27 in Song (2008) assumed f 2 [0, 1] while we let elements of the ball in
RKHS to take negative values as well which can be achieved by minor changes of the proof. For completeness we provide
the modified proof here. Using the well known dual relation between the norm in RKHS and sup-norm of empirical process
which can be found in Theorem 28 of Song (2008) we can write:

kµk(P )� µk(PS)kH
k

= sup

kfkH
k

1

 
E

z⇠P
[f(z)]� 1

n

nX

i=1

f(zi)

!
. (18)

Now we proceed in the usual way. First we note that the sup-norm of empirical process appearing on the r.h.s. can be viewed
as a real-valued function of i.i.d. random variables z1, . . . , zn. We will denote it as F (z1, . . . , zn). The straightforward
computations show that the function F satisfies the bounded difference condition (Theorem 14 of Song (2008)). Indeed, let
us fix all the values z1, . . . , zn except for the zj which we will set to z0j . Using identity |a� b| = (a� b) a>b+(b�a) ab

and noting that if supx f(x) = f(x⇤
) then supx f(x)� supx g(x) is upper bounded by f(x⇤

)� g(x⇤
) we get
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,...,z
n

)F (z1,...,zj ,...,zn).
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Now noting that |f(z)� f(z0)| 2 [0, 2] we conclude with

|F (z1, . . . , z
0
j , . . . , zn)� F (z1, . . . , zj , . . . , zn)|

 2

n F (z1,...,z0
j

,...,z
n

)>F (z1,...,zj ,...,zn) +
2

n F (z1,...,z0
j

,...,z
n

)F (z1,...,zj ,...,zn) =
2

n
.

Using McDiarmid’s inequality (Theorem 14 of (Song, 2008)) with ci = 2/n we obtain that with probability not less than
1� � the following holds:

sup

kfkH
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2 log(1/�)

n
.

Finally, we proceed with the symmetrization step (Theorem 2.1 of (Koltchinskii, 2011)) which upper bounds the expected
value of the sup-norm of empirical process with twice the Rademacher complexity of the class {f 2 Hk : kfkH

k

 1}
and with upper bound on this Rademacher complexity which can be found in Lemma 22 and related remarks of Bartlett &
Mendelson (2002).

We also note that the original statement of Theorem 27 in Song (2008) contains extra factor of 2 under logarithm compared
to our modified result. This is explained by the fact that while we upper bounded the Rademacher complexity directly, Song
(2008) instead upper bounds it in terms of the empirical (or conditional) Rademacher complexity which results in another
application of McDiarmid’s inequality together with union bound.

B.2. Theorem 3

We will proceed as follows:

R'(
˜fn)�R'(f

⇤
) = R'(

˜fn)� ˜R'(
˜fn)

+

˜R'(
˜fn)� ˜R'(f

⇤
)

+

˜R'(f
⇤
)�R'(f

⇤
)

 2 sup
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k

|R'(f)� ˜R'(f)|
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k

|R'(f)� ˆR'(f) + ˆR'(f)� ˜R'(f)|

 2 sup

f2F
k

|R'(f)� ˆR'(f)|+ 2 sup

f2F
k

| ˆR'(f)� ˜R'(f)|. (19)

We will now upper bound two terms in (19) separately.

We start with noticing that Theorem 2 can be used in order to upper bound the first term. All we need is to match the
quantities appearing in our problem to the classical setting of learning theory, discussed in Section 3.1. Indeed, let µ(P) play
the role of input space Z . Thus the input objects are kernel mean embeddings of elements of P . According to Lemma 2,
there is a distribution defined over µ(P) ⇥ L, which will play the role of unknown distribution P. Finally, i.i.d. pairs��

µk(Pi), li
� n

i=1
form the training sample. Thus, using Theorem 2 we get that with probability not less than 1� �/2 (w.r.t.

the random training sample
��

µk(Pi), li
� n

i=1
) the following holds true:
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To deal with the second term in (19) we note that
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where we have used the Lipschitzness of the cost function '. Using the Lipschitzness of the functionals f 2 Fk we obtain:

sup

f2F
k

| ˆR'(f)� ˜R'(f)|  L' sup

f2F
k

Lf

n

nX

i=1

kµk(Pi)� µk(PS
i

)kH
k

. (21)

Also note that the usual reasoning shows that if h 2 Hk and khkH
k

 1 then:

|h(z)| = |hh, k(z, ·)iH
k

|  khkH
k

kk(z, ·)kH
k

= khkH
k

p
k(z, z) 

p
k(z, z)

and hence khk1 = supz2Z |h(z)|  1 because our kernel is bounded. This allows us to use Theorem 1 to control every
term in (21) and combine the resulting upper bounds in a union bound4 over i = 1, . . . , n to show that for any fixed
P1, . . . , Pn with probability not less than 1� �/2 (w.r.t. the random samples {Si}ni=1) the following is true:

L' sup

f2F

Lf

n
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)kH
k
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1

A . (22)

The quantity 2n/� appears under the logarithm since for every i we have used Theorem 1 with �0 = �/(2n). Combining
(20) and (22) in a union bound together with (19) we finally get that with probability not less than 1� � the following is true:

R'(
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⇤
)  4L'Rn(F) + 2B
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log(2/�)
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+
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n
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where we have defined LF = supf2F Lf .

B.3. Theorem 4

Our proof is a simple combination of the duality equation (18) combined with the following lower bound on the supremum
of empirical process presented in Theorem 2.3 of Bartlett & Mendelson (2006):

Theorem 5. Let F be a class of real-valued functions defined on a set Z such that supf2F kfk1  1. Let z1, . . . , zn, z 2 Z
be i.i.d. according to some probability measure P on Z . Set �2

F = supf2F V[f(z)]. Then there are universal constants
c, c0, and C for which the following holds:

E
"
sup

f2F

�����E [f(z)]� 1
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#
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n
.

Furthermore, for every integer n � 1/�2
F , with probability at least c0,

sup

f2F

�����E [f(z)]� 1

n

nX

i=1

f(zi)

����� � C E
"
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f2F

�����E [f(z)]� 1
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f(zi)

�����

#
.

We note that constants c, c0, and C appearing in the last result do not depend on n,�2
F or any other quantities appearing in

the statement. This can be verified by the inspection of the proof presented in (Bartlett & Mendelson, 2006).

B.4. Lemma 1

Proof. Bochner’s theorem (Rudin, 1962) states that for any shift-invariant symmetric p.d. kernel k defined on Z ⇥Z where
Z = Rd and any z, z0 2 Z the following holds:

k(z, z0) =
Z

Z
pk(w)e

ihw,z�z0idw, (23)

4 Note that the union bound results in the extra log n factor in our bound. We believe that this factor can be avoided using a refined
proof technique, based on the application of McDiarmid’s inequality. This question is left for a future work.
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where pk is a positive and integrable Fourier transform of the kernel k. It is immediate to check that Fourier transform of
such kernels k is always an even function, meaning pk(�w) = pk(w). Indeed, since k(z� z0) = k(z0 � z) for all z, z0 2 Z
(due to symmetry of the kernel) we have:

pk(w) :=

Z

Z
k(�)eihw,�id� =

Z

Z
k(�) cos(hw, �i)d� =

Z

Z
k(�) cos(�hw, �i)d� = pk(�w)

which holds for any w 2 Rd. Thus for any z, z0 2 Rd we can write:

k(z, z0) =
Z

Rd

pk(w)
�
cos(hw, z � z0i) + i · sin(hw, z � z0i)�dw

=

Z

Rd

pk(w)
�
cos(hw, z � z0i)dw + i ·

Z

Rd

pk(w) sin(hw, z � z0i)�dw

=

Z

Rd

pk(w) cos(hw, z � z0i)dw

= 2

Z

Rd

Z 2⇡

0

1

2⇡
pk(w) cos(hw, zi+ b) cos(hw, z0i+ b) db dw.

Denote Ck =

R
Rd

p(w)dw < 1. Next we will use identity cos(a � b) = 1
⇡

R 2⇡
0 cos(a + x) cos(b + x)dx and introduce

random variables b and w distributed according to U [0, 2⇡] and 1
C

k

pk(w) respectively. Then we can rewrite

k(z, z0) = 2Ck E
b,w

[cos(hw, zi+ b) cos(hw, z0i+ b)] . (24)

Now let Q be any probability distribution defined on Z . Then for any z, w 2 Z and b 2 [0, 2⇡] the function

gzw,b(·) := 2Ck cos(hw, zi+ b) cos(hw, ·i+ b)

belongs to the L2(Q) space. Namely, L2(Q) norm of such a function is finite. Moreover, it is bounded by 2Ck:

kgzw,b(·)k2L2(Q) =

Z

Z

⇣
2Ck cos(hw, zi+ b) cos(hw, ti+ b)

⌘2
dQ(t)

 4C2
k

Z

Z
dQ(t) = 4C2

k . (25)

Note that for any fixed x 2 Z and any random parameters w 2 Z and b 2 [0, 2⇡] the element gzw,b(·) is a random variable
taking values in the L2(Q) space (which is Hilbert). Such Banach-space valued random variables are well studied objects
(Ledoux & Talagrand, 1991) and a number of concentration results for them are known by now. We will use the following
version of Hoeffding inequality which can be found in Lemma 4 of Rahimi & Recht (2008):

Lemma 3. Let v1, . . . , vm be i.i.d. random variables taking values in a ball of radius M centred around origin in a Hilbert
space H . Then, for any � > 0, the following holds:

�����
1

m

mX

i=1

vi � E
"
1

m

mX

i=1

vi

#�����
H

 M

m

⇣
1 +

p
2 log(1/�)

⌘
.

with probability higher than 1� � over the random sample v1, . . . , vm.

Note that Bochner’s formula (23) and particularly its simplified form (24) indicates that if w is distributed according to
normalized Fourier transform 1

C
k

pk and b ⇠ U([0, 2⇡]) then Ew,b[gzw,b(·)] = k(z, ·). Moreover, we can show that any
element h of RKHS Hk also belongs to the L2(Q) space:

kh(·)k2L2(Q) =

Z

Z

�
h(t)

�2
dQ(t)

=

Z

Z
hk(t, ·), h(·)i2H

k

dQ(t)


Z

Z
k(t, t)khk2H

k

dQ(t)  khk2H
k

< 1, (26)
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where we have used the reproducing property of k in RKHS Hk, Cauchy-Schwartz inequality, and the fact that the kernel k
is bounded. Thus we conclude that the function k(z, ·) is also an element of L2(Q) space.

This shows that if we have a sample of i.i.d. pairs {(wi, bi)}mi=1 then E
h

1
m

Pm
i=1 g

z
w

i

,b
i

(·)
i
= k(z, ·) where {gzw

i

,b
i

(·)}mi=1

are i.i.d. elements of Hilbert space L2(Q). We conclude the proof using concentration inequality for Hilbert spaces of
Lemma 3 and a union bound over the elements z 2 S, since

�����µk(PS)� 1
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�����
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�����
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kk(zi, ·)� ĝzim(·)kL2(Q)
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1

n
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i=1

������
k(zi, ·)� 1

m

mX

i=j

gziw
j

,b
j

(·)
������
L2(Q)

,

where we have used the triangle inequality.

B.5. Excess Risk Bound for Low-Dimensional Representations

Let us first recall some important notations introduced in Section 3.3. For any w, z 2 Z and b 2 [0, 2⇡] we define the
following functions

gzw,b(·) = 2Ck cos(hw, zi+ b) cos(hw, ·i+ b) 2 L2(Q), (27)

where Ck =

R
Z pk(z)dz for pk : Z ! R being the Fourier transform of k. We sample m pairs {(wi, bi)}mi=1 i.i.d. from⇣

1
C

k

pk
⌘
⇥ U [0, 2⇡] and define the average function

ĝzm(·) = 1

m

mX

i=1

gzw
i

,b
i

(·) 2 L2(Q).

Since cosine functions (27) do not necessarily belong to the RKHS Hk and we are going to use their linear combinations as
a training points, our classifiers should now act on the whole L2(Q) space. To this end, we redefine the set of classifiers
introduced in the Section 3.2 to be {sign �f : f 2 FQ} where now FQ is the set of functionals mapping L2(Q) to R.

Recall that our goal is to find f⇤ such that

f⇤ 2 arg min

f2F
Q

R'(f) := arg min

f2F
Q

E
(P,l)⇠M

h
'
⇣
�f
�
µk(P )

�
l
⌘i

. (28)

As was pointed out in Section B.4 if the kernel k is bounded supz2Z k(z, z)  1 then Hk ✓ L2(Q). In particular, for any
P 2 P it holds that µk(P ) 2 L2(Q) and thus (28) is well defined.

Instead of solving (28) directly, we will again use the version of empirical risk minimization (ERM). However, this time
we won’t use empirical mean embeddings {µk(PS

i

)}ni=1 since, as was already discussed, those lead to the expensive
computations involving the kernel matrix. Instead, we will pose the ERM problem in terms of the low-dimensional
approximations based on cosines. Namely, we propose to use the following estimator ˜fm

n :

˜fm
n 2 arg min

f2F
Q

˜Rm
' (f) := arg min

f2F
Q

1

n

nX

i=1

'

 
�f

 
1

ni

X

z2S
i

ĝzm(·)
!
li

!
.

The following result puts together Theorem 3 and Lemma 1 to provide an excess risk bound for ˜fm
n which accounts for all

sources of the errors introduced in the learning pipeline:

Theorem 6. Let Z = Rd and Q be any probability distribution on Z . Consider the RKHS Hk associated with some
bounded, continuous, shift-invariant kernel function k, such that supz2Z k(z, z)  1. Consider a class FQ of functionals
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mapping L2(Q) to R with Lipschitz constants uniformly bounded by LQ. Let ' : R ! R+ be a L'-Lipschitz function such
that �(z) � z>0. Let '

��f(h)l
�  B for every f 2 FQ, h 2 L2(Q), and l 2 L. Then for any � > 0 the following holds:

R'(
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n )�R'(f

⇤
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⌘

with probability not less than 1� � over all sources of randomness, which are {(Pi, li)}ni=1, {Si}ni=1, {(wi, bi)}mi=1.

Proof. We will proceed similarly to (19):
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' (f)|. (29)

First two terms of (29) were upper bounded in Section B.2. Note that the upper bound of the second term (proved in
Theorem 3) was based on the assumption that functionals in FQ are Lipschitz on Hk w.r.t. the Hk metric. But as we already
noted, for bounded kernels we have Hk ✓ L2(Q) which implies khkL2(Q)  khkH

k

for any h 2 Hk (see (26)). Thus
|f(h)� f(h0

)|  Lfkh�h0kL2(Q)  Lfkh�h0kH
k

for any h, h0 2 Hk. It means that the assumptions of Theorem 3 hold
true and we can safely apply it to upper bound the first two terms of (29).

We are now going to upper bound the third one using Lemma 1:
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We can now use Lemma 1 combined in union bound over i = 1, . . . , n with �0 = �/n. This will give us that
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with probability not less than 1� � over {(wi, bi)}mi=1.
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C. Training and Test Protocols for Section 5.4
The synthesis of the training data for the experiments described in Section 5.4 follows a very similar procedure to the one
from Section 5.1. The main difference here is that, when trying to infer the cause-effect relationship between two variables
Xi and Xj belonging to a larger set of variables X = (X1, . . . , Xd), we will have to account for the effects of possible
confounders Xk ✓ X \ {Xi, Xj}. For the sake of simplicity, we will only consider one-dimensional confounding effects,
that is, scalar Xk.

C.1. Training Phase

To generate cause-effect pairs exhibiting every possible scalar confounding effect, we will generate data from the eight
possible directed acyclic graphs depicted in Figure 4.

Figure 4. The eight possible directed acyclic graphs on three variables.

In particular, we will sample N different causal DAGs G1, . . . , GN , where the Gi describes the causal structure underlying
(Xi, Yi, Zi). Given Gi, we generate the sample set Si = {(xij , yij , zij)}nj=1 according to the generative process described
in Section 5.1. Together with Si, we annotate the triplet of labels (li1, li2, li3), where according to Gi,

• li1 = +1 if “Xi ! Yi”, li1 = �1 if “Xi  Yi”, and li1 = 0 else.

• li2 = +1 if “Yi ! Zi”, li2 = �1 if “Yi  Zi”, and li2 = 0 else.

• li3 = +1 if “Xi ! Zi”, li1 = �1 if “Xi  Zi”, and li1 = 0 else.

Then, we add the following six elements to our training set:

({(xij , yij , zij)}nj=1,+l1), ({(yij , zij , xij)}nj=1,+l2), ({(xij , zij , yij)}nj=1,+l3),

({(yij , xij , zij)}nj=1,�l1), ({(zij , yij , xij)}nj=1,�l2), ({(zij , xij , yij)}nj=1,�l3),

for all 1  i  N . Therefore, our training set will consist on 6N sample sets and their paired labels. At this point, and
given any sample {(uij , vij , wij)}nj=1 from the training set, we propose to use as feature vectors the concatenation of the
m�dimensional empirical kernel mean embeddings (14) of {uij}nj=1, {vij}nj=1, and {(uij , vij , wij)}nj=1, respectively.

C.2. Test Phase

To start, given nte test d�dimensional samples S = {(x1i, . . . , xdi)}nte

i=1, the hyper-parameters of the kernel and training
data synthesis process are transductively chosen, as described in Section 5.1.

In order to estimate the causal graph underlying the test sample set S, we compute three d⇥ d matrices M!, M??, and
M . Each of these matrices will contain, at their coordinates i, j, the probabilities of the labels “Xi ! Xj”, “Xi ?? Xj”,
and “Xi  Xj”, respectively, when averaged over all possible scalar confounders Xk. Using these matrices, we estimate
the underlying causal graph by selecting the type of each edge (forward, backward, or no edge) to be the one with maximal
probability according. As a post-processing step, we prune the least-confident edges until the derived graph is acyclic.


