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A. Properties of Strong Convexity

Strong convexity can be characterized in a number of ways.
The following facts provide some conditions that are equiv-
alent to Definition 1.

Fact 1. A differentiable function, ¢ : S — R, of a convex
set, S, is k-strongly convex w.r.t. a norm, || - ||, if and only
if, forall s,s' € S,

klls — 81> < (Vls) — Vls'), s — 8) .

Fact 2. A twice-differentiable function, ¢ : S — R, of a
convex set, S, is k-strongly convex w.rt. a norm, ||-||, if
and only if, for all s,s' € S,

kllsl? < (5, V20(s') 5)

For the 2-norm, Fact 2 means that the minimum eigenvalue
of the Hessian is lower-bounded by «.

B. Proofs from Section 3

This section contains all deferred proofs from Section 3.

B.1. Proof of Stability Lemma (Lemma 2)

Recall that fi(0) and f1(@’) are the gradients of ®(6) and
®(0'), respectively. Since the conjugate function, ®*, is
assumed to be k-strongly convex, we have via Lemma 1
and Definition 2 that

|(6) — (6],
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Dividing both sides by /|G| completes the proof.
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B.2. The Marginals of the Expected NLL Minimizer
are the True Marginals

Observe that 6, effectively fits the empirical marginals of

the dataset, %n ZT:l y(ﬂ' ). Thus, as m — oo, the marginals

induced by 6,,, and 8 converge. This is formalized in the
following lemma.

Lemma 4. Let pu(0") denote the true marginals of a dis-
tribution. Let 0 denote the minimizer of the expected NLL,
per Eq. 5. Then,

(0%) = [1(0).
Proof Expanding the expected NLL, we have
E[-Inp(Y;0)] = (0) —E[0-Y].
The gradient of this is
VE[-Inp(Y;0)] = () —E[Y] = j1(6) — pu(6").

Since the NLL is differentiable, the gradient at the min-
imum is zero. Thus, when VE [~ Inp(Y;6)] = 0, we
|

have 1(0) = p(0™).

B.3. Proof of Error Bound (Proposition 1)

By Lemma 4, u1(6*) = j1(8). Further, because ®* is as-
sumed to be x-strongly convex, using Lemma 2, we have
that

i [#0m) — w0, = = @) - @)
< H\}@ ’ b, —éHQ. (15)

The rest of the proof involves upper-bounding ‘

ém—?)H .
2



The Benefits of Learning with Strongly Convex Approximate Inference: Supplemental

Assumption 1 states that, with probability at least 1 — 4,
there exists a convex set, S, encompassing 6 and ém, such
that the minimum eigenvalue of V2£(-;0) : 0 € S is
lower-bounded by (8, m, G). By Fact 2, this event implies
that the NLL is (0, m, G)-strongly convex in S. Since
V2L(-;0) = V2L,,(0), the same can be said for £,,, so
the regularized NLL,

LR(8) 2 L,,(6) + Ay ||6]I3,

is also v(d, m, G)-strongly convex in S. Therefore, with
probability at least 1 — § over draws of m examples,

2 (VLR(8) —VLE(8,,),0—6,,
oo’ <! i )

(V£1,0). 6 61)
(8, m, G)
w0l oo
(0, m, Q)

The second line follows from the fact that ém isA the min-
m) = 0.

imizer of L} , which is differentiable, so VLY (0
The last line uses Cauchy-Schwarz. Dividing both sides by

[
probablhty at least 1 — 4,

, and combining with Eq. 15, we have that, with

1 VLR (0
V|G 2 ky(8,m,G)/|G|
Using the triangle inequality, the norm of the gradient de-
composes as

VLY, (6)

#(6,) = (6")

HZ_HV’C +2A 0“2
<|[VLn @), +2Am [|0],- A

Let N = ||, and note that N = ¢[V| + (*|€] < (2|G].
Therefore, using the definition of A,,, and leveraging the
assumption that HGHOO < 1, we have that

5 N g |G|
2A,, 1101, <24/ — ||O < 204/ —. 18
ol <2/ Y o) <20 /16 sy
Turning now to the gradient of £,,,, we can expand Eq. 4 as
1 ,
il ©))
SRR
Since f1(0) is the gradient of ®(0), and is in fact equal to
the true marginals, pt(0*), we have that the gradient of £,
is

VL (8)= > () -39

Note that the gradient is a zero-mean random vector; ran-
dom because it depends on the draw of the training set. We
will bound this quantity with high probability, using a tech-
nique borrowed from London et al. (2014).

It helps to denote the gradient by a vector, VL,,(0) £ g €
RY. Fix some value ¢ > 0. For g to be greater than e,
at least one of its coordinates must have magnitude at least
e/ V/N; otherwise, we would have

N N o
2
llly = | D_lail* < | D_ & =
1=1 =1

Thus, using the union bound, we have that

€
Pr >et <Pr<di:|gi| > —
(el > <Pr{3is al > =}

Each g; is the difference of the mean and sample average
of a sufficient statistic for some node variable Y,, (or edge
variable Y, ) having label y,, (or y.). The sufficient statistics
are bounded in the interval [0, 1], so |g;| < 1. Moreover, the
sample average is taken from m i.i.d. draws from the target
distribution. Therefore, applying Hoeffding’s inequality to
each 7, we have that

€ —2me?
Pr il > — 7 <2ex .
{Igl TV} p( N )

Summing overi =1, ...,
—2me?
N .

_ Nin 28 G| 2219
R e (T

2m

N, we have

Pr{[gl, > e} <2Nexp (

Thus, with probability at least 1 —

The last inequality uses the fact that N < ¢2 |G.

Substituting Eqs. 18 and 19 into Eq. 17, and rearranging
the terms, we have that with probability at least 1 — 4,

] el { _2eq

Then, combining the above with Eq. 16, we have that with
probability at least 1 — 2§ over draws of the training set,

which completes the proof.



The Benefits of Learning with Strongly Convex Approximate Inference: Supplemental

C. Tree-Structured Models

In this section, we analyze tree-structured models. We
show that the negative entropy of a tree-structured model is
strongly convex, with a modulus that depends on the con-
traction coefficients induced by the model. This result is
used in the proof of Proposition 2. We also show how the
contraction coefficients of a tree-structured model can be
measured efficiently.

C.1. Strong Convexity of the Tree Negative Entropy

When the model is structured according to a tree, T, the
marginal polytope, M, is exactly equivalent to the local
marginal polytope, M. Further, its entropy function, Hrp,
can be expressed succinctly as a function of the marginals,
using the Bethe entropy formula (see Eq. 8). Wainwright
(2006) showed that —Hp is €(1/|G|)-strongly convex.
This is a pessimistic lower bound, since it considers all
models in the exponential family. Indeed, we can show
that tree-structured models with good contraction (see Def-
inition 3) and bounded degree induce a negative entropy
that is ©(1)-strongly convex.

Proposition 4. Fix a tree, T, with maximum degree A =
O(1), independent of |V|. Let © C RI®! denote the set
of potentials with maximum contraction coefficient ¥ <
1/Ar, and let M(©) = {(0) : @ € O} denote the cor-
responding set of realizable marginals. Then, the negative
entropy, —Hr, is Q(1)-strongly convex in M(©).

Proof The Hessian of the log-partition, ®(60), is the co-
variance matrix,

2(Y;0)2E[yy";0] —E[y;0]E[y";6],

where E[-; 8] denotes an expectation over the distribution
parameterized by 6. (For a derivation of this fact, see Wain-
wright & Jordan (2008).) Let ¥7!(Y;8) denote the in-
verse covariance (i.e., precision) matrix. Since ® is the
convex conjugate of the negative entropy, —H, the Hes-
sian of one is the inverse Hessian of the other. This insight
yields the following lemma.

Lemma 5. The negative entropy, —H, is (1/Apayx)-strongly
convex in M(0), where \ygx = maxgeo |S(Y;0)||, is
the maximum eigenvalue of the covariance matrix, over all
potentials in ©.

Proof ViaFact?2, —H is x-strongly convex in M(©) if the
eigenvalues of V2 (—H (u(8))), for every u(6) € M(O)
(i.e., every 8 € O), are bounded away from zero by ~. Via
convex conjugacy,

V2 (—H(u(8))) = (V*(0))

Therefore, the minimum eigenvalue of —H (pu(0)) is equal
to the maximum eigenvalue of 3(Y; 6). |

S et 'eY )}

Thus, to lower-bound the convexity of —H, it suffices to
uniformly upper-bound the spectral norm of ¥(Y; 6), over
all @ € ©. A simple way to do this (used by Wainwright,
2006) is to analyze the trace norm (i.e., sum of the diag-
onal), which upper-bounds the spectral norm. The diago-
nal elements of the covariance matrix are uniformly upper-
bounded by 1/4, since the sufficient statistics are bounded
in [0, 1]. This yields a (loose) upper bound of O(|G]). For
our purposes, this bound is too loose, since it grows with
the size of the graph.

A better approach is to analyze the induced 1-norm (i.e.,
maximum column sum) or oo-norm (i.e., maximum row
sum), which, for symmetric matrices, are equivalent, and
conveniently upper-bound the spectral norm. (This is
because [All, < /A AL, = /AT, TAl, =
[|All;.) Intuitively, the 1-norm of the covariance matrix
captures the maximum dependence as a function of graph
distance. To bound the 1-norm, we will relate each covari-
ance coefficient to a product of contraction coefficients. For
contraction less than 1—i.e., without determinism—this
product will decrease geometrically with graph distance.
This geometric series converges, provided the structure has
bounded degree and sufficiently small contraction.

Our proof uses a technical lemma that is often credited to
Dobrushin. We use a version of this given by Kontorovich
(2012).

Lemma 6 (Kontorovich, 2012, Lemma 2.1). Letv : Q —
R be a signed, balanced measure, such that ) . v(w) =
0. Let K : Q x Q — R be a Markov kernel, where
Kwlw)>0 3% Kwl|w)=1, and

(Kv)(w) £ Y K(w]w) ().

w'eN
Then
1KVl =D D K(wl|w)v(w)
<9y |p(w)
=Vl
where

02 sup [K(-|w)— K(-|w)
w,w’EN

ey -

is the contraction coefficient of K.

Fix any @ € O. For the following, we use the shorthand
pe(y) to denote p(Y = y; @), and similar probabilities. We
also let g (yu, y») denote the entry of the covariance ma-
trix corresponding to Y,, = y,, and Y,, = y,,.
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Let 7(1),...,m(l) denote the sequence of nodes along a
path. Note that 7 is the unique path connecting its end
points, since the model is tree-structured. The covariance
entries corresponding t0 Yz (1) = yr1) and Yy = Y=
can be written recursively as

UG(yﬂ'(l)ayw(l))
= po(Yr1)s Yr1)) — Po(Y=(1))P0
= Z p@(yﬂ'(l)»yﬂ'(l—l)vyﬂ(l))

Yr(1-1)
- pe(yﬂ'(l))po(yﬂ'(l—l)7yﬂ'(l))
= Z pe(yﬂ(l),yw(l—1))Pe(y7r(z) |y7r(l—1))
Yr(1—1)
- pe(yﬂ'(l))pe(yﬂ'(lfl))pe(yﬂ'(l) |y7T(l71))
= Z p@(yw(l) |y7r(171))
Ym(l—1)
X (Pe(yﬂu),yw(z—n)

= Z 16 (Y1) | Yr1=1)) 76 (Yr(1)s Yr(i-1))-
Ym(1—1)

Wray)

— po(Yr(1))P6 (Yr(i-1)))

Note that the second equality follows from the Markov
property; since Y ;) is conditionally independent of Y (1)
given Y _1y, we have that po(yr) | Yr(i—1)s Yn(1)) =
6 (Y1) | Yr(1-1))-

In the righthand expression, the conditional probability un-
der pg defines a Markov kernel. Moreover, the covariance
with y (1) defines a signed measure,

v(Ys59r1)) £ 00(yr1), Y),

which is balanced, since

> v yxa) Zae Yr(1):Y)
Y
= ZPG Yr(1)> Y)
Yy

= po(Yr(1))

- Pa(yw(l))Po(y)
—po(Yr1)) = 0.

Therefore, via Lemma 6, we have that

Z |O—9 (y‘n’(l)a yﬂ'(l)) |

Ym (1)

= Z Z Peo yﬂ'(l |y7Tl 1 )Ue(ywu) Yr(l— 1))

Yr ) |Yn(1—1)

Z |00 (Yr(1)s Yr(—1))|

Yr(1—1)

Applying this identity recursively, we have that

Z |09(yﬂ(1)7 yﬂ'(l))‘

Y (1)
< 9 Z lao(yw(lyyﬂ(lfl))’

Yr(-1)

< 3)72 ) o0 (Ur(1) Ur ()]

Yr(2)
< (95) 1 Z ‘O’e(yﬂuyy;u))‘
y;u)
/
< = 19* -1
<3 0%)

The last inequality follows from the fact that the covariance
of any variable assignment is at most 1/4 in magnitude, and
the covariance between any two assignments to the same
variable is also at most 1/4.

Given an upper bound on the covariances of node assign-
ments, we can bound the covariance of edge assignments.
Consider edges {a, b}, {c,d} € €. Due to the tree struc-
ture, the edges lie at opposite ends of a unique path con-
necting their constituent nodes. Without loss of generality,
assume that this path has the order a,b, ..., c,d, and that
the length of the path from b to ¢ is [. By the Markov prop-
erty, Y, and Y are conditionally independent given Y} and
Y.. Thus, for any configuration (Y,,Ys) = (ya,ys) and

(Y., Yy) = (Ye, ya), we have that
> oo ((Yar ), (Ye: ya))|
YerYd

= 1p6(Yar Ub: Yer Ya) — Do (Yar Us)Po (Yo, ya)|
Ye,Yd

= Po(Va: Ya | v, ve)o (Yo, ve)
YesYa

— po(Ya | yo)Po (Ys)P0 (Y | Ye )P0 (yc) |
= Z |po (Ya | ys)po(ya | ye)po (s, ye)

YerYa

—po(Ya | yo)Po (Ya | ye)po (yo)pe ()|

= > po(yalys)pe(yalye) loo(ys, ve)l
Ye,Yd

= po(yalm) D loo(ys,ve)| D pe(yal ye)

G(ya | yb) Z |09(yb7 yc)|

Ye

(W)~

»lk\?\

The same argument can be used to bound the covariance
between node and edge variables, where the relevant path
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length [ becomes the length from the node to the closest
endpoint of the edge. The base case of covariance between
a node or edge state indicator and another state is also at
most 1/4.

Thus far, we have derived upper bounds on the entries of
the covariance matrix, which correspond to covariances be-
tween three types of pairs: node variables and node vari-
ables; node variables and edge variables; and edge vari-
ables and edge variables. For a distribution induced by
a tree-structured model, with maximum degree A, the
I-norm of a column corresponding to a node assignment
Y, = Yu is

(oy] ()/u = yu)

=Zlaa(yu,y;)\+ Z Z“’@(yuvyv”

vEV\u Yu

+ Z Z |O'0(yua(yv7yv’))|

{’U,v’}eg Yo 1Yo
¢ ¢ A\ (u,v)—1
1t 2 %)
veEV\u
+ g Z (,02)max{o,min{l(u,v)’l(uﬂ)/)}_l}

{v,v'}e€

- o
SZ‘*‘EZA%(%YI !
d=1

IA

INp & ede
+7T+*ZAdTH( 9)d1

4 4
d=1

0 A & d1

=1t g L)
d=1
(A AR & d1

ot i)
ot N (Ar N (AT (A2,
4 41— Ary) 4 A1 -Ar9y)’

where [(u,v) is the length of the path from node u to v.
The second inequality holds because the number of nodes
at distance d is at most AdT, and the maximum number
of edges with endpoints at distance d is at most A%,
where we adjust for node and edge variables at distance
zero. The last line applies the geometric series identity,
since Ar ¥y < Ap/Ap = 1. An analogous argument
bounds the 1-norm of any column corresponding to an edge
assignment.

Since the 1-norm of every column of the covariance matrix
is upper-bounded independently of |G/, it follows that the
induced 1-norm of X(Y;0) is bounded independently of
|G|; that s,

(Y 0)[l, = O(1).

This holds for every 8 € O, though the constant may
differ, depending on ;. Recall that the 1-norm of the
covariance matrix upper-bounds the spectral norm, since
the covariance matrix is symmetric. Thus, the minimum
eigenvalue of V2 (—H (u(0))), for every u(6) € M(O),
is lower-bounded by a constant, which means that the
negative entropy is £2(1)-strongly convex in M(O). [ |

C.2. Measuring Contraction

In the previous section, we relate the convexity of —Hrp
to the model’s maximum contraction coefficient. For gen-
eral graphical models, measuring the contraction coeffi-
cients may be intractable. However, when the model is
tree-structured, there is an efficient algorithm.

For a tree-structured model, exact inference can be com-
puted efficiently using message passing. Given the node
and edge marginals, one can compute the conditional prob-
abilities via

P Yy =yu, Yy =90:0)
p(Yv:yv39)

p(Yu:yu‘Yu:yv;g):

One can then compute the total variation distance; hence,
the contraction coefficient. For variables with small do-
mains (e.g., binary), this is efficient. Given the contraction
coefficient for each (u,v) : {u,v} € &, computing the
maximum contraction coefficient is trivial.

Note that marginal inference only needs to be computed
once in this procedure. The time complexity of inference
in a tree-structured model, with ¢ labels and |£| edges is
O(#? |€]). For each undirected edge, there are two contrac-
tion coefficients (one per direction), each of which involves
¢? operations (¢ additions to compute the total variation dis-
tance conditioned on Y,,; and ¢ values of Y,, to condition on
to compute the supremum). Since there are |£| edges, the
overall time complexity of computing the contraction coef-
ficients is O(¢2 |£]).

D. Tree-Reweighting

In this section, we prove Proposition 2, which gives a
model-dependent lower bound on the modulus of convexity
for the tree-reweighted negative entropy. We also explore
the ramifications of Proposition 2 for a grid-structured
model.

D.1. Proof of — H™ Strong Convexity (Proposition 2)

The following lemma relates the convexity of —H™ to the
convexity of its constituent tree entropies, as well as the
tree distribution.
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Lemma 7. (Wainwright, 2006, Appendix C) Fix a graph,
G & WV, &), and a distribution, p, over the spanning
trees, T(G), such that p(e) > 0 for all e € & Let
ps 2 mingeg p(e) denote the minimum edge probabil-
ity. Let k7. denote the minimum convexity of —Hr for any
tree T € T(G) with positive probability under p. Then
the tree-reweighted negative entropy, —H™, is (pir%.)-
strongly convex.

Thus, to prove (1)-strong convexity, one must show that
the minimum edge probability, p}, and the minimum tree
convexity, x% are both lower-bounded by values that are
independent of |G]|.

In Proposition 2, we assume that p? is lower-bounded by a
positive constant, C' > 0. Since H™ can be defined using
any distribution over spanning trees, it is usually possible
to construct an edge distribution for which this holds. (An
example for a grid is given in Appendix D.2.) Therefore,
the real challenge is to show that % = €2(1). Foreach T' €
T(G), denote the set of admissible potentials by ©p C
RI®l, where dimensions corresponding to edges that don’t
exist in 7" have unbounded range. Note that

e= (] or

TeT(G):p(T)>0

SO

M(©) = N M(O7).

TeT(G):p(T)>0

Let M7 (0) denote the projection of M(©) onto the sub-
space defined by the nodes and edges in 7', and note that
MT(@) - MT(@T). In Proposition 4, we showed that,
under suitable structural and contraction conditions, —H
is Q(1)-strongly convex in M (©7); hence, in M1 (0) as
well. When combined with Lemma 7, with p; > C, this
proves that —H ™ is (1)-strongly convex in M(0).

D.2. Example Tree-Reweighting for a Grid Graph

Suppose the model is structured according to an m X n grid.
This graph can be covered using a set of 4 chains, using the
“snake-like” pattern illustrated in Figure 1. Observe that
each internal edge is covered by 2 chains, and each bound-
ary edge is covered by 3 chains. Therefore, using a uni-
form distribution over the chains, we have that each inter-
nal edge, e, has probability p(e) = 1/2, and each boundary
edge, €, has probability p(e’) = 3/4.

To apply Proposition 2 to this spanning tree distribution,
we take C' = 1/2 as the minimum edge probability. The
maximum degree of a chain is 2, so the maximum con-
traction coefficient, 19§7T, must be at most 1/2. It may be
possible to upper-bound ¥} ;- analytically for all 8 in some
space. Alternately, one could map out the space of feasi-

A0 VWY | \ WY 4.

- ./ o/
LI L

ot

Figure 1. Covering the edges of a grid graph with 4 chains.

ble potentials by measuring U -, using the procedure from
Appendix C.2.

E. Counting Numbers

In this section, we prove Proposition 3, which characterizes
the modulus of convexity for counting number entropies.
We also present a slackened version of the counting num-
ber QP, which can be used when the variable validity con-
straints are not satisfied.

E.1. Proof of — H¢ Strong Convexity (Proposition 3)

The proof of Proposition 3 requires two technical lemmas.

Lemma 8 (Shalev-Schwartz, 2007, Lemma 16). The func-
tion o(z) = Z;j z; log z; is 1-strongly convex in the prob-
ability simplex, {z € [0,1] : ||z||, = 1}, w.rt. the I-norm.

Lemma 9 (Heskes, 2006, Lemma A.1). The difference of
entropies, equivalent to the negative conditional entropy,
Hy(fin) — He(fte) = —Hejy(fie), for v € e, is a convex
Sfunction of [ie.

We now prove Proposition 3.

Proof [Proposition 3] Every edge, e, is composed of ex-
actly two nodes, {u,v}. By assumption, we have that
ae > Kk > 0. Therefore, we can shift (2+/3) weight from
Qe to oy, and o, without affecting the counting numbers or
Heskes’s convexity conditions. Let:

- 2K
Ye € &, Ozeéae—g;
N K
V(U,G)ZUEG, av,e:av,e+§;
o K
Yo eV, a, = a, + 3
ewwee

Observe that the new auxiliary counts satisfy Eqs. 11
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3 3
ewwee
= dv — &v’e; (20)
ewwee
KR R
VE(S, e — e (ve 7**)
‘ ‘ ¢ +v;e ! i 3 3
=Gct+ Y G Q1
vivee

Now, every e has &, > k/3. Further, because we assume
that every node is involved in at least one edge, every v
has &, > /3. (We could extend Proposition 3 to arbitrary
graphs by assuming that every isolated node has ¢, > k/3.)

Substituting Eqs. 20 and 21 into Eq. 10 and rearranging the
terms, we obtain

—Hc(ﬁ) = - Z &vHv(ﬂv) - Z&CHE([LE)

vey ec&
0D el (fin) — Heljie))
ec& vivEe
==Y ayHy(fi) = Y dcHe(fic)
veV e€€
- Z Z dv,eHe\v(/je)~ 22)
ec& vivEe

We will analyze the entropy terms individually, using the
gradient definition of (strong) convexity.

Fix any two vectors ft, i’ € M, andlet § £ f—fi'. Recall
that Vo, [[7ill, = |@]l, = 1 and Ve, [|fcll, = I, = 1.
Via Lemma 8, —H,, and — H,, are 1-strongly convex in the
probability simplex with respect to the 1-norm. By Fact 1,
this means that every node v satisfies,

(V(=Hy (i) — V(=Hy(f,)), 65) > 1|6,
Therefore,

— V(=Hy (1)), 6,) > é |16,
>y [10l13

2
1001l -

Gy <v(*Hv(ﬂv))

v

K
3
The same holds for every edge e. Further, by Lemma 9,
He)y(fie) = Hy(fiy) — He(fic) is convex, meaning

<V(_He\v(ﬁe)) - V(_He‘”(’a/e))’ 5e> 2 0.

Thus, taking the gradient of Eq. 22, we have that
(V(=H®(R)) = V(=H®(fr")), )
= Z & (V(=Hy(fiv)) — V(_Hv(ﬂ;))» 6u)

veV
+ Z&e <v(*He(ﬂe)) - v(thB(ﬂ;))v 6e>
ec&
+ Z Z dv,e <v(_He|v(ﬂe)) - v(_Her(.a/e))v 5e>
ecf vivEe
K K
> 22 18l + 5 3o 06ell; + 0
veEVY ecf
K 2
= 2813,
which completes the proof, via Fact 1. ]

E.2. Slackened Variable-Valid Counting Number
Optimization

For certain values of x, the variable validity constraints in
Eq. 13 create an infeasible optimization problem. When
this happens, we propose switching to a slackened QP. This
introduces a free parameter, C' > 0, that adjusts the trade-
off between fitting the target counts (in the equation below,
the Bethe counts) and variable validity. The slackened QP
is then

. B2 2
_ C 23
min e e+ Clel 23)
s.t. Vo € V, Cy + Z Qy e > 07
ewece
Veeé&, c. — Z Qe > 3K
vivee
Yo €V, ¢y + Z Ce=1+¢,.
evee

F. Figures for Experimental Results

In all plots, results are averaged over 20 trials and the y-
axis has been rescaled to fit the data. See Section 5.3 for
discussion.
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Figure 3. Plots of RMSE of the node marginals as a function of the convexity parameter, ~, which determines the minimum modulus of
convexity used in the counting number QP. For x < .1, we use Eq. 13; for k > .1, we use Eq. 23 and report the score for the post hoc
optimal C'. SC algorithms are plotted as solid lines, and their respective counterparts are overlaid as dashed lines. Inference is performed
using the true model. The first two rows correspond to a model with attractive potentials; the third and fourth to a model with mixed
potentials. In all plots, the x-axis scales logarithmically for x > .1. Certain plots have been truncated vertically to better fit the data.
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Figure 4. Plots of RMSE of the node marginals as a function of the convexity parameter, ~, when using the learned model for inference.
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Figure 5. Select plots of RMSE as a function of the slack parameter, C, in the slackened counting number QP (Eq. 23), at higher values
of k. The slack parameter trades off between fitting the target counting numbers and satisfying variable validity. Data is generated using

mixed potentials in all plots. These plots focus on the Bethe approximation. SC versions are solid color lines; C-Bethe is overlaid as a
dashed red line.
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