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Abstract

We present the first fully variational Bayesian

inference scheme for continuous Gaussian-

process-modulated Poisson processes. Such

point processes are used in a variety of domains,

including neuroscience, geo-statistics and astron-

omy, but their use is hindered by the computa-

tional cost of existing inference schemes. Our

scheme: requires no discretisation of the domain;

scales linearly in the number of observed events;

and is many orders of magnitude faster than pre-

vious sampling based approaches. The resulting

algorithm is shown to outperform standard meth-

ods on synthetic examples, coal mining disaster

data and in the prediction of Malaria incidences

in Kenya.

1. Introduction

Sparse events defined over a continuous domain arise in a

variety of real-world applications. The geospatial spread

of disease through time, for example, may be viewed as a

set of infections which occur in three dimensional space-

time. In this work, we will consider data where the in-

tensity (or average incidence rate) of the event generating

process is assumed to vary smoothly over the domain. A

popular model for such data is the inhomogenous Poisson

process with a Gaussian process model for the smoothly-

varying intensity function. This flexible approach has

been adopted for applications in neuroscience (Cunning-

ham et al., 2008b), finance (Basu & Dassios, 2002) and

forestry (Heikkinen & Arjas, 1999).

However, existing inference schemes for such models scale

poorly with the number of data, preventing them from find-

ing greater use. The use of a full Gaussian process in mod-

elling the intensity (Adams et al., 2009) incurs prohibitive
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O(N3) computational scaling in the number of data points,

N . To tackle this problem in practice, many approaches

(Rathbun & Cressie, 1994; Mller et al., 1998) discretise

the domain, binning counts within each segment. This

approach enabled Cunningham et al. (2008a) to achieve

O(N logN) performance. However, the discretisation ap-

proach suffers from poor scaling with the dimension of the

domain and sensitivity to the choice of discretisation.

We introduce a new model for Gaussian-process-

modulated Poisson processes that eliminates the require-

ment for discretisation, while simultaneously delivering

O(N) scaling. We further introduce the first fully varia-

tional Bayesian inference scheme for such models, allow-

ing computation many orders of magnitude faster than ex-

isting schemes. This approach, which we term Variational

Bayes for Point Processes (VBPP), is shown to provide

more accurate prediction than benchmarks on held-out data

from datasets including synthetic examples, coal mining

disaster data and Malaria incidences in Kenya. The power

of our approach suggests many future applications: in par-

ticular, our fully generative model will permit the joint in-

ference of real-valued covariates (such as log-rainfall) and

a point process (such as disease outbreaks).

2. Cox Processes

Formally a Cox process—a particular type of inhomoge-

nous Poisson process—is defined via a stochastic intensity

function λ(x) : X → R
+. For a domain X = R

R of arbi-

trary dimension R, the number of points, N(T ), found in

a subregion T ⊂ X is Poisson distributed with parameter

λT =
∫

T
λ(x) dx—where dx indicates integration with

respect to the Lebesgue measure over the domain—and for

disjoint subsets Ti of X , the counts N(Ti) are independent.

This independence is due to the completely independent

nature of points in a Poisson process (Kingman, 1993).

If we restrict our consideration to some bounded region,

T , the probability density of a set of N observed points,
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D = {x(n) ∈ T }Nn=1, conditioned on the rate function

λ(x) is

p(D | λ) = exp

{

−
∫

T

λ(x) dx

} N
∏

n=1

λ(x(n)). (1)

We use |T | to denote the measure of the continuous domain

T . In this work we will assume T is a hyper-rectangular

sub-set of RR with boundaries T min
r and T max

r in each di-

mension r and

|T | =
∫

T

1 dx =

R
∏

r=1

(T max
r − T min

r ). (2)

Using Bayes’ rule, the posterior distribution of the rate

function conditioned on the data, p(λ|D), is

p(λ) exp
{

−
∫

T
λ(x) dx

}
∏N

n=1 λ(x
(n))

∫

p(λ) exp
{

−
∫

T
λ(x) dx

}
∏N

n=1 λ(x
(n))dλ

(3)

which is often described as “doubly-intractable” because of

the nested integral in the denominator.

2.1. Inferring Intensity Functions

To overcome the challenges posed by the doubly intractable

integral Adams et al. (2009) propose the Sigmoidal Gaus-

sian Cox Process (SGCP). In the SGCP, a Gaussian pro-

cess (Rasmussen & Williams, 2006) is used to construct

an intensity function prior by passing a random function,

f ∼ GP , through a sigmoid transformation and scaling it

with a maximum intensity λ∗. The intensity function is

therefore λ(x) = λ∗σ
(

f(x)
)

, where σ(·) is the logistic

sigmoid (squashing) function

σ(x) =
1

1 + exp(−x)
. (4)

To remove the inner intractable integral, the authors aug-

ment the variable set to include latent data, such that the

joint distribution of the latent and observed data is uniform

Poisson over the region T . While this model works well

in practice on small, sparse event data in one dimension,

in reality, it scales poorly with both the dimensionality of

the domain and the maximum observed density of points.

This is due to: the incorporation of latent, or thinned, data,

whose number grows exponentially with the dimensional-

ity of the space; and an O(N3) cost in the number N of all

data (thinned or otherwise).

In Gunter et al. (2014a), the authors go some way towards

improving the scalability of the SGCP, by introducing a fur-

ther set of latent variables such that the entire space need no

longer be thinned uniformly. Instead, they thin to a piece-

wise uniform Poisson process, maintaining the tractability

of the inner integral, and allowing the model to scale to

higher dimensional point processes. The authors term this

approach “adaptive thinning”.

In Lasko (2014) the author performs renewal process infer-

ence without thinning the domain, by making use of a pos-

itively transformed intensity function. The intractability of

their chosen approach forces them to resort to numerical

integration techniques, however, and Bayesian inference is

still performed using computationally expensive sampling.

3. Model

We construct our prior over the rate function using a Gaus-

sian process. Rather than using a squashing function, we

will assume1 the intensity function is simply defined as

λ(x) = f2(x), x ∈ T , where f is a Gaussian process

distributed random function achieving a non-negative prior

(Gunter et al., 2014b). Furthermore we will assume that

f is dependent on a set of inducing points Z = {z(m) ∈
T }Mm=1. We denote the evaluation of f at these points u,

and note u has distribution u ∼ N (~1ū,Kzz). Using this

formulation f |u ∼ GP
(

µ(x),Σ(x,x′)
)

has mean and co-

variance functions

µ(x) = kxzK
−1
zz u, (5)

Σ(x,x′) = Kxx′ − kxzK
−1
zz kzx′ , (6)

where kxz , Kxx′ , Kzz are matrices evaluated at x, x′ and

Z using an appropriate kernel. We use the exponentiated

quadratic (also known as the “squared exponential”) ARD

kernel

K(x,x′)=γ

R
∏

r=1

exp

(

− (xr − x′
r)

2

2αr

)

. (7)

With this hierarchical formulation the joint distribution

over D , f , u and Θ is

p(D , f,u,Θ)=p(D |λ = f2)p(f |u,Θ)p(u|Θ)p(Θ), (8)

where p(Θ) is an optional prior on the set of model param-

eters Θ = {γ, α1, . . . , αR, ū}. For notational convenience

we will often omit conditioning on Θ.

4. Inference

We will use variational inference to obtain a bound on the

model evidence p(D). To achieve this we must integrate

out f and u, but we must also integrate f2 over the region

T due to the integral embedded in the likelihood, Equation

1.

1See Section 5 for a detailed motivation of this choice.
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4.1. Variational Bound

We begin by integrating out the inducing variables u, us-

ing a variational distribution q(u) = N (u;m,S) over the

inducing points. We now multiply and divide the joint by

q(u) and lower bound using Jensen’s inequality to obtain a

lower bound on the model evidence:

log p(D |Θ) = log

[
∫∫

p(D |f)p(f |u)p(u)q(u)
q(u)

du df

]

≥
∫∫

p(f |u)q(u) du log[p(D |f)] df

+

∫∫

p(f |u)q(u) df log

[

p(u)

q(u)

]

du

= Eq(f) [log p(D |f)]−KL
(

q(u)||p(u)
)

, L (9)

Since p(f |u) is conjugate to q(u), we can write down in

closed-form the resulting integral:

q(f) =

∫

p(f |u)q(u)du = GP(f ; µ̃, Σ̃), (10)

µ̃(x) = kxzK
−1
zz m,

Σ̃(x,x′) = Kxx′ − kxzK
−1
zz kzx′ + kxzK

−1
zz SK

−1
zz kzx′ .

KL
(

q(u)||p(u)
)

is simply the KL-divergence between two

Gaussians

KL
(

q(u)||p(u)
)

=
1

2

[

tr
(

K−1
zz S

)

− log
|Kzz|
|S| −M

+ (~1ū−m)⊤K−1
zz (~1ū−m)

]

. (11)

We can now take expectations of the data log-likelihood

under q(f):

L = Eq(f) [log p(D |f)]−KL
(

q(u)||p(u)
)

= Eq(f)

[

−
∫

T

f2
x dx+

N
∑

n=1

log f2
n

]

−KL
(

q(u)||p(u)
)

= −
∫

T

{

Eq(f)[fx]
2 +Varq(f)[fx]

}

dx

+

N
∑

n=1

Eq(f)

[

log f2
n

]

−KL
(

q(u)||p(u)
)

, (12)

where to keep the notation concise we have introduced the

following identities:

fx , f(x), µ̃x , µ̃(x), σ̃2
x , Σ̃(x,x),

fn , f(x(n)), µ̃n , µ̃(x(n)), σ̃2
n , Σ̃(x(n),x(n)).

Note we have used Tonelli’s Theorem to reverse the order-

ing of the integrations over the positive integrand f2
xq(f).

We now have two tasks remaining: we must compute the

integral over the region T and calculate the expectations

Eq(f)

[

log f2
n

]

at the data points.

4.2. Integrating Over The Region T
This lower bound has the desirable property that we can

take expectations under q(f) at any specific point, x, of the

function value, f(x), since q(f(x)) is Gaussian. It is only

possible to take useful expectations because: a) we used

the conditional GP formulation, allowing tractable expecta-

tions to be taken w.r.t. q(f); b), we have already integrated

out the inducing variables u; and c) we chose a suitable

transformation, i.e. λ(x) = f2(x).

The required statistics for Equation 12 are:

Eq(f)[fx]
2 = µ̃2

x = m⊤K−1
zz kzxkxzK

−1
zz m, (13)

Varq(f)[fx] = σ̃2
x = kxx − Tr(K−1

zz kzxkxz)

+ Tr(K−1
zz SK

−1
zz kzxkxz). (14)

It is now easy to calculate the integral since only kzx = k⊤
xz

is a function of x, leading to the following terms:
∫

T

Eq(f)[fx]
2dx = m⊤K−1

zz ΨK−1
zz m, (15)

∫

T

Varq(f)[fx]dx = γ|T | − Tr(K−1
zz Ψ)

+ Tr(K−1
zz SK

−1
zz Ψ). (16)

For the exponentiated quadratic ARD kernel, the matrix

Ψ =

∫

K(z,x)K(x, z′) dx (17)

can be calculated by re-arranging the product as a single

exponentiated quadratic in x and z̄ as follows:

Ψ(z, z′) =

∫

T

γ2
R
∏

r=1

exp

(

− (zr − z′r)
2

4αr

− (xr − z̄r)
2

αr

)

dx

= γ2
R
∏

r=1

−
√
παr

2
exp

(

− (zr − z′r)
2

4αr

)

×
[

erf

(

z̄r − T max
r )√
αr

)

− erf

(

z̄r − T min
r√

αr

)]

,

where z̄ = [z̄1, . . . , z̄R]
⊤ has elements z̄r =

zr+z′

r

2 .

In addition to the exponentiated quadratic ARD kernel, the

matrix Ψ can be computed in closed-form for other kernels,

including polynomial and periodic kernels, as well as sum

and product combinations of kernels.

4.3. Expectations At The Data Points

The expectation Eq(f)[log f
2
n] has an analytical—albeit

complicated—solution expressed as

Eq(f)[log f
2
n] =

∫ ∞

−∞

log(f2
n) N (fn, µ̃n, σ̃

2
n) dfn (18)

= −G̃

(

− µ̃2
n

2σ̃2
n

)

+ log

(

σ̃2
n

2

)

− C, (19)
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where C ≈ 0.57721566 is the Euler-Mascheroni constant

and G̃ is defined via the confluent hyper-geometric function

F1 1 (a, b, z) =

∞
∑

k=0

(a)kz
k

(b)k k!
, (20)

where (·)k denotes the rising Pochhammer series

(a)0 = 1, (a)k = a(a+ 1)(a+ 2) . . . (a+ k − 1).

Specifically G̃ is a specialised version of the partial deriva-

tive of F1 1 with respect to its first argument and can

be computed using the method of Ancarani & Gasaneo

(2008), which has a particular solution at a = 0, leading

to the following definition of G̃:

G̃(z) = F1 1
(1,0,0)

(

0,
1

2
, z

)

= 2z

∞
∑

j=0

j! zj

(2)j(1
1
2 )j

. (21)

Naive implementation of Equation 21 has poor numerical

stability, although this can be improved somewhat using an

iterative scheme, in practice we therefore use a large multi-

resolution look-up table of precomputed values obtained

from a numerical-package. As shown in Figure 1, this

function decreases very slowly as its argument becomes

increasingly negative, so we can easily compute accurate

evaluations of G̃(z) for any z by linear interpolation of our

lookup table and, as a by-product, we also obtain G̃′.

−1000 −900 −800 −700 −600 −500 −400 −300 −200 −100 0
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

z

G̃
(z
)

Figure 1. Accurate evaluations of G̃ can be obtained from a pre-

computed look-up table.

4.4. Optimising The Bound

To perform inference we find variational parameters m∗,

S∗ and the model parameters Θ∗ that maximise L. To

optimise these simultaneously we construct an augmented

vector y = [Θ⊤,m⊤, vech(L)⊤]⊤—where vech(L) is the

vectorisation of the lower triangular elements of L, such

that S = LL⊤.

As well as the maximum-likelihood solution, we can also

compute the the maximum-a-posterior (MAP) estimate by

maximising L(D ;y) + log p(Θ).

To optimise the inducing point locations we use the change

of variables

z(m)
r =

T min
r + T max

r

2
− T min

r − T max
r

2
sin
(

ω(m)
r

)

, (22)

and optimise in ω
(m)
r ∈ [−π, π], which ensures the induc-

ing points always remain within the region T .

4.5. Locating The Inducing Points

One final part of our model we have so far left unspec-

ified is the number and location of inducing points. In

principle, for a given set of parameters Θ, we will obtain

a lower bound for the true GP likelihood for any number of

inducing points in any configuration of locations. We con-

sider two possible approaches: firstly, treating the induc-

ing points as optimisation parameters and, secondly, fixing

them on a regular grid.

If the locations of the inducing points are optimised, this

suggests—in common with other sparse GP models—that

we can achieve good performance using a small number of

well-placed inducing points. This is achieved at the cost of

an additional set of optimisation parameters, although the

size of m and S are commensurately reduced. Optimisa-

tion of the inducing points is particularly computationally

expensive, however, because of the necessity to recompute

K−1
zz for each dimension of each inducing point (M ×R in

total) and since Kzz affects every term in the bound.

Regular grids, on the other hand, also have several advan-

tages. Consider firstly that—in contrast to standard sparse

GP regression—the accuracy of our solution is not only

governed by the distance between the inducing points and

the data points. The variance of f(x) increases as x be-

comes further from the inducing points. However, the rate

function, λ, is a function of both the mean and the variance

of f . Since we are integrating λ over T , we need inducing

points distributed across T and not just in regions close to

the data. An evenly-spaced grid is one way to ensure this

is achieved.

Regularly sampled grids also afford potential computa-

tional advantages. When the grid points are evenly spaced,

the kernel matrix has Toeplitz structure, and hence al-

lows matrix inversion (and linear solving) in O(M log2 M)
time, a fact previously utilised for efficient point processes

by Cunningham et al. (2008a). Furthermore, when the ker-

nel function is separable across the dimensions (as spec-

ified by Equation (7)), the kernel matrix has Kronecker

structure which can further reduce the cost of matrix in-

version (Osborne et al., 2012). The latter is relevant to all

sparse GP applications based on inducing points, however,

it is particularly relevant for this application as we are mo-

tivated by the doubly intractable nature of Equation 3. In

our implementation, we use naı̈ve inversion of the induc-
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ing point kernel matrix, Kzz , resulting in computational

complexity of O(NM3). Hence the computation times

reported below could be improved with a relatively small

amount of additional implementation effort.

4.6. Predictive Distribution

To form the predictive distribution we assume our opti-

mised variational distribution q∗(u) = N (u;m∗,S∗) ap-

proximates the posterior p(u|D). Analogously to Equation

10 we next compute q∗(f) ≈ p(f |D). We can now derive a

lower bound of the (approximate) predictive log-likelihood

on a held-out test dataset H :

log p(H |D ,Θ∗) = logEp(f |D)[p(H |f)]
≈ logEq∗(f)[p(H |f)] , Mp

≥ Eq∗(f)[log p(H |f)] , Lp. (23)

The derivation of Lp follows Equations 12-19. The result-

ing bound is the same as L except m, S are replaced with

m∗ and S∗, and there is no KL divergence term. Kernel

matrices are computed using Θ∗.

The tightness of this final bounding step will be a function

of how well the inducing variables u define the function

f . Intuitively, when the variance at the inducing points is

large, the entropy of f will be large, as it is unrestricted.

From an information theoretic perspective, we can say that

the tightness of the bound will be a function of the entropy

of f : H(f) = 1
2 log |Σ̃|+ const.

Given this knowledge we define a second, tightened, lower

bound L0, where we allow the variance of function val-

ues at the inducing points to collapse to zero: p(u|D) ≈
δ(m). This reduces the conditional entropy of f given u by

shrinking the final term in the definition of Σ̃ (Equation 10),

resulting in a tighter bound for a slightly restricted class of

models. As it is a slightly more restricted model, we ex-

pect the ground truth M0 = log
(

Eq(f |u=m) [p(H|f)]
)

to

be lower than the ground truth Mp. In practice, however,

because the variational L0 is so much tighter, we also use

this to give results for approximate predictive likelihood

when comparing against other approaches. In Figure 7 we

demonstrate this empirically for the coal mining dataset by

evaluating the true predictive bounds on a held-out 50% of

the data via 10, 000 MCMC samples, and shading between

these and the variational approximations. We do this for a

range of inducing point grid densities, both with and with-

out optimisation of the inducing point locations. In Figures

6, 5, and 7, we plot all of the bounds described above as the

number of inducing points increase. We note that for the

relatively smooth coal mining data, (Figure 7), all bounds

do not benefit from more than about 10 inducing points,

while in the case of the twitter data, the faster dynamics

call for increased numbers. In all Figures the tightness of

L0 is evident as compared to Lp.

5. Alternative GP Transformations

At this point it is worth considering why we have chosen

the function transformation λ(x) = f2(x) in preference

to other alternatives we might have used. An obvious first

choice would be

λ(x) = exp
(

f(x)
)

. (24)

This transformation is undesirable for two reasons. The

more obvious of these is that after taking expectations un-

der q(f) we are left with the integral

−
∫

T

exp

(

µ̃x +
σ̃2
x

2

)

dx, (25)

which cannot be computed in closed form. We could ap-

proximate the integral using a series expansion, however

this would be difficult with more than a couple of terms and

furthermore, since the function is concave, this approxima-

tion would not be a lower bound.

The second—and more subtle—reason is that in using this

transformation, when we take expectations under q(f) of

the data, we obtain

Eq(f) [log {exp(fn)}] = µ̃n. (26)

Since the mean, µ̃n, is not a function of S, the variance

of the variational distribution q(u), we have effectively de-

coupled the data from the uncertainty on our variational

approximation; this is clearly undesirable.

Another possible candidate is the probit function, λ(x) =
Φ(f(x)). This can be integrated analytically against the

GP prior, however we are again left with a difficult integral

over T which is

−
∫

T

Φ

(

µ̃x
√

1 + σ̃2
x

)

dx. (27)

As the range of this transformation is (0, 1) we would also

require additional machinery to infer a scaling variable.

In contrast the square transform presented allows the inte-

gral over the region T to be computed in closed form and

Eq(f)[log f
2
n] can be computed quickly and accurately. Im-

portantly this transformation also maintains the connection

between the data and the variational uncertainty.

Although the square transform is not a one-to-one

function—any rate function λ may have been generated

by f2 or (−f)2—this sign ambiguity is integrated out in

a Bayesian sense, Equation 18.

6. Relationship to Sparse GP Models

The use of inducing points in our model relates it to a wide

range of sparse Gaussian process models, e.g. SPGP (Snel-

son & Ghahramani, 2005). The variational sparse Gaussian
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process framework was introduced by Titsias (2009), how-

ever the bound we develop is more akin to the “Big-Data”

GP bound (Hensman et al., 2013), since we explicitly main-

tain the variational distribution q(u). The variable Ψ that

results from integrating the kernel over the input domain is

similar to the so-called “Ψ-statistic” which arises when in-

tegrating out the uncertainty of latent variables in the vari-

ational GPLVM (Titsias & Lawrence, 2010).

7. Experiments

To evaluate our algorithm, we benchmarked against our fre-

quentist kernel smoothing approach, described below, both

with without end correction (KS+EC and KS–EC respec-

tively), and a fully Bayesian SGCP MCMC sampler. Our

test data sets are generative data from the SGCP model and

several real-world data sets.

7.1. Benchmarks

Our kernel smoothing method is similar to standard kernel

density estimation except we use truncated normal kernels

to account for our explicit knowledge of the domain—the

latter is referred to as “end-correction” in some literature

(Diggle, 1985). The kernel smoother optimises a diagonal

covariance, Σ∗, by maximising the leave-one-out training

objective

Σ∗ = argmax
Σ

N
∑

i=1

log
N
∑

j 6=i=1

NT (x
(i);x(j),Σ). (28)

We can construct the predictive distribution by combining

the maximum-likelihood estimates of the size and spatial

location of the data. For a test data set H (with K! permu-

tations) this distribution is

p(H |D) = K! p(K|D)

K
∏

k=1

p(x̃(k)|D), (29)

where the location density,

p(x̃(k)|D) =
1

N

N
∑

n=1

NT (x̃
(k);x(n),Σ∗), (30)

is computed using using the previously described method

and the distribution of the number of points,

p(K|D) =
NK

K!
exp(−N), (31)

is simply a Poisson distribution with parameter N . It is

straight forward to show that Equation 29 is equivalent

to Equation 1 since we can interpret the rate function as

λ(x) =
∑N

n=1 NT (x;x
(n),Σ∗) and since

∫

T
λ(x)dx =

N .

Our SGCP sampler is based on Adams et al. (2009). Our

implementation differs by using elliptical slice sampling to

infer the latent function f and we perform hyper-parameter

inference using Hybrid Monte-Carlo (HMC). We also use

the “adaptive-thinning” method described in Gunter et al.

(2014a), to reduce the number of thinning points required.

7.2. Synthetic Data

Figure 2. 2D Synthetic Data. Clockwise from top left: Ground

truth, VBPP, KS+EC, SGCP.

For the synthetic data sets, we first generate a 2D function

from a high resolution grid using a Gaussian process and

sigmoid link function, and then, conditioned on that func-

tion, we draw a training dataset and multiple test datasets.

We give average performances results for these test datasets

in Table 1. Figure 2 visualises an inferred 2D intensity con-

ditioned on ∼ 500 observations. Although the SGCP sam-

pler gives better predictive performance than the VBPP L0

bound, it should be noted that the sampler uses well tuned

hyper-parameters, uses the same link function as the gener-

ative process and is much more computationally expensive.

VBPP outperforms kernel smoothing in terms of both pre-

dictive likelihood and RMS error.

7.3. Real Data

We next investigate three real world data sets. For these

data sets we create training and test subsets by allocating

each point to either subset with probability 0.5. Since true

rates are unknown for these datasets we rely on held-out

predictive likelihood as the only performance metric.

7.3.1. COAL MINING DISASTER DATA

Our first real dataset comprises 190 events recorded from

March 15, 1851 to March 22, 1962; each represents a coal-

mining disaster that killed at least ten people in the United

Kingdom. These data, first analysed in this form in 1979
(Jarrett, 1979), have often been tackled with nonhomoge-



Variational Inference for Gaussian Process Modulated Poisson Processes

Table 1. Results for 2D synthetic data (drawn from the SGCP generative process).

SGCP KS+EC VBPP (L0)

Function Avg. LL RMS Time(s) Avg. LL RMS Time(s) Avg. LL RMS Time(s)

1 446.1 1.37 7547.83 389.8 1.48 0.34 392.9 1.21 3.26

2 -61.1 0.38 1039.65 -78.3 0.46 0.02 -76.1 0.38 2.00

3 122.4 0.88 3173.91 84.3 1.04 0.12 92.6 0.81 2.44

4 175.8 1.71 3773.75 147.0 1.26 0.05 148.3 1.14 2.58

5 446.1 2.94 6368.44 413.6 2.02 0.21 415.5 1.81 2.83
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neous Poisson processes, (Adams et al., 2009), as the rate

of such disasters is expected to vary according to known

historical developments. The events are indicated by the

rug plot along the axis of Figure 3.

Our inferred intensity of disasters correlates with the histor-

ical introduction of safety regulation, as noted in previous

work on this data (Fearnhead, 2006; Carlin et al., 1992).

Firstly, our results depict a decline in the rate of such dis-

asters throughout 1870–1890, a period that saw the UK

parliament passing several acts with the aim of improving

safety for mine workers, including the Coal Mines Regula-

tion Acts of 1872 and 1887. Our inferred intensity also de-

clines after 1950, likely related to the imposition of further

safety regulation with the Mines and Quarries Act, 1954.

Predictive log-likelihood values on held out data (Figure 7)

are also encouraging. VBPP outperforms kernel smoothing

and SGCP with as few as 10 inducing points; more induc-

ing points yielding no further benefit.

7.3.2. TWITTER DATA

Next, we ran the models on the tweet profile of the chair-

man of the ‘Better Together Campaign’, Alistair Darling,

one week either side of the Scottish independence election

(189 tweets). Results are shown in Figure 4 and Table 2,

where half the data was held out and a regular 31 point grid

was used. Figures 5 and 6 compare the performance of

regularly spaced and optimised inducing points, and show

optimisation yields considerably improved performance on

this dataset. The L0 and Lp bounds become less tight as the

number of inducing points is increased, suggesting there is

less uncertainty represented in the variational parameter S

and more uncertainty captured by a reduced kernel length

scale. This transition is observed for fewer inducing points

when inducing point optimisation is employed. Both with

and without inducing point optimisation, VBPP M0 and

Mp outperform both the SGCP and kernel smoothing by

a wide margin, suggesting the square link function is an

appropriate model for this data.
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M0 and Mp, and the corresponding lower bounds, L0 and Lp

(see Section 4.6). The figure clearly demonstrates the tightness of

the L0 bound. Legend as in Figure 5.

Figure 8. A sample of 741 malaria incidences in Kenya, which

occured over the course of 1985-2010, and the associated VBPP

intensity function. 20× 20 inducing points.

7.3.3. MALARIA DATA

We expect that a major application of the contributions pre-

sented in this paper is the joint modelling of disease inci-

dence with correlating factors, in a fully Bayesian, scal-

able framework. For example, those studying the spread of

malaria often wish to use continuous rainfall measurements

to better inform their epidemiological models. We use ex-

amples from the Malaria Atlas Project (2014) to test our

scheme. We extracted 741 incidences of malaria outbreak

documented in Kenya between 1985 and 2010, and ran our

VBPP algorithm and kernel smoothing on approximately

half of the resulting dataset, holding out the remainder for

testing. Test log-likelihood results, given in Table 3, show

VBPP performs comparably to kernel smoothing.

Table 2. Run times for 1D data sets.
Method Coal Mining Twitter

VBPP 0.7 0.5

KS+EC 0.0 0.3

KS-EC 0.0 0.2

SGCP 417.6 230.0

Table 3. Test log-likelihood for 2D Malaria data.

KS-EC KS+EC VBPP(Mp) VBPP(L0)

855.0 867.2 869.7 855.9

8. Further Work

Although the performance of the variational Bayesian point

process inference algorithm described in this paper im-

proves upon standard methods when used in isolation, it

is in its extensions that its utility will be fully realised.

Previous work (Gunter et al., 2014a) has shown that hi-

erarchical modelling of point processes—structured point

processes—can significantly improve predictive accuracy.

In these multi-output models, statistical strength is shared

across multiple rate processes via shared latent processes.

The method presented here provides a likelihood model for

point-process data that can be incorporated as a probabilis-

tic building-block into these larger interconnected mod-

els. That is, our fully generative model can readily be ex-

tended to additionally incorporate other observation modal-

ities. For example, real-valued observations such as (log-)

household income could be modelled along with the in-

tensity function over crime incidents using a variational

multi-output GP framework. Future work will be aimed to-

wards developing these variational structured point process

algorithms and integration of these techniques to popular

Gaussian process tool-kits, such as GPy (The GPy authors,

2014).

9. Conclusion

Point process models have hitherto been hindered by their

scaling with the number of data. To address this problem,

we propose a new model, accommodating non-discretised

intensity functions, that permits linear scaling. We addi-

tionally contribute a variational Bayesian inference scheme

that delivers rapid and accurate prediction. The scheme is

validated on real datasets including the canonical coal min-

ing disaster data set and malaria incidence in Kenya data.
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