Non-Linear Cross-Domain Collaborative Filtering via Hyper-Structure Transfer: Supplementary Materials

Yan-Fu Liu National Tsing Hua University, ROC

Cheng-Yu Hsu National Tsing Hua University, ROC

Shan-Hung Wu

National Tsing Hua University, ROC

1. Objective Solving

With the following Eqs.

$$\tilde{\boldsymbol{\mathcal{B}}}_{:,:,h}^{(k)} = \boldsymbol{A}^{(k)} \boldsymbol{\Phi}_h^{(k)} \boldsymbol{E}^{(k)\top}$$
(1)

$$\operatorname{proj}^{(k)}(\boldsymbol{B}) = \boldsymbol{A}^{(k)} \boldsymbol{\Psi}^{(k)} \boldsymbol{E}^{(k)\top}$$
(2)

explained in the main text, we can employ the multiplicative gradient descent method (Ding et al., 2006) to update the $\tilde{\boldsymbol{U}}^{(k)} = [\boldsymbol{U}^{(k)}, \boldsymbol{0}], \tilde{\boldsymbol{V}}^{(k)} = [\boldsymbol{V}^{(k)}, \boldsymbol{0}], \boldsymbol{A}^{(k)}$, and $\boldsymbol{E}^{(k)}$ in each iteration. The update rules for Eq. (5) of the main text are given below:

$$\tilde{\boldsymbol{U}}^{(k)} \leftarrow \tilde{\boldsymbol{U}}^{(k)} \circ \sqrt{\frac{\boldsymbol{X}^{(k)} \tilde{\boldsymbol{V}}^{(k)} \boldsymbol{F}^{(k)\top}}{\tilde{\boldsymbol{U}}^{(k)} \boldsymbol{F}^{(k)} \tilde{\boldsymbol{V}}^{(k)\top} \tilde{\boldsymbol{V}}^{(k)\top} \boldsymbol{F}^{(k)\top}}}, \quad (3)$$

$$\tilde{\boldsymbol{V}}^{(k)} \leftarrow \tilde{\boldsymbol{V}}^{(k)} \circ \sqrt{\frac{\boldsymbol{X}^{(k)} \tilde{\boldsymbol{U}}^{(k)} \boldsymbol{F}^{(k)}}{\tilde{\boldsymbol{V}}^{(k)} \boldsymbol{F}^{(k)^{\top}} \tilde{\boldsymbol{U}}^{(k)^{\top}} \tilde{\boldsymbol{U}}^{(k)} \boldsymbol{F}^{(k)}}}, \quad (4)$$

where $F^{(k)} = A^{(k)} \Psi^{(k)} E^{(k)\top} = \operatorname{proj}^{(k)}(B)$.

$$\begin{split} \mathbf{A}^{(k)} &\leftarrow \mathbf{A}^{(k)} \circ \sqrt{\frac{[\tilde{\boldsymbol{U}}^{(k)^{\top}} \boldsymbol{X}^{(k)} \tilde{\boldsymbol{V}}^{(k)} \boldsymbol{E}^{(k)} \boldsymbol{\Psi}^{(k)}]}{[\tilde{\boldsymbol{U}}^{(k)^{\top}} \tilde{\boldsymbol{U}}^{(k)} \boldsymbol{A}^{(k)} \boldsymbol{\Psi}^{(k)} \boldsymbol{E}^{(k)^{\top}} \tilde{\boldsymbol{V}}^{(k)^{\top}} \tilde{\boldsymbol{V}}^{(k)} \boldsymbol{E}^{(k)} \boldsymbol{\Psi}^{(k)}]}, \\ \mathbf{E}^{(k)} &\leftarrow \mathbf{E}^{(k)} \circ \sqrt{\frac{[\tilde{\boldsymbol{V}}^{(k)^{\top}} \boldsymbol{X}^{(k)} \tilde{\boldsymbol{U}}^{(k)} \boldsymbol{A}^{(k)} \boldsymbol{\Psi}^{(k)}]}{[\tilde{\boldsymbol{V}}^{(k)^{\top}} \tilde{\boldsymbol{V}}^{(k)} \boldsymbol{E}^{(k)} \boldsymbol{\Psi}^{(k)} \boldsymbol{A}^{(k)^{\top}} \tilde{\boldsymbol{U}}^{(k)^{\top}} \tilde{\boldsymbol{U}}^{(k)} \boldsymbol{A}^{(k)} \boldsymbol{\Psi}^{(k)}]}, \\ \end{split}}$$

where \circ denotes the elemental-wise product, $\frac{|\cdot|}{|\cdot|}$ denotes the elemental-wise division, and $\sqrt{\cdot}$ denotes elemental-wise square root. The detailed steps are given in Algorithm 1. Note that we initiate the last columns of $\tilde{U}^{(k)}$ and $\tilde{V}^{(k)}$ by zero vectors, and because they are updated by element-wise multiplications, the last columns of $\tilde{U}^{(k)}$ and $\tilde{V}^{(k)}$ will remain zeros during each iteration.

YFLIU@NETDB.CS.NTHU.EDU.TW

CYHSU@NETDB.CS.NTHU.EDU.TW

SHWU@CS.NTHU.EDU.TW

2. More on Experiments

In this section, we give more details about our settings and conduct more experiments to further study the performance of MOTAR. Table 1 shows some statistics of our real datasets.

Datasets	DBLP	MovieLens
#users	180,640	69,878
#items	141,507	10,677
#rating events	1,495,081	10,000,054
Avg. #ratings/user	8.277	143.107
Avg. #ratings/item	10.565	936.598

Table 1: Statistics of the real datasets.

We validate that minimizing the MOTAR objective score does improve performance. Figure 1 shows the typical correlation between the objective score and MAE of MOTAR over real datasets. This justifies the validity of our MOTAR objective.

Figure 1: The correlation between the objective score and MAE of MOTAR.

Algorithm 1 The MOTAR training process.

Input: Dataset $\{\boldsymbol{X}^{(k)}\}_{1 \le k \le d}$ and hyperparameters σ , β , $\{p^{(k)}, q^{(k)}\}_k$, and z **Output:** $\{\boldsymbol{Y}^{(k)}\}_k$ Initialize $\{\tilde{\boldsymbol{U}}^{(k)}\}_k$ and $\{\tilde{\boldsymbol{V}}^{(k)}\}_k$ by random positives but set their last columns to **0** Initialize $\boldsymbol{\mathcal{B}}$ by random positives **repeat for** $k \in \{1, \dots, d\}$ **do** Obtain the cubicization $\tilde{\boldsymbol{\mathcal{B}}}^{(k)}$ from $\boldsymbol{\mathcal{B}}$, CP-decompose it by Eq. (1), and remember $\boldsymbol{\Phi}_h^{(k)}$'s Calculate $\operatorname{proj}^{(k)}(\boldsymbol{\mathcal{B}})$ by Eq. (2) Update $\tilde{\boldsymbol{U}}^{(k)}, \tilde{\boldsymbol{V}}^{(k)}, \boldsymbol{A}^{(k)}, \boldsymbol{E}^{(k)}$ by Eqs. (3)~(6) Normalize each row of $\tilde{\boldsymbol{U}}^{(k)}, \tilde{\boldsymbol{V}}^{(k)}$ by its l_1 norm Reconstruct $\boldsymbol{\mathcal{B}}$ by Eq.(1) using the remembered $\boldsymbol{\Phi}_h^{(k)}$'s **end for until** convergence

References

Ding, Chris, Li, Tao, Peng, Wei, and Park, Haesun. Orthogonal nonnegative matrix t-factorizations for clustering. In *Proc. of KDD*, 2006.