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A. Proofs
A.1. Proof of Theorem 1

Let R = {(i, j) : Y ∗ij = b1}. Let PR be the projection
operator on matrices such that (PRZ)ij = Zij if (i, j) ∈ R
and (PRZ)ij = 0 otherwise.

Recall that Y ∗ = USV > where U = UCUB and V =
VCVB . We use the index pi to refer to the cluster to which
node i belong. Note that

(UU>)ij =
〈UpiB , U

pj
B 〉√

KpiKpj

≤ u1
K
, (2)

(V V >)ij =
〈V qiB , V

qj
B 〉√

LqiLqj
≤ u2

L
(3)

and

(UV >)ij =
〈UpiB , V

qj
B 〉√

KpiLqj
≤ max

{u1
K
,
u2
L

}
. (4)

Furthermore, if UB is orthogonal, we have (UU>)ij =
1
Kpi

if pi = pj and (UU>)ij = 0 otherwise. Similarly,

if VB is orthogonal, we have (V V >)ij = 1
Lqi

if qi = qj

and (V V >)ij = 0 otherwise.

Define the projection operators

PTZ := UU>Z + ZV V > − UU>ZV V > (5)

and
PT⊥Z := Z − PTZ.

For any matrix X such that ‖X‖ ≤ λ, UV > + 1
λPT⊥X

is a subgradient of ‖ · ‖∗ at Y ∗. For any feasible Y , we
therefore have

‖Y ‖∗ ≥ ‖Y ∗‖∗ + 〈UV > +
1

λ
PT⊥X,Y − Y ∗〉

which gives

〈X,Y ∗−Y 〉+λ(‖Y ‖∗−‖Y ∗‖∗) ≥ 〈PTX−λUV >, Y ∗−Y 〉.
(6)

Lemma 1. Suppose that B is full-rank. For any n1 × n2
matrix Z, we have

(PTZ)ij =
1

Kpi

∑
i′∈Cpi

Zi′j +

n2∑
t=1

〈V qtB , V
qj
B 〉√

LqtLqj
Zit

− 1

Kpi

∑
i′∈Cpi

(
n2∑
t=1

〈V qtB , V
qj
B 〉√

LqtLqj
Zi′t

)
(7)

if r1 ≤ r2 and

(PTZ)ij =
n1∑
t=1

〈UpiB , U
pt
B 〉√

KpiKpt

Ztj +
1

Lqj

∑
j′∈Dqj

Zij′

− 1

Lqj

∑
j′∈Dqj

(
n1∑
t=1

〈UpiB , U
pt
B 〉√

KpiKpt

Ztj′

)
(8)

if r2 ≤ r1.

Proof. By the assumption that B is full rank, it has to be
that either UB is r1 × r1 orthogonal (when r1 ≤ r2) or VB
is r2 × r2 orthogonal (when r2 ≤ r1). Suppose r1 ≤ r2,
then we obtain (7) from (2), (3) and (5). Similarly, for the
case when r2 ≤ r1, we obtain (8).

Lemma 2. With probability at least 1−n−β the followings
hold:

‖W − EW‖ ≤ λ (9)

and for all i, j

|(PT (W − EW ))ij | ≤ λmax
{u1
K
,
u2
L

}
(10)

where
λ = c1

(
bβ log n+

√
βV n log n

)
.

Proof. For (9), consider W − EW as the sum of indepen-
dent, zero-mean random matrices:

W − EW =
∑
i,j

Xi,j

where
Xi,j =Wijeie

>
j − EWijeie

>
j

and ei denotes the i-th vector of the standard basis. Note
that

‖Xi,j‖ ≤ 2b ∀i, j

and

max


∥∥∥∥∥∥
∑
i,j

EXijX
>
ij

∥∥∥∥∥∥ ,
∥∥∥∥∥∥
∑
i,j

EX>ijXij

∥∥∥∥∥∥
 ≤ V n

By applying matrix Bernstein inequality, we obtain (9).

For (10), let Z = W − EW be a zero-mean random ma-
trix where we have |Zij | ≤ 2b,∀(i, j). Suppose r1 ≤ r2,
then (PTZ)ij is given by (7). Note that u1 = 1 in this
case. The first summation term in (7) is the average of Kpi

independent random variables Zi′j . By applying standard
Bernstein inequality, we have that∣∣∣∣∣∣ 1

Kpi

∑
i′∈Cpi

Zi′j

∣∣∣∣∣∣ ≤ cbβ log n+
√
KV β log n

K
≤ λu1

K
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with probability at least 1 − n−β . The second summation
term in (7) is the sum of n2 zero-mean random variables Z̃t
with

Z̃t =
〈V qtB , V

qj
B 〉√

LqtLqj
Zit.

We have that |Z̃t| ≤ 2u2b
L and VarZ̃t ≤ u2

2

L2V . Again, by
standard Bernstein inequality, we have that∣∣∣∣∣

n2∑
t=1

Z̃t

∣∣∣∣∣ ≤ cu2bβ log n+ u2
√
βV n2 log n

L
≤ λu2

L

with probability at least 1−n−β . The last summation term
of (7) can be bounded similarly by noting that the magni-
tude of the average is no larger than the magnitude of the
individual terms.

The case of r2 ≤ r1 can be bounded similarly for each cor-
responding term of (8). The proof is completed by applying
a union bound over all i, j.

We show that with probability at least 1−n−β the following
holds for all feasible Y 6= Y ∗:

〈W,Y ∗ − Y + λ(‖Y ‖∗ − ‖Y ∗‖∗)〉 > 0

which implies that Y ∗ is the unique solution of program
(1):

〈W,Y ∗ − Y 〉+ λ(‖Y ‖∗ − ‖Y ∗‖∗)
= 〈EW,Y ∗ − Y 〉+ 〈W − EW,Y ∗ − Y 〉+ λ(‖Y ‖∗ − ‖Y ∗‖∗)
≥ min{E1, E0}‖Y ∗ − Y ‖1 + 〈W − EW,Y ∗ − Y 〉+

λ(‖Y ‖∗ − ‖Y ∗‖∗)
(a)

≥ min{E1, E0}‖Y ∗ − Y ‖1+

〈PT (W − EW )− λUV >, Y ∗ − Y 〉
(b)

≥ min{E1, E0}‖Y ∗ − Y ‖1 − λmax
{u1

K
,
u2

L

}
‖Y ∗ − Y ‖1

=
(
min{E1, E0} − λmax

{u1

K
,
u2

L

})
‖Y ∗ − Y ‖1

> 0

where we apply (6) and (9) in (a). In (b), we apply (10) and
(4).

A.2. Proof of Theorem 2

We shall apply Theorem 1 and establish an upper-bound for
max{u1/K, u2/L}.

Since r1 ≤ r2, B is at most rank-r1. By Theorem 1.1 of
(Rudelson & Vershynin, 2009), the smallest singular value
of B is at least c1(

√
r2−
√
r1 − 1) for some universal con-

stant c1, (0 < c1 < 1) with probability at least 1 − 1
2n
−β

provided r1 ≥ β log r1
c . This implies thatB is full rank with

rank(B) = r1.

Recall that we defined UBSBV
>
B as an SVD of KBL.

Since K and L do not change the rank of B, we have that
UB is orthogonal and therefore u1 = 1. Furthermore, the
smallest singular value of SB is at least c1

√
KL(
√
r2 −√

r1 − 1).

We upper-bound u2 by using the lower-bound on the singu-
lar value of KBL. First, note that the (p, q)-entry of KBL
is either +

√
KpLq or −

√
KpLq , we therefore have

n1Lq =

r1∑
p=1

KpLq

= ‖(KBL)eq‖2

= ‖UBSBV >B eq‖2

= ‖SBV >B eq‖2

≥ c21KL(
√
r2 −

√
r1 − 1)2‖V qB‖

2.

Define γ such that L = γK. Continuing from the above,
we have

‖V qB‖
2 ≤ n1Lq

c21KL(
√
r2 −

√
r1 − 1)2

≤ r1
c21φψ(

√
r2 −

√
r1 − 1)2

(a)

≤ 2γ

c21φψ
(√

ψn2

n1
−√γ

)2
where in (a) we use the relationship r2 ≥ ψn2

L = ψn2

γK ≥
ψn2

γn1
r1 ≥ ψn2

γn1
(r1 − 1) and that r1

r1−1 ≤ 2. Since the above
bound for ‖V qB‖2 holds for all q, we now have

u2
L

=
u2
γK
≤ 1

K
min

 1

γ
,

2

c21φψ
(√

ψn2

n1
−√γ

)2


≤
(

8n1
c21φψ

2n2

)
1

K

where the last inequality can be obtained by considering
the case of γ < c21φψ

2n2

8n1
and γ ≥ c21φψ

2n2

8n1
respectively.

Applying Theorem 1 with failure probability 1
2n
−β and a

union bound completes the proof.

A.3. Proofs of Theorem 3 and Theorem 4

We refer the reader to (Lim et al., 2014) for the proofs of
the analogous results in clustering. Theorem 3 corresponds
to Theorem 2 and Corollary 1 in (Lim et al., 2014), while
Theorem 4 corresponds to Theorem 4 in (Lim et al., 2014).
An additional element of Theorem 3 in the present paper is
the introduction of u1 and u2. These present no difficulty
by simply observing their respective range 1

r1
≤ u1 ≤ 1

and 1
r2
≤ u2 ≤ 1.


