A Convex Optimization Framework for Bi-Clustering

A. Proofs
A.1. Proof of Theorem 1
Let R = {(i,7) : V;; = b1}. Let Pr be the projection

operator on matrices such that (PrZ2);; = Z,;if (i,j) € R
and (PrZ);; = 0 otherwise.

Recall that Y* = USV" where U = UsUg and V =

VeoVie. We use the index p; to refer to the cluster to which
node 7 belong. Note that
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Furthermore, if Up is orthogonal, we have (UU T)ij =
Kipi if p; = pj and (UUT);; = 0 otherwise. Similarly,
if Vg is orthogonal, we have (VVT)ij = Li if ¢; = gj
and (VV'T);; = 0 otherwise.

Define the projection operators

PrZ:=UU'"Z+2zVVI —U0U"ZVVT (5

and
PriZ =72 —PrZ.

For any matrix X such that [| X[ < A\, UVT + 1Pr. X
is a subgradient of || - ||« at Y*. For any feasible Y, we
therefore have

* ]' *
[Vl = Y[l + UV + 1 Pra X, ¥ = Y7)

which gives
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Lemma 1. Suppose that B is full-rank. For any nq X no
matrix Z, we have
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Proof. By the assumption that B is full rank, it has to be
that either Up is 1 X r; orthogonal (when r; < r3) or Vp
is ro X ro orthogonal (when ro < r1). Suppose r1 < 7o,
then we obtain (7) from (2), (3) and (5). Similarly, for the
case when 5 < rq, we obtain (8). O

Lemma 2. With probability at least 1 —n =" the followings
hold:
[W—-EW| <A 9)

and for all i, j

|(Pr(W (10)

—EW));| < /\max{Kl “LQ}

where

A= (bﬂlogn + Vﬁanogn) .

Proof. For (9), consider W — EW as the sum of indepen-
dent, zero-mean random matrices:

W—EW => X,
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where
ij = Wi eie;

and ¢; denotes the i-th vector of the standard basis. Note
that
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By applying matrix Bernstein inequality, we obtain (9).

For (10), let Z = W — EW be a zero-mean random ma-
trix where we have |Z;;| < 2b,V(4, j). Suppose 11 < 1o,
then (PrZ);; is given by (7). Note that u; = 1 in this
case. The first summation term in (7) is the average of K,
independent random variables Z;/;. By applying standard
Bernstein inequality, we have that
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with probability at least 1 — n~?. The second summation
term in (7) is the sum of no zero-mean random variables Zt
with
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We have that |Zt| < 2“T2b and VarZ, < Z—%V. Again, by

standard Bernstein inequality, we have that
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with probability at least 1 —n~7. The last summation term
of (7) can be bounded similarly by noting that the magni-
tude of the average is no larger than the magnitude of the
individual terms.

The case of 2 < r; can be bounded similarly for each cor-
responding term of (8). The proof is completed by applying
a union bound over all ¢, j. O

We show that with probability at least 1 —n " the following
holds for all feasible Y # Y*:

(WY =Y + A([Y [l = [[Y"[l+)) >0

which implies that Y* is the unique solution of program
(1):
W Y™ =) + AV = [Y7]])
= EW,Y" =Y) + (W -EW,Y" =Y) + A(|Y [l — [[Y7]+)
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where we apply (6) and (9) in (a). In (b), we apply (10) and
).

A.2. Proof of Theorem 2

We shall apply Theorem 1 and establish an upper-bound for
max{uy /K, uz/L}.

Since r; < ro, B is at most rank-r;. By Theorem 1.1 of
(Rudelson & Vershynin, 2009), the smallest singular value
of B is at least ¢1 (/72 — v/r1 — 1) for some universal con-
stant ¢1, (0 < ¢; < 1) with probability at least 1 — %n’ﬁ
provided r; > moicg”. This implies that B is full rank with
rank(B) = rq.

Recall that we defined U BSBVBT as an SVD of KBL.

Since K and £ do not change the rank of B, we have that

Up is orthogonal and therefore u; = 1. Furthermore, the

smallest singular value of Sp is at least c; \/ﬁ(\/r» —
r — ].)

We upper-bound us by using the lower-bound on the singu-
lar value of IBL. First, note that the (p, ¢)-entry of XBL

is either ++/ K, L, or —/ K, L, we therefore have
1
mLy =Y KyL,
p=1
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> K L(y/rz — Vi = 1?[[VE]*.

Define v such that . = yK. Continuing from the above,
we have
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bound for ||Vq |2 holds for all q, We now have
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where the last inequality can be obtained by considering
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the case of v < and vy > respectively.

Applying Theorem 1 with failure probability §n*5 and a
union bound completes the proof.

A.3. Proofs of Theorem 3 and Theorem 4

We refer the reader to (Lim et al., 2014) for the proofs of
the analogous results in clustering. Theorem 3 corresponds
to Theorem 2 and Corollary 1 in (Lim et al., 2014), while
Theorem 4 corresponds to Theorem 4 in (Lim et al., 2014).
An additional element of Theorem 3 in the present paper is
the introduction of u; and us. These present no difficulty
by simply observing their respective range % <wup <1

and L <y <1
2



