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Abstract
The Nyström method has been one of the most
effective techniques for kernel-based approach
that scales well to large data sets. Since its in-
troduction, there has been a large body of work
that improves the approximation accuracy while
maintaining computational efficiency. In this pa-
per, we present a novel Nyström method that
improves both accuracy and efficiency based on
a new theoretical analysis. We first provide a
generalized sampling scheme, CAPS, that mini-
mizes a novel error bound based on the subspace
distance. We then present our double Nyström
method that reduces the size of the decomposi-
tion in two stages. We show that our method is
highly efficient and accurate compared to other
state-of-the-art Nyström methods by evaluating
them on a number of real data sets.

1. Introduction
Low-rank matrix approximation is one of the core tech-
niques to mitigate the space requirement that arises in
large-scale machine learning and data mining. Conse-
quently, many methods in machine learning involve a low-
rank approximation of matrices that represent data, such as
manifold learning (Fowlkes et al., 2004; Talwalkar et al.,
2008), support vector machines (Fine & Scheinberg, 2002)
and kernel principal component analysis (Zhang et al.,

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

2008). These methods typically involve spectral decom-
position of a symmetric positive semi-definite (SPSD) ma-
trix, but its exact computation is prohibitively expensive for
large data sets.

The standard Nyström method (Williams & Seeger, 2001)
is one of the popular methods for approximate spectral de-
composition of a large kernel matrix K ∈ Rn×n (generally
a SPSD matrix), due to its simplicity and efficiency (Ku-
mar et al., 2009). One of the main characteristics of the
Nyström method is that it uses samples to reduce the origi-
nal problem of decomposing the given n× n kernel matrix
to the problem of decomposing a s × s matrix, where s
is the number of samples much smaller than n. The stan-
dard Nyström method has time complexity O(ksn + s3)
for rank-k approximation and is indeed scalable. However,
the accuracy is typically its weakness, and there have been
many studies to improve its accuracy. Most of the recent
work in this line of research can be roughly categorized
into the following two types of approaches:

Refining Decomposition Exemplar works in this category
are one-shot Nyström method (Fowlkes et al., 2004), mod-
ified Nyström method (Wang & Zhang, 2013), ensem-
ble Nyström method (Kumar et al., 2012) and standard
Nyström method using randomized SVD (Li et al., 2015).
All of these methods redefine the intersection matrix that
appears in the reconstructed form of the input matrix, of
which we provide details in Section 2.

The motivation of the one-shot Nyström method (Fowlkes
et al., 2004) is to obtain an orthonormal set of approximate
eigenvectors of the given kernel matrix via diagonalization
of the standard Nyström approximation in one-shot with
O(s2n) running time. Because of the orthonormality, the
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one-shot Nyström is widely used for kernel PCA (Zhang
et al., 2008), however there is no more elaborate analy-
sis for it except the work of Fowlkes et al. (2004). The
modified Nyström method (Wang & Zhang, 2013) involves
multiplying both sides of kernel matrix by projection ma-
trix consisting of orthonormal basis of subspace spanned
by samples. It solves the problem of minimizing matrix re-
construction error, which is minU ‖K−CUC>‖F , given
the kernel matrix K and the C, where C is a submatrix
consisting of ` columns of K. Although the modified
Nyström approximation is more accurate than the standard
Nyström approximation, it is more expensive to compute
and is not able to compute a rank-k approximation. Its time
complexity is O(s2n + sn2), and the latter term O(sn2)
comes from some matrix multiplications and dominates
O(s2n). The ensemble Nyström method (Kumar et al.,
2012) that takes a mixture of t (≥ 1) standard Nyström
approximations, and is more accurate than the standard
Nyström approximations in the empirical results. Its time
complexity is O(ksnt + s3t + µ), where µ is the cost
of computing the mixture weights. To obtain more effi-
ciency, we can adopt randomized SVD to approximate the
pseudo inverse of the intersection matrix of the standard
Nyström approximation (Li et al., 2015). Its time com-
plexity is O(ksn), but it needs larger samples than other
Nyström methods due to adopting approximate SVD.

Improving Sampling The Nyström methods require col-
umn/row samples which heavily affects the accuracy.
Among many sampling strategies for Nyström methods,
uniform sampling without replacement is the most basic
sampling strategy (Williams & Seeger, 2001), of which
probabilistic error bounds for the standard Nyström method
are recently derived (Kumar et al., 2012; Gittens & Ma-
honey, 2013).

Recent work includes the non-uniform samplings, which
are square of diagonal sampling (Drineas & Mahoney,
2005), square of L2 column norm sampling (Drineas
& Mahoney, 2005), leverage score sampling (Mahoney
& Drineas, 2009) and approximate leverage score sam-
pling (Drineas et al., 2012; Gittens & Mahoney, 2013).
The adaptive sampling strategies also have been studied,
e.g. (Deshpande et al., 2006; Kumar et al., 2012). Some
of the heuristic sampling strategies for Nyström methods
are utilizing normal K-means algorithm (Zhang & Kwok,
2010) with K = s, and adopting pseudo centroids of nor-
mal (weighted) K-means (Hsieh et al., 2014). Normal K-
means sampling clusters the original data which is not ap-
plied kernel function, and uses s centroids to generate ma-
trices consisting of kernel function values among all data
points and s centroids to perform Nyström methods. Al-
though it has been shown to give good empirical accuracy,
its proposed analysis is quite loose and does not show any
connection to the minimum error of rank-k approximation.

1.1. Our Contributions

In this paper, we propose a novel Nyström method, Double
Nyström Method, which tightly integrates the strengths of
both types of approaches. Our contribution can be appre-
ciated in three aspects: comprehensive analysis of the one-
shot Nyström method, generalization of sampling methods,
and integration of our two results. Summary of those are
described as follows.

1.1.1. COMPREHENSIVE ANALYSIS OF THE ONE-SHOT
NYSTRÖM METHOD

In Section 3, we provide an analysis that one-shot
Nyström is quite a good compromise between the stan-
dard Nyström method and the modified Nyström method,
since it yields accurate rank-k approximations for k < s
(Thm 1). In addition, we show that it is robust (Proposi-
tion 1).

1.1.2. GENERALIZATION OF SAMPLING METHODS

In Section 4, we investigate how we can improve accura-
cies of Nyström methods. First, we present new upper error
bounds both for the standard and one-shot Nyström meth-
ods (Thm 3), and provide a generalized view of sam-
pling schemes which makes connection among some of the
sampling schemes and minimization of our error bounds
(Rem 1). Next, we propose Capturing Approximate Prin-
cipal Subspace (CAPS) algorithm which minimizes our up-
per error bounds efficiently (Proposition 2).

1.1.3. THE DOUBLE NYSTRÖM METHOD

In Section 5, we propose Double Nyström Method (Alg 3)
that combines the advantages of CAPS sampling and
the one-shot Nyström method. It reduces the size of
the decomposition problem in twice, and consequently is
much more efficient than the standard Nyström method
for large data sets, but is as accurate as the one-shot
Nyström method. Its time complexity is also comparable
to the running time of standard Nyström method using ran-
domized SVD, since it is O(`sn + m2s) and linear for s,
where ` ≤ m� s� n.

2. Preliminaries
Given the data setX = {x1, . . . ,xn} and its corresponding
matrix X ∈ Rd0×n, we define the kernel function without
explicit feature mapping φ as κ(xi,xj), where φ is a fea-
ture mapping such that φ : X → Rd. The corresponding
kernel matrix K ∈ Rn×n is a positive semi-definite (PSD)
matrix with elements κ(xi,xj). Without loss of generality,
let Φ = φ(X) ∈ Rd×n be the matrix constructed by taking
φ(xi) as the i-th column, so that K = Φ>Φ (Drineas &
Mahoney, 2005). We assume that rank(Φ) = r, which in



Double Nyström Method: An Efficient and Accurate Nyström Scheme for Large-Scale Data Sets

turn implies rank(K) = r.

Consider the compact singular value decomposition (com-
pact SVD) 1 Φ = UΦ,rΣΦ,rV

>
Φ,r, where ΣΦ,r is the

diagonal matrix consisting of r nonzero singular values
(σ(Φ)1, . . . , σ(Φ)r) of Φ in decreasing order, and UΦ,r ∈
Rd×r and VΦ,r ∈ Rn×r are the matrices consisting of the
left and right singular vectors, respectively. Especially, we
simply denote compact SVD of Φ as Φ = UrΣrV

>
r , and

(σ(Φ)1, . . . , σ(Φ)r) as (σ1, . . . , σr) in this paper. Then,
we can obtain the compact SVD K = VrΣ

2
rV
>
r and its

pseudo-inverse obtained by K† = VrΣ
−2
r V>r . The best

rank-k (with k ≤ r) approximation of K can be obtained
from its SVD by

Kk = VkΣ
2
kV
>
k =

∑k
i=1 λi(K)viv

>
i ,

where λi(K) = σ2
i are the first k eigenvalues of K. Es-

pecially we simply denote again λi(K) = λi in this paper,
thus λi = σ2

i .

Given a set W = {w1, . . . ,ws} of s mapped samples of
X (i.e. wi = φ(xj) for some 1 ≤ j ≤ n), let W ∈ Rd×s
denote the matrix consisting of wi as the i-th column, and
C = Φ>W ∈ Rn×s the inner product matrix of the whole
data instances and the samples. Since the kernel matrix
KW ∈ Rs×s for the subset W is KW = W>W, we can
rearrange the rows and columns of K such that

K =

[
KW K>21

K21 K22

]
and C =

[
KW

K21

]
. (1)

In the later part of the paper, we will generalize the sam-
ples wi to arbitrary vectors of dimension d, not necessarily
mapped vectors of some data instances.

2.1. The Standard Nyström Method

The standard Nyström method for approximating the kernel
matrix K using the subset W of s sample data instances
yields a rank-s′ approximation matrix

K̃nys = K̃nys
s′ = CK†WC> ≈ K,

where K†W is the pseudo-inverse of KW and s′ =
rank(W). The rank-k approximation matrix (with k ≤ s′)
is computed by

K̃nys
k = CK†W,kC

>,

where K†W,k is the pseudo-inverse of KW,k, the best rank-
k approximation of KW , which can be computed from the
SVD KW,k = VW,kΣ

2
W,kV

>
W,k. The time complexity of

computing K̃nys
k is O(ksn+ s3).

1In this paper, we use compact SVD instead of full SVD unless
we give a particular mention.

The Nyström method is also used to compute the first k
approximate eigenvalues (Σ̃nys

k )2 and the corresponding
k approximate eigenvectors (Ṽnys

k ) of the kernel matrix
K. Using SVD KW,k = VW,kΣ

2
W,kV

>
W,k, the eigenval-

ues and eigenvectors are computed by

(Σ̃nys
k )2 =

n

s
(ΣW,k)2 and Ṽnys

k =

√
s

n
CVW,kΣ

−2
W,k,

(2)
However in general, K̃nys

k is not the best rank-k approxi-
mation of K̃nys, nor the eigenvectors Ṽnys

k are orthogonal
even though K is symmetric.

2.2. The One-Shot Nyström Method

A straightforward way to obtain the best rank-k approxi-
mation of K̃nys would be a two-stage computation, where
we first construct the full K̃nys and then reduce its rank
via SVD. This approach is costly, since its time complexity
amounts to performing SVD on the original matrix K.

The one-shot Nyström method (Fowlkes et al., 2004),
shown in Alg 1, computes the SVD in a single pass, and
thus possesses the following nice property:

Lemma 1 (Fowlkes et al., 2004) The Nyström method us-
ing a sample set W of s vectors can be decomposed as

K̃nys = K̃nys
s′ = CK†WC> = GG>,

with s′ = rank(KW ) and G = CVWΣ−1
W ∈ Rn×s′ .

The one-shot Nyström method computes SVD G>G =
VGΣ2

GV>G, and computes s′ eigenvectors of K̃nys by
Ṽosn
s′ = GVGΣ−1

G . Consequently, we obtain the same
result as the Nyström method for the rank-s′ approxima-
tion

K̃osn = Ṽosn
s′ Σ2

G(Ṽosn
s′ )> = GG> = K̃nys,

but better yet, the best rank-k (with k < s′) approximation

K̃osn
k = Ṽosn

k Σ2
G,k(Ṽosn

k )> = (K̃nys)k 6= K̃nys
k .

The time complexity of the one-shot Nyström method is
O(s2n) if the sample set W is a mapped samples of the
data set, i.e. W = {wi|wi = φ(xj) for some 1 ≤ j ≤
n}. This is the case when the sample selection matrix P
is a binary matrix with a single one per column. In the
remainder of the paper, we will use the notation Σ̃osn

k for
ΣG,k to emphasize that it is obtained from the one-shot
Nyström method.

3. The One-Shot Nyström Method: The
Optimal Sample-based KPCA

As reviewed in the previous section, the one-shot
Nyström method computes the best rank-k approximation
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Algorithm 1 The One-shot Nyström method
Input: Matrix Ps ∈ Rn×s representing the composition

of s sample points such that W = ΦPs ∈ Rd×s with
rank(W) = s′, kernel function κ

Output: Approximate kernel matrix K̃osn
k , its singular

vectors Ṽosn
k and singular values (Σ̃osn

k )2

1: Obtain KW = W>W
2: Perform compact SVD KW = VWΛWV>W =

VWΣ2
WV>W

3: Compute G>G, where G = CVWΣ−1
W

4: Compute VG,k the first k singular vectors of G>G
and corresponding singular values Σ2

G,k

5: Σ̃osn
k = ΣG,k, Ṽosn

k = GVG,kΣ
−1
G,k and K̃osn

k =

GVG,kV
>
G,kG

>

of K̃nys to obtain orthonormal approximate eigenvectors
Ṽk of K for the given samples W. Here, we suggest
that the one-shot Nyström method can be used for com-
puting optimal solutions to other closely related problems,
such as kernel principal component analysis (KPCA). In
this section, we make a formal statement that the one-shot
Nyström method provides an optimal KPCA for the given
W, which we build on in later sections.

We start with the observation that the most scalable KPCA
algorithms are based on a set of samples (Frieze et al.,
1998; Williams & Seeger, 2001) can be seen as comput-
ing k approximate eigenvectors of K, given by

Ṽk = CAkΣ̃
−1
k , (3)

where C = Φ>W ∈ Rn×s is the inner product matrix
among the whole data set and the sample vectors (Eqn (1)),
Ak ∈ Rs×k is the algorithm-dependent coefficient matrix
for each pair of sample vector and principal direction, and
Σ̃k is the diagonal matrix of the first k approximate singu-
lar values. This view generalizes (Kumar et al., 2009).

To facilitate the analysis, we first reformulate Eqn (3) as

Ṽk = Φ>ŨkΣ̃
−1
k , (4)

where Ũk = WAk ∈ Rd×k denotes k approximate princi-
pal directions in the feature space. Using the reconstruction
error (RE) and the normalized reconstruction error (NRE)
for KPCA (Günter et al., 2007)

RE(Ũk) = ‖Φ− ŨkŨ
>
k Φ‖F

NRE(Ũk) =
‖Φ− ŨkŨ

>
k Φ‖F

‖Φ‖F
as the objective functions, and observing that Ak deter-
mines the k approximate principal directions Ũk, we can
formulate KPCA based on samples W as an optimization
problem:

Definition 1 For the given samples W, sample-based
KPCA problem is defined as

minimize
Ak

NRE(Ũk) subject to Ũ>k Ũk = Ik, Ũk = WAk.

(5)

The following lemma provides two types of the approxi-
mate principal directions Ũk, which are computed from the
standard Nyström method and one-shot Nyström method.

Lemma 2 In standard Nyström method, approximate prin-
cipal directions are

Ũnys
k = UW,k, (6)

where W = UWΣWV>W . In the one-shot Nyström
method, approximate principal directions are

Ũosn
k = UWVG,k, (7)

where G = Φ>WVWΣ−1
W = Φ>UW and G>G =

VGΣGV>G.

The following theorem states that the one-shot
Nyström method can be used to solve the optimiza-
tion problem defined in Def 1.

Theorem 1 Given the s samples W ∈ Rd×s with
rank(W) = s′, KPCA using the one-shot Nyström method
solves the optimization problem in Def 1.

Given samples W, we proved that the one-shot Nyström
method minimizes the NRE(Ũk) in Eqn (5) in Def 1. To
give more intuition for it, we introduce the sum of eigen-
value errors which is closely related with the NRE(Ũk).

Definition 2 Given k approximate principal directions
Ũk ∈ Rd×k of Φ such that Ũ>k Ũk = Ik, the sum of eigen-
value errors from Ũk is defined as

ε1(Ũk) = tr(U>k ΦΦ>Uk)− tr(Ũ>k ΦΦ>Ũk),

where Uk is the matrix consisting of true principal direc-
tions as columns.

With the notion in Def 2, we can directly give a following
corollary.

Corollary 1 Minimizing the NRE(Ũk) is equivalent to
minimizing the ε1(Ũk) defined in Def 2, thus

Ũosn
k = argmin

Ũk

ε1(Ũk) s.t. Ũ>k Ũk = Ik, Ũk = WAk.

Additional to Thm 1 and Cor 1, we show that outputs of
the one-shot Nyström method depend only on subspace
spanned by input samples.
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Proposition 1 Let W1 and W2 be the matrix consisting
of s1 samples and s2 samples respectively. If two column
spaces col(W1) and col(W2) are the same, then the out-
puts of the one-shot Nyström method are also the same re-
gardless of difference between set of samples.

We note that the standard Nyström method does not satisfy
the robustness discussed in Proposition 1.

4. A Generalized View of Sampling Schemes
Motivated by Proposition 1, in this section, we provide new
upper error bounds of the Nyström method based on sub-
space distance, and suggest a generalized view of sampling
schemes for the Nyström method.

4.1. Error Analysis based on Subspace Distance

To provide new upper error bounds of the Nyström meth-
ods, our motivation is using the measure called “subspace
distance” which can evaluate the difference between two
subspaces (Wang et al., 2006; Sun et al., 2007).

Basically, the subspace distance of two subspaces depends
on the notion of projection error, hence we discuss the pro-
jection error first.

Definition 3 Given two matrices U and V consisting of
orthonormal vectors, i.e., U>U = I and V>V = I, the
projection error of U onto col(V) is defined as

PE(U,V) = ‖U−VV>U‖F .

Since any linear subspace can be represented by its or-
thonormal basis, subspace distance can be defined by the
projection error between set of orthonormal vectors.

Definition 4 (Wang et al., 2006; Golub & Van Loan, 2012)
Given k dimensional subspace S1 and k dimensional sub-
space S2, the subspace distance d(S1, S2) is defined as

d(S1, S2) = PE(Uk, Ũk) = ‖Uk − ŨkŨ
>
k Uk‖F ,

where Uk is an orthonormal basis of S1 and Ũk is an or-
thonormal basis of S2.

Lemma 3 (Wang et al., 2006; Sun et al., 2007; Golub &
Van Loan, 2012) The subspace distances defined in Def 4
are invariant to the choice of orthonormal basis.

Remind that the standard Nyström and one-shot
Nyström methods satisfy K̃k = ṼkΣ̃

2
kṼk =

Φ>ŨkŨ
>
k Φ, and those are characterized by Ũnys

k

and Ũosn
k as proved in Lem 2. Therefore, we provide a

following error analysis based on the subspace distance
between col(Uk) and col(Ũk).

Theorem 2 Let Ũk be a matrix consisting of k approxi-
mate principal directions computed by the Nyström meth-
ods given the sample matrix W ∈ Rd×s with rank(W) ≥
k. Suppose that ε0(Ũk) = d(col(Uk), col(Ũk)), then the
NRE is bounded by

NRE(Ũk) ≤ NRE(Uk) +
√

2ε0,

where NRE(Uk) is the optimal NRE for rank-k. The error
of the approximate kernel matrix is bounded by

‖K− K̃k‖F ≤ ‖K−Kk‖F +
√

2ε0 tr(K),

where ‖K−Kk‖F is the optimal error for rank-k.

The suggested upper error bounds in Thm 2 are applicable
both to the standard and one-shot Nyström methods.

We note that the ε1(Ũk) is bounded on both sides by con-
stant times of the subspace distance d(col(Uk), col(Ũk)).

Lemma 4 Suppose that k-th eigengap is nonzero given
Gram matrix K, i.e., γk = λk − λk+1 > 0. Then, given
the Ũk ∈ Rd×k and Ṽk ∈ Rn×k such that Ũ>k Ũk = Ik
and Ṽ>k Ṽk = Ik, the subspace distance is bounded by√

ε1(Ũk)

λ1
≤ d(col(Uk), col(Ũk)) ≤

√
ε1(Ũk)

γk
,√

ε2(Ṽk)

λ1
≤ d(col(Vk), col(Ṽk)) ≤

√
ε2(Ṽk)

γk
,

where ε2(Ṽk) = tr(V>k Φ>ΦVk)− tr(Ṽ>k Φ>ΦṼk).

Lem 4 tells us that the subspace distance goes to zero as
ε1(Ũk) goes to zero, and the converse is also true, like the
squeeze theorem. Thus, we can replace ε0(Ũk) in Thm 2
with ε1(Ũk).

We can also provide a connection between ε1(Ũk) and
ε2(Ṽk) when we set W = ΦṼ` for the Nyström meth-
ods.

Lemma 5 Suppose that ` samples are columns of ΦṼ`,
i.e.W = ΦṼ`, and Ṽk is a submatrix consisting of k
columns of Ṽ`, where Ṽ>` Ṽ` = I`. Then, for any k ≤
rank(W), Ũnys

k and Ũosn
k satisfy

ε1(Ũosn
k ) ≤ ε1(Ũnys

k ) ≤ ε2(Ṽk) ≤ ε2(Ṽ`),

where Ũnys
k and Ũosn

k are defined in Lem 2.

Based on Thm 2, Lem 4 and Lem 5, we provide Thm 3
and Rem 1, that tell us how we can get sample vectors for
Nyström methods to reduce their approximation errors.
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Theorem 3 Suppose that the k-th eigengap γk is nonzero
given K. If we set W = ΦṼ` with Ṽ>` Ṽ` = I`, then by
the standard and one-shot Nyström methods, the NRE and
the matrix approximation error are bounded as follows:

NRE(Ũk) ≤ NRE(Uk) +

√
2ε2(Ṽk)

γk
(8)

‖K− K̃k‖F ≤ ‖K−Kk‖F +

√
2ε2(Ṽk)

γk
tr(K) (9)

where Ṽk is any submatrix consisting of k columns of Ṽ`.

Remark 1 By Thm 3, we suggest two kinds of strategies:

• Since ε2(Ṽk) ≤ ε2(Ṽ`), if we set W as ΦṼ` which
has small ε2(Ṽ`) or minṼk

ε2(Ṽk) with constraint
Ṽ>` Ṽ` = I`, then we could get a small error induced
by Nyström methods due to a short subspace distance
to the principal subspace. The objective of the ker-
nelK-means is minimizing the ε2(Ṽ`) with some con-
straints, which will be discussed in detail in the sup-
plementary material.

• Also, if we set W as ΦṼ` which has small
PE(Vk, Ṽ`) or minṼk

PE(Vk, Ṽk) with constraint
Ṽ>` Ṽ` = I`, then we could get a small error induced
by Nyström methods due to a short subspace distance
to the principal subspace. The leverage score sam-
pling reduces the expectation of minṼk

PE(Vk, Ṽk).

4.2. Capturing Approximate Principal Subspace
(CAPS)

As discussed in Rem 1, minimizing ε2(Ṽ`) or
minṼk

ε2(Ṽk) is a key of reducing subspace dis-
tance d (col(Uk), col(Ũk)) and can be a good objective of
sampling methods for Nyström methods. Thus, our goal
of this section is suggesting an algorithm of minimizing
ε2(Ṽ`).

Suggesting an efficient algorithm for minimizing ε2(Ṽ`),
we introduce the notion of spanning set S defined in Def 5,
which can be utilized to approximate linear combinations
such that approximated eigenvectors lie in the col(S), e.g.

ṽj ≈
∑

φ(xi)∈S

bijφ(xi) for j ∈ {1, ..., `}, (10)

where bij is a coefficient.

Definition 5 Given n data points, let S be a spanning set
consisting of s representative points in n data points for
linear combination, S be a matrix which consists of s rep-
resentative vectors as its columns, and TS be a indicator
matrix such that S = ΦTS .

Algorithm 2 Capturing Approximate Principal Subspace
(CAPS)
Input: The number of representatives s, where ` � s �

n
Output: Spanning set S consisting of s representative

points, Ṽ` = TSVS,` (or Ṽ` = TSṼS,`), ` samples
W = SVS,` (respectively,W = SṼS,`)

1: Construct a spanning set S consisting of s representa-
tive points which are obtained by column index sam-
pling (e.g., uniform random or approximate leverage
score etc.)

2: Obtain KS = S>S
3: Perform compact SVD KS = VSΣ2

SV>S or approxi-
mate compact SVD (e.g. randomized SVD or the one-
shot Nyström method)

4: Obtain Ṽ` as TSVS,` or TSṼS,`, where TS is the
indicator matrix for the set S

If we express approximate ` eigenvectors as described in
Eqn (10) and set s � n for very large-scale data, then the
time complexities of computing Ṽ` will be reduced.

Here is our strategy which is called ”Capturing Approxi-
mate Principal Subspace” (CAPS).

1. For the scalability, we construct and utilize a span-
ning set S defined in Def 5, and set a constraint as
col(W) ⊂ col(S). Applying the constraint to our
Rem 1, then we have

W = ΦṼ` = SA` with A>` A` = I`. (11)

2. Under the condition in Eqn (11), the solution of the
problem of minimizing ε2(Ṽ`) is VS,` by the Propo-
sition 2. Thus, we compute VS,` via SVD of KS ,
or ṼS,` through approximate SVD including random-
ized SVD or the one-shot Nyström method.

Consequently, CAPS aims to get a small ε2(Ṽ`) more
directly with just O(sn) memory, where s � n. The
time complexity varies depending on step 1 and step 3
in Alg 2. For decomposing KS in step 3, the time com-
plexity is O(s3) for SVD and O(m2s) for the one-shot
Nyström method, where ` ≤ m� s.

Proposition 2 Given spanning set S consisting of s rep-
resentative points, suppose that we set W = ΦṼ` and
Ṽ>` Ṽ` = I` with the constraint col(W) ⊂ col(S). Then,
under that condition, the problem of minimizing ε2(V`)
can be equivalently expressed as

minimize
A`

ε2(Ṽ`) subject to Ṽ` = TSA`,A
>
` A` = I`,

and the output of step 3 in Alg 2 with rank-` SVD minimizes
ε2(V`), i.e., VS,` = argminA`

ε2(Ṽ`) subject to Ṽ` =
TSA`,A

>
` A` = I`, where KS = VSΣ2

SV>S .
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We directly provide Cor 2 which is a revised version of
Thm 3 for CAPS sampling.

Corollary 2 By standard and one-shot Nyström methods,
any set of ` samples computed by CAPS sampling satisfying
ε2(Ṽ`) error is guaranteed to satisfy Eqn (8) and Eqn (9).

Since our main concern is minimizing ε2(Ṽ`), and the
CAPS with rank-` SVD gives the optimal solution for the
given condition in Proposition 2 as Ṽ` = TSVS,`, we can
approximate ε2(TSVS,`) as ε2(TSṼS,`), where ṼS,` can
be computed by one-shot Nyström method due to its opti-
mality discussed in Thm 1, or can be obtained from ran-
domized SVD.

5. The Double Nyström Method
In this section, we propose a new framework of
Nyström method based on the CAPS and the one-
shot Nyström method, which is called “Double
Nyström Method” and described in Alg 3. In brief,
the Double Nyström method reduces the original problem
of decomposing the given n × n kernel matrix to the
problem of decomposing a s× s matrix, and again reduces
it to the problem of decomposing a `× ` matrix.

1. In the first part, we select the one-shot
Nyström method for step 3 in Alg 2, and run
CAPS using the one-shot Nyström method to com-
pute VS,`. Because we can consider the problem
of computing VS,` as the KPCA problem, and
the one-shot Nyström method solves sample-based
KPCA defined in Def 1. Also, it has a small running
time complexity O(m2s), since ` ≤ m� s� n.

2. For the second part, we consider W = ΦṼ` =
SṼS,`, and run the one-shot Nyström method. Since
computed Ṽ` = TSṼS,` in the first part induces a
small ε2(Ṽ`), we may have an accurate K̃k after the
second part.

Constructing a spanning set S in CAPS by using uni-
form random sampling, the total time complexity of dou-
ble Nyström methods is O(`sn+m2s), and O(m2s) term
is not considerable compared to O(`sn), since ` ≤ m �
s� n.

We note that computing spanning set S is also important
for CAPS, consequently for Double Nyström method. In
Rem 2, We provide an example how we can quickly com-
pute approximate leverage scores and construct a spanning
set S. Also, we summarize the time complexity of the
Nyström methods in Tbl 1.

Algorithm 3 The Double Nyström Method
Input: Kernel function κ, and the parameters k, `, m, s,

where k ≤ ` ≤ m� s� n
Output: Approximate kernel matrix and spectral decom-

position
1: Run CAPS using the one-shot Nyström method with
m subsamples of spanning set S, and obtain Ṽ` and
W = ΦṼ` = SṼS,`

2: Compute KW = (ṼS,`)
>KSṼS,` ∈ R`×` and C =

C0ṼS,` ∈ Rn×` by using W and C0 = Φ>S, and run
the one-shot Nyström method with parameters k and `

Remark 2 Since the computational complexity for com-
puting the exact leverage scores is high, we can obtain ap-
proximate leverage scores by using double Nyström method
or other methods.

First, we obtain s1 instances by uniform random sampling
and construct a spanning set S1, where s1 ≤ s. Next, we
run double Nyström method with the spanning set S1 and
approximate leverage scores in timeO(`1s1n+m2

1s1). We
sample additional (s−s1) instances to complete construct-
ing a spanning set S by using the computed scores, where
`1 ≤ m1 � s1 ≤ s � n and S1 ⊆ S. If we run double
Nyström method with the computed spanning set S, then
the total running time is O(`sn+m2s) for `1 = Θ(`) and
m1 = Θ(m).

6. Experiments
In this section, we present experimental results that demon-
strate our theoretical work and algorithms. We con-
duct experiments with the measure called “relative ap-
proximation error” (Relative Error): Relative Error =
‖K− K̃k‖F /‖K‖F . We report the running time as the
sum of the the sampling time and the Nyström approx-
imation time. Every experimental instances are run on
MATLAB R2012b with Intel Xeon 2.90GHz CPUs, 96GB
RAM, and 64bit CentOS system.

We choose 5 real data sets for performance comparisons
and summarize them in Tbl 2. To construct kernel ma-
trix K, we use radial basis function(RBF) and it is defined
as follows: κ(xi,xj) = exp

(
−‖xi−xj‖22

2σ2

)
, where σ is

a kernel parameter. We set σ for 5 data sets as follows:
σ = 100.0 for Dexter, σ = 1.0 for Letter, σ = 5.0 for
MNIST, σ = 0.3 for MiniBooNE, and σ = 1.0 for Cover-
type. We select k = 20 and k = 50 for each data set.

We empirically compare the double Nyström method de-
scribed in Alg 3 with three representative Nyström meth-
ods: the standard Nyström method (Williams & Seeger,
2001), the standard Nyström method using randomized
SVD (Li et al., 2015), and the one-shot Nyström method
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Figure 1. Performance comparison both for k = 20 and k = 50 among the four methods: the standard Nyström method (Williams &
Seeger, 2001), the one-shot Nyström method (Fowlkes et al., 2004), the standard Nyström method using randomized SVD (Li et al.,
2015), and the double Nyström method (ours). We gradually increase the number of samples s as 500, 1000, 1500,..., 5000, and there
are corresponding 10 points on the each line. We perform SVD algorithm only on the Letter data set due to memory limit.

Table 1. Time complexities for the Nyström methods to obtain a rank-k approximation with spanning set S, where ` ≤ m � s � n
and CAPS(ALev) is described in Rem 2

The Sampling & Nyström Methods time complexity linearity for s degree for s and n #kernel elements for computation

Unif & The Standard O(ksn+ s3) No cubic O(sn)
Unif & The One-Shot O(s2n) No cubic O(sn)

Unif & Rand.SVD + The Standard O(ksn) Yes quadratic O(sn)
The Double (CAPS(Unif)) O(`sn+m2s) Yes quadratic O(sn)
The Double (CAPS(ALev)) O(`sn+m2s) Yes quadratic O(sn)

Table 2. The summary of 5 real data sets. n is the number of
instances and d0 is the dimension of the original data

data set number of instances n dimensionality d0

Dexter 2600 20000
Letter 20000 16

MNIST 60000 784
MiniBooNE 130064 50
Covertype 581012 54

(Fowlkes et al., 2004). We run the double Nyström method
with the spanning set S constructed by uniform random
sampling (Unif) and approximate leverage scores (ALev).
There are 10 episodes for each test, and 10 points on the
each line in the figures. For example, we set s = 500t,
` = (140 + 5t), and m = (250 + 50t) when n ≥ 20000,
where t = 1, 2, ..., 10. We display the experimental results
in Fig 1 and 2. As shown in the experiments, the double
Nyström method always shows better efficiency than other
methods under the same condition of using O(sn) kernel
elements. In the experiment on the Letter data set, we can
also notice that the error of the double Nyström method
more rapidly decreases to the optimal error than the others.
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Figure 2. Additional experiments for high dimensional data set.
We gradually increase s as 200, 400, 600,..., 2000.

7. Conclusion
In this paper, we provided a comprehensive analysis of
the one-shot Nyström method and a generalized view of
sampling strategy, and by integrating of these two results,
we proposed the “Double Nyström Method” which re-
duces the size of the decomposition problem to a smaller
size in two stages. Both theoretically and empirically, we
demonstrated that the double Nyström method is much
more efficient than the various Nyström methods, but is
quite accurate. Thus, we recommend using the double
Nyström method for large-scale data sets.
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